GLSL Geometry Shaders

Here’s What We Know So Far

One Vertex In = gl_Vertex

Vertex Shader

One Vertex Out = gl_Position

What is that Primitive Assembly Step For?

One Vertex In

Vertex Shader

Primitive Assembly

Array of Vertices Out

Arrays of Vertices Out, Possibly with a Change of Topology
The Geometry Shader: Where Does it Fit in the Pipeline?

- Fixed Function
- Programmable

If a Geometry Shader is used, it is always the last stop before the Rasterizer.

Geometry Shader: What Does it Do?

- Points, Lines, Line Strip, Line Loop, Lines with Adjacency, Line Strip with Adjacency, Triangles, Triangle Strip, Triangle Fan, Triangles with Adjacency, Triangle Strip with Adjacency

Your application generates these, and the driver translates them into one of these and feeds them one-at-a-time into the Geometry Shader.

The Geometry Shader generates (almost) as many of these as it wants.

There needn’t be any correlation between Geometry Shader input type and Geometry Shader output type. Points can generate triangles, triangles can generate triangle strips, points can generate points, etc.

Additional Topologies were added with Geometry Shaders:

- GL_LINES_ADJACENCY
- GL_LINE_STRIP_ADJACENCY
- GL_TRIANGLES_ADJACENCY
- GL_TRIANGLE_STRIP_ADJACENCY

Adjacency Primitives (and what they do when not using shaders)

Lines with Adjacency

4N vertices are given,

where N is the number of line segments to draw.

A line segment is drawn between #1 and #2.

Vertices #0 and #3 are there to provide adjacency information.

Line Strip with Adjacency

N=3 vertices are given,

where N is the number of line segments to draw.

A line segment is drawn between #1 and #2, #2 and #3, ..., #N and #N+1.

Vertices #0 and #N+2 are there to provide adjacency information.
Adjacency Primitives (and what they do when not using shaders)

Triangles with Adjacency

6N vertices are given (where N is the number of triangles to draw).
Points 0, 2, and 4 define the triangle.
Points 1, 3, and 5 tell where adjacent triangles are.

Triangle Strip with Adjacency

4+2N vertices are given (where N is the number of triangles to draw).
Points 0, 2, 4, 6, 8, 10, … define the triangles.
Points 1, 3, 5, 7, 9, 11, … tell where adjacent triangles are.

Adjacency Primitives (and what we really do with them)

In these examples, we will use the “with adjacency” primitives only as a way of importing some number of vertices into the geometry shader.

These are the most useful:

- **GL_LINES_ADJACENCY** → 4 vertices
- **GL_TRIANGLES_ADJACENCY** → 6 vertices

Example is a Bezier curve:

Example is silhouette edges

What Do the Inputs to a Geometry Shader Look Like?

- **gl_Position**
- **gl_PointSize**
- Plus, any of your own variables that you have declared as `out`

When the Geometry Shader calls `EmitVertex()` this set of variables is copied to an entry in the shader’s Primitive Assembly step.

What Do the Outputs from a Geometry Shader Look Like?

Basically, they look like what you already know:

- `gl_Position`
- `gl_PointSize`
- Plus, any of your own variables that you have declared as `out`

When the Geometry Shader calls `EndPrimitive()` the vertices that have been saved in the Primitive Assembly elements are then assembled, rasterized, etc.

Note: there is no “BeginPrimitive()” function. It is implied by (1) the start of the Geometry Shader, or (2) returning from the EndPrimitive() call. Also, there is no need to call `EndPrimitive()` at the end of the Geometry Shader — it’s implied.
If you are using a Geometry Shader, then the GS must be used if you want to pass information from the Vertex Shader to the Fragment Shader.

```glsl
out vec4 vColor;
vColor = gl_Color;
```

```
in vec4 vColor[3];
in vec4 gColor;
out vec4 gColor;
gColor = vColor[ k ];
```

That is, this is a pipeline. You cannot pass variables directly from the vertex shader to the fragment shader anymore.

Example: A Bézier Curve

\[
P(t) = (1 - t)^3P_0 + 3t(1 - t)^2P_1 + 3t^2(1 - t)P_2 + t^3P_3
\]

\[0. \leq t \leq 1.\]

Need to pass 4 points in to define the curve. You need to pass N points out to draw the curve as a Line Strip.

Example: Expanding 4 Points into a Bezier Curve with a Variable Number of Line Segments

beziercurve.glib

```glsl
version 330 compatibility
extension GL_EXT_gpu_shader4: enable
extension GL_EXT_geometry_shader4: enable
layout( lines_adjacency )  in;
layout( line_strip, max_vertices=200 )  out;
uniform int uNum;
void main( )
{
    float dt = 1. / float(uNum);
    float t = 0.;
    for( int i = 0; i <= uNum; i++ )
    {
        float omt = 1. - t;
        float omt2 = omt * omt;
        float omt3 = omt * omt2;
        float t2 = t * t;
        float t3 = t * t2;
        vec4 xyzw = omt3 * gl_PositionIn[0].xyzw +
            3. * t * omt2 * gl_PositionIn[1].xyzw +
            3. * t2 * omt * gl_PositionIn[2].xyzw +
            t3 * gl_PositionIn[3].xyzw;
        gl_Position = gl_ProjectionMatrix * xyzw;
        EmitVertex( )
        t += dt;
    }
}
```

Note: layout directives are a GLSL-ism and are used to define what the storage looks like.
Example: Expanding 4 Points into a Bezier Curve with a Variable Number of Line Segments

Another Example: Shrinking Triangles

Example: Shrinking Triangles

CG = (P₀ + P₁ + P₂) / 3.;

P₀' = CG + uShrink * (P₀ - CG)
P₁' = CG + uShrink * (P₁ - CG)
P₂' = CG + uShrink * (P₂ - CG)

shrink.vert

#define 400 compatibility
out vec3 vNormal;
void main()
{
 vNormal = normalize(gl_NormalMatrix * gl_Normal);
 gl_Position = gl_ModelViewMatrix * gl_Vertex;
}

Not a typo – we are going to save the Projection Matrix multiply for the Geometry Shader!
shrink.geom

```glsl
#version 330 compatibility
#extension GL_EXT_glu_shade4: enable
#extension GL_EXT_geometry_shader4: enable
layout( triangles ) in;
layout( triangle_strip, max_vertices=200 ) out;
uniform float uShrink;
in vec3 vNormal[3];
out float gLightIntensity;
const vec3 LIGHTPOS = vec3( 0., 10., 0. );
vec3 V[3], CG;

void ProduceVertex( int v ) {
  gLightIntensity = dot( normalize(LIGHTPOS - V[v]), vNormal[v] );
  gLightIntensity = abs( gLightIntensity );
  gl_Position = gl_ProjectionMatrix * vec4( CG + uShrink * ( V[v] - CG ), 1. );
  EmitVertex( );
}

void main() {
  V[0] = gl_PositionIn[0].xyz;
  V[1] = gl_PositionIn[1].xyz;
  ProduceVertex( 0 );
  ProduceVertex( 1 );
  ProduceVertex( 2 );
}
```

Since you are multiplying by the Projection matrix here, don't multiply by it in the vertex shader!

Another Example: Sphere Subdivision

It's often useful to be able to parameterize a triangle into (s,t), like this:

![Diagram](image)

v(s,t) = V0 + s * (V1-V0) + t * (V2-V0)

Example: Sphere Subdivision

![Diagram](image)

Example: Sphere Subdivision

```
spheresubd.glib
```

Example: Sphere Subdivision

```
spheresubd.vert
```

```
spheresubd.geom
```

```
spheresubd.frag
```

```
Program SphereSubd uLevel <0 0 10> uRadius <.5 1.5> uColor { 1. .5 .15 1. }
```

```
Triangles [ 0. 0. 0. ] [ 1. 0. 0. ] [ 0. 1. 0. ]
Triangles [ 0. 0. 0. ] [ 0. 0. -1. ] [ 0. 1. 0. ]
Triangles [ 0. 0.-1. ] [ 1. 0. 0. ] [ 0. 1. 0. ]
Triangles [-1. 0. 0. ] [ 0. 0. 1. ] [ 0. 1. 0. ]
Triangles [ 0. 0. 1. ] [ 1. 0. 0. ] [ 0. -1. 0. ]
Triangles [ 0. 0.-1. ] [ 1. 0. 0. ] [ 0. -1. 0. ]
Triangles [-1. 0. 0. ] [ 0. 0. 1. ] [ 0. -1. 0. ]
```
Example: Sphere Subdivision

```c
void main()
{
    gl_Position = gl_ModelViewMatrix * gl_Vertex;
}
```

```c
uniform vec4 uColor;
in float gLightIntensity;
void main()
{
    gl_FragColor = vec4( gLightIntensity*uColor.rgb, 1.);
}
```

```c
spheresubd.vert

void main()
{
    gl_Position = vec4( uRadius*uColor.rgb, 1.);
}
```

```c
spheresubd.frag

uniform vec4 uColor;
in float gLightIntensity;
void main()
{
    gl_FragColor = vec4( gLightIntensity*uColor.rgb, 1.);
}
```

```c
spheresubd.geom, I

Example: Sphere Subdivision

```c
#version 330 compatibility
#extension GL_EXT_gpu_shader4: enable
#extension GL_EXT_geometry_shader4: enable
layout(triangles) in;
layout(triangle_strip, max_vertices=200) out;
uniform int uLevel;
uniform float uRadius;
out float gLightIntensity;
const vec3 LIGHTPOS = vec3(0., 10., 0.);
vec3 V0, V01, V02;
void ProduceVertex(float s, float t)
{
 vec3 v = V0 + s*V01 + t*V02;
 v = normalize(v);
 vec3 n = v;
 vec3 tnorm = normalize(gl_NormalMatrix * n); // the transformed normal
 vec4 ECposition = vec4(uRadius*v, 1.);
 gLightIntensity = abs(dot(normalize(LIGHTPOS - ECposition.xyz), tnorm));
 gl_Position = gl_ProjectionMatrix * ECposition;
 EmitVertex();
}
```

```c
spheresubd.geom, II

Example: Sphere Subdivision

```c
void main()
{
    V01 = ( gl_PositionIn[1] - gl_PositionIn[0] ).xyz;
    V02 = ( gl_PositionIn[2] - gl_PositionIn[0] ).xyz;
    V0  =   gl_PositionIn[0].xyz;
    int numLayers = 1 << uLevel;
    float dt = 1. / float( numLayers );
    float t_top = 1.;
    for( int it = 0; it < numLayers; it++ )
    {
        . . .
    }
}
```

```c
spheresubd.geom, III

Example: Sphere Subdivision

```c
for(int it = 0; it < numLayers; it++)
{
 float t_bot = t_top - dt;
 float smax_top = 1. - t_top;
 float smax_bot = 1. - t_bot;
 int nums = it + 1;
 float ds_top = smax_top / float(nums - 1);
 float ds_bot = smax_bot / float(nums);
 float s_top = 0.;
 float s_bot = 0.;
 for(int is = 0; is < nums; is++)
 {
 ProduceVertex(s_bot, t_bot);
 ProduceVertex(s_top, t_top);
 s_top += ds_top;
 s_bot += ds_bot;
 . . .
 }
 ProduceVertex(s_bot, t_bot);
 EndPrimitive();
 t_top = t_bot;
 t_bot -= dt;
}
```
Example: Sphere Subdivision with One triangle

Level = 0

Level = 1

Level = 3

Level = 2

Example: Sphere Subdivision with the Whole Sphere (8 triangles)

Level = 0

Level = 1

Level = 3

Level = 2

Another Example: Explosion

1. Break the triangles into points
2. Treat each point’s distance from the triangle’s CG as an initial velocity
3. Follow the laws of projectile motion:

\[ x = x_0 + v_x t \]
\[ y = y_0 + v_y t + \frac{1}{2} a_y t^2 \]

Example: Explosion

```c
void main() {
 gl_Position = gl_ModelViewMatrix * gl_Vertex;
}
```

explode.geom

```c
layout(triangles) in;
layout(points, max_vertices=200) out;
uniform int uLevel;
uniform float uGravity;
uniform float uTime;
uniform float uVelScale;
vec3 V0, V01, V02;
vec3 CG;
void ProduceVertex(float s, float t) {
 vec3 v = V0 + s*V01 + t*V02;
 vec3 vel = uVelScale * (v - CG);
 v = CG + vel*uTime + 0.5*vec3(0.,uGravity,0.)*uTime*uTime;
 gl_Position = gl_ProjectionMatrix * vec4(v, 1.);
 EmitVertex();
}
```

Example: Explosion

```c
version 330 compatibility
#extension GL_EXT_gpu_shader4: enable
#extension GL_EXT_geometry_shader4: enable
layout(points, max_vertices=200) out;
uniform int uLevel;
uniform float uGravity;
uniform float uVelScale;
vec3 V0, V01, V02;
vec3 CG;
void main() {
 gl_Position = gl_ModelViewMatrix * gl_Vertex;
}
```

Since you are multiplying by the Projection matrix in the geometry shader, don’t also multiply by it in the vertex shader!
Example: Explosion

```c
void main()
{
 V01 = (gl_PositionIn[1] - gl_PositionIn[0]).xyz;
 V02 = (gl_PositionIn[2] - gl_PositionIn[0]).xyz;
 V0 = gl_PositionIn[0].xyz;
 CG = (gl_PositionIn[0].xyz + gl_PositionIn[1].xyz + gl_PositionIn[2].xyz) / 3.;
 int numLayers = 1 << uLevel;
 float dt = 1. / float(numLayers);
 float t = 1.;
 for(int it = 0; it <= numLayers; it++)
 {
 float smax = 1. - t;
 int nums = it + 1;
 float ds = smax / float(nums - 1);
 float s = 0.;
 for(int is = 0; is < nums; is++)
 {
 ProduceVertex(s, t);
 s += ds;
 }
 t -= dt;
 }
}
```

Another Example: Silhouettes

1. Compute the normal vectors of each of the four triangles (one in the center and three around the outside)
2. If there is a sign difference between the z component of the center triangle’s normal and the z component of an adjacent triangle’s normal, draw their common edge
   I.e., you are looking for a crease.

Example: Silhouettes

```
silh.glib

Obj bunny.obj
Vertex silh.vert
Geometry silh.geom
Fragment silh.frag
Program Silhouette uColor { 0. 1. 0. 1. }

ObjAdj bunny.obj
```
Example: Silhouettes

```
void main() {
 gl_Position = gl_ModelViewMatrix * gl_Vertex;
}
```

uniform vec4 uColor;

```
void main() {
 gl_FragColor = vec4(uColor.rgb, 1.);
}
```

Example: Silhouettes

```
#version 330 compatibility
#extension GL_EXT_gpm_shader4: enable
#extension GL_EXT_geometry_shader4: enable
layout(triangles_adjacency) in;
layout(line_strip, max_vertices=200) out;
void main() {
 vec3 V0 = gl_PositionIn[0].xyz;
 vec3 V1 = gl_PositionIn[1].xyz;
 vec3 V2 = gl_PositionIn[2].xyz;
 vec3 V3 = gl_PositionIn[3].xyz;
 vec3 V4 = gl_PositionIn[4].xyz;
 vec3 V5 = gl_PositionIn[5].xyz;

 vec3 N042 = cross(V4-V0, V2-V0); // the center triangle's normal
 vec3 N021 = cross(V2-V0, V1-V0);
 vec3 N243 = cross(V4-V2, V3-V2);
 vec3 N405 = cross(V0-V4, V5-V4);

 if (dot(N042, N021) < 0.) // make sure each outer triangle's
 N021 = vec3(0.,0.,0.) - N021; // normal is in the same general direction
 if (dot(N042, N243) < 0.)
 N243 = vec3(0.,0.,0.) - N243;
 if (dot(N042, N405) < 0.)
 N405 = vec3(0.,0.,0.) - N405;

 if(N042.z * N021.z <= 0.) {
 gl_Position = gl_ProjectionMatrix * vec4(V0, 1.);
 EmitVertex();
 gl_Position = gl_ProjectionMatrix * vec4(V2, 1.);
 EmitVertex();
 EndPrimitive();
 }
 if(N042.z * N243.z <= 0.) {
 gl_Position = gl_ProjectionMatrix * vec4(V2, 1.);
 EmitVertex();
 gl_Position = gl_ProjectionMatrix * vec4(V4, 1.);
 EmitVertex();
 EndPrimitive();
 }
 if(N042.z * N405.z <= 0.) {
 gl_Position = gl_ProjectionMatrix * vec4(V4, 1.);
 EmitVertex();
 gl_Position = gl_ProjectionMatrix * vec4(V0, 1.);
 EmitVertex();
 EndPrimitive();
 }
}
```

Example: Bunny Silhouettes
Another Example: Hedgehog Plots

```cpp
//version 330 compatibility
#define GL_EXT_gpu_shader4 enable
#define GL_EXT_geometry_shader4 enable

layout (triangles) in;
layout (line_strip, max_vertices=200) out;

uniform int uDetail;
uniform float uDroop;
uniform int uLength;
uniform float uStep;

in vec3 vTnorm[3];
in vec4 vColor[3];

out vec4 gColor;

int ILength;
vec3 Norm[3];
vec3 N0, N01, N02;
vec4 V0, V01, V02;

void ProduceVertices(float s, float t)
{
 vec4 v = V0 + s*V01 + t*V02;
 vec3 n = normalize(N0 + s*N01 + t*N02);
 for(int i = 0; i <= uLength; i++)
 {
 gl_Position = gl_ProjectionMatrix * v;
 gColor = vColor[0];
 EmitVertex();
 v.xyz += uStep * n;
 v.y -= uDroop * float(i*i);
 }
 EndPrimitive();
}
```

```cpp
void main()
{
 V0 = gl_PositionIn[0];
 V01 = (gl_PositionIn[1] - gl_PositionIn[0]);
 V02 = (gl_PositionIn[2] - gl_PositionIn[0]);
 Norm[0] = vTnorm[0];
 Norm[1] = vTnorm[1];
 Norm[2] = vTnorm[2];
 if(dot(Norm[0], Norm[1]) < 0.)
 Norm[1] = -Norm[1];
 if(dot(Norm[0], Norm[2]) < 0.)
 Norm[2] = -Norm[2];
 N0 = normalize(Norm[0]);
 N01 = normalize(Norm[1] - Norm[0]);
 N02 = normalize(Norm[2] - Norm[0]);
 int numLayers = 1 << uDetail;
 float dt = 1. / float(numLayers);
 float t = 1.;
 for(int it = 0; it < numLayers; it++)
 {
 int nums = it + 1;
 float ds = smax / float(nums - 1);
 float s = 0.;
 for(int is = 0; is < nums; is++)
 {
 ProduceVertices(s, t);
 s += ds;
 }
 t -= dt;
 }
}
```
A GLSL Built-in Variable for the Geometry Shaders

```
int gl_PrimitiveIDIn
```

- Tells the number of primitives processed since the last time `glBegin()` was called
- Calling a vertex buffer drawing function counts as an implied `glBegin()`
- `gl_PrimitiveIDIn` is 0 for the first primitive after the `glBegin()`

Geometry shaders can use the built-in variable `gl_PrimitiveID` to send a primitive number to the fragment shader