
mjb – December 29, 2011 1

glman , a Better View into GLSL

glman is a program to allow a better view into the OpenGL
Shading Language (GLSL). It does not take the place of an
OpenGL program for real shader applications, but it is a nice
OpenGL program substitute for running experiments as you learn
about shaders.

You start glman by double-clicking on its executable’s icon. In the
Oregon State University Computer Graphics Education Lab, glman
is started with:

Start → All Programs → Shaders → glman.exe

The starting user interface window looks like this.
At the same time, a console window pops up. There are, at times,
useful messages that are displayed there. Most of the time, you can
ignore it. Iconify it if you want.

Loading a GLIB File

GLIB stands for GL Interface Bytestream. It is an ASCII-encoded
input file inspired by the Photorealistic RenderMan RIB file. The
GLIB portion of the glman menu looks like this.

Load a new GLIB File This brings up a dialog box that allows
you to select a GLIB file. glman parses your GLIB file and creates
a scene in a new graphics window.

Reload the GLIB File Reloads the currently-loaded GLIB file.
This is useful if you have just edited a shader source file and want
to test it.

The following commands are allowed in a GLIB file. The command
itself is case-insensitive, but any text arguments are case-sensitive.
Numbers in square brackets [] show the default values if the
parameters are not set.

If you read nothing else in this document, read thi s. Some shaders expect to find the default
OpenGL viewing situation, that is, the eye at the o rigin looking in –Z. So, glman provides that

situation when your scene is first displayed. Unfo rtunately, this often leaves you seeing little or
nothing of your scene because you’re inside it. Th us, usually your first move upon opening up a

new .glib scene should be to use the Eye Transforma tion “Trans Z” widget to push the scene back
into the viewing volume where it is more visible.

mjb – December 29, 2011 2

GLIB Scene Creation

Window and Viewing Volume

WindowSize wx wy Specifies the initial graphics window size. [600. 600.]

Ortho xl xr yb yt Set the current projection to orthographic with the given

parameters. [-3. 3. -3. 3.]

Perspective fov Set the current projection to perspective with the given

field of view angle (degrees). [50.]

Transformations
(Like OpenGL itself, these transformations take effe ct in the reverse order in which they are listed.)

Translate tx ty tz Pre-concatenate a translation onto the current matrix

Rotate angle ax ay az Pre-concatenate a rotation onto the current matrix (angle

in degrees)

Scale s Pre-concatenate a uniform scale onto the current matrix

Scale sx sy sz Pre-concatenate a non-uniform scale onto the current

matrix

PushMatrix Push the current matrix on the matrix stack

TransformBegin Same as PushMatrix

PopMatrix Pop the current matrix from the matrix stack

TransformEnd Same as PopMatrix

Creating Geometry

Box dx dy dz Creates a 3D box. If specified, (dx,dy,dz) are the lengths

of the sides. [2. 2. 2.]

Cylinder radius height Draw a solid cylinder. [1. 1.]

Cone radius height Draw a solid cone. [1. 1.]

DiskXY Creates a unit disk parallel to the XY plane and passing

through Z=0.

JitterCloud numx numy numz Creates a jittered 3D point cloud. If specified, numx,

numy, and numz are the number of points to use in each
direction. See PointCloud. [10 10 10]

mjb – December 29, 2011 3

LinesAdjacency [v0] [v1] [v2] [v3] Creates an instance of the new OpenGL
GL_LINES_ADJACENCY primitive. This works with
geometry shaders and only makes sense if they are
available on your system. Each vertex consists of an x,
y, and z, given in square brackets. So, for instance, [v0]
might be: [1. 2. 3.]

Obj filename Reads in a .obj geometry filename into lists of

GL_TRIANGLES. If filename is not given, glman will
prompt you for it. The complete .obj format can be quite
complex. This feature, however, just supports vertices,
normals, texture coordinates, and faces. Any face with
more than 3 vertices is automatically converted into
triangles.

ObjAdj filename Reads in a .obj geometry filename into a list of

GL_TRIANGLES_ADJACENT. This is useful for use
with Geometry Shaders for applications such as
smoothing and silhouettes. If filename is not given,
glman will prompt you for it. The complete .obj format
can be quite complex. This feature, however, just
supports vertices, normals, texture coordinates, and
faces. Any face with more than 3 vertices is
automatically converted into triangles. If you don’t have
a real need, use Obj instead of ObjAdj. The file will
read faster and the resulting geometry will display faster.

PointCloud numx numy numz Creates a regular 3D point cloud. If specified, numx,

numy, and numz are the number of points to use in each
direction. See JitterCloud. [10 10 10]

QuadBox numquads Draws a series of ‘numquads’ quadrilaterals (default=10)

parallel to the XY plane. The XYZ coordinates run from
(-1.,-1.,-1.) to (1.,1.,1.). The 3D texture coordinates run
from (0.,0.,0.) to (1.,1.,1.).This is a good way to test 3D
textures.

QuadXY z size nx ny Creates a quadrilateral parallel to the XY plane, passing

through Z=z. If given, size is the quadrilateral’s
dimension, going from (-size,-size) to (size,size) in X
and Y. If given, nx and ny are the number of sub-quads
this quadrilateral is broken into. This is a good way to
test 2D textures.

QuadXZ y size nx nz Creates a quadrilateral parallel to the XZ plane, passing

through Y=y. If given, size is the quadrilateral’s
dimension, going from (-size,-size) to (size,size) in X
and Z. If given, nx and nz are the number of sub-quads
this quadrilateral is broken into.

mjb – December 29, 2011 4

QuadYZ x size ny nz Creates a quadrilateral parallel to the YZ plane, passing
through X=x. If given, size is the quadrilateral’s
dimension, going from (-size,-size) to (size,size) in Y
and Z. If given, ny and nz are the number of sub-quads
this quadrilateral is broken into.

Soccerball radius Creates a geometric soccer ball from 12 pentagons and

20 hexagons. As part of this, two uniform variables are
defined:

1. FaceIndex: which face are we on right now. 0-

11 are the pentagons, 12-31 are the hexagons.
2. Tangent: vec3 pointing in a consistent tangent

direction, same as the Sphere uses.

In addition, the s and t texture coordinates are filled with
good values for mapping an image to each face. The p
value is filled with a normalized radius from the centerof
that face. The seam is located at p=1. [1.]

Sphere radius slices stacks Draw a solid sphere. This primitive sets the vertex

coordinates, the vertex normals, and the vertex texture
coordinates. In order to align bump-mapping, it also sets
a vec3 called Tangent at each vertex. The Tangent
vectors are all tangent to the sphere surface and always
point in a consistent direction, towards the North Pole.
[1. 60 60]

Teapot Create a solid teapot.

Torus outerradius innerradius numsides numrings
 Create a solid torus. [1.0 0.5 20 40]

WireBox dx dy dz Creates a 3D wireframe box. If specified, (dx,dy,dz) are

the lengths of the sides. [2. 2. 2.]

WireCylinder radius height Create a wireframe cylinder. [1. 1.]

WireCone radius height Create a wireframe cone. [1. 1.]

WireObj filename Reads in a .obj geometry filename into lists of lines. If

filename is not given, glman will prompt you for it. The
true .obj format can be quite complex. This feature,
however, just supports vertices, normals, texture
coordinates, and faces.

WireSphere radius slices stacks Create a wireframe sphere. [1. 60 60]

WireTorus innerradius outerradius numSides numRings
 Create a wireframe torus. [1.0 0.5 20 40]

mjb – December 29, 2011 5

WireTeapot Create a wireframe teapot

Xarrow numslices Creates an arrow along the X-axis, from X=0. to X=1. If

specified, numslices are the number of individual slices
to use along the arrow. [100]

Specifying Textures

Texture2D texture_unit filename This reads a 2D texture from a file. If the filename ends

in a .bmp suffix, a 24-bit color BMP image file is
assumed, with red, green, and blue read from the file (no
alpha). Any other filename pattern implies a raw format,
which consists of two binary 4-byte integers giving the
X and Y dimensions of the image, and then 4
components per texel specifying the red, green, blue, and
alpha of that texel. The components can be all unsigned
bytes or all 32-bit floating point.

Texture2D texture_unit dims dimt Setup an empty 2D texture unit for render-to-texture or

image load/store (see below)

Texture3D texture_unit filename This reads a 3D texture from a file in a raw format,

which consists of three binary 4-byte integers giving the
X, Y, and Z dimensions of the volume, and then 4
components per texel specifying the red, green, blue, and
alpha of that texel. The components can be all unsigned
bytes or all 32-bit floating point.

Texture3D texture_unit dims dimt dimp Setup an empty 3D texture unit for image load/store (see

below)

CubeMap texture_unit posxfile negxfile posyfile negyfile poszfile negzfile

Generate a cubemap texture on texture unit texture_unit.
Each file is either a 24-bit color BMP file or a raw 2D
texture file (see Texture2D above).

Specifying Shaders

Vertex file.vert Specify a vertex shader filename

TessControl file.tcs Specify a tessellation control shader filename.

TessEvaluation file.tes Specify a tessellation evaluation shader filename.

Geometry file.geom Specify a geometry shader filename

Fragment file.frag Specify a fragment shader filename

mjb – December 29, 2011 6

Program programname uniformvariables … Compile and Link the vertex, fragment, and possibly
geometry (see below), shaders into a program and
specify the uniform variables for that program (see
below) The program command must come last in this
group of three or four. It links together the current
vertex shader, the current fragment shader, and possibly
the current geometry shader and tessellation shaders.
Note that this means that you can re-use a shader in
another shader program by simply not redefining another
shader of that type.

 If you want to un-specify a shader (that is, no longer use

it), just give the vertex, fragment, geometry, or
tessellation commands with no arguments.

Miscellaneous

Background r g b Sets the current background color. 0. ≤ r,g,b ≤ 1.

Color r g b Set the current rendering color to (r,g,b)

0. ≤ r,g,b ≤ 1.

Flat Sets the current shading mode to GL_FLAT.

GSTAP For all shaders, automatically “#include” the gstap.h file

that #define’s the standard, deprecated GLSL built-in
variables. (See below.)

LineWidth size Sets the current line width.

LookAt ex ey ez lx ly lz ux uy uz Calls the OpenGL gluLookAt() routine. (ex,ey,ez)

are the eye position. (lx,ly,lz) are the look-at position.
(ux,uy,uz) are the up-vector.

Noise2D res Specify the resolution of glman’s built-in 2D noise

texture (see below)

Noise3D res Specify the resolution of glman’s built-in 3D noise

texture (see below).

PointSize size Sets the current point size.

Smooth Sets the current shading mode to GL_SMOOTH.

Timer numsecs Sets the timer period from the default of 10 seconds per

cycle to numsecs per cycle. (See below.)

MessageBox An informative text message Puts up a Message Box with the text message in it. This

is useful if you want to tell the user something about

mjb – December 29, 2011 7

what this .glib file is about and what to do with this
scene display.

In GLIB files:

• Multiple whitespace characters in a row are treated as a single whitespace character.
• A # causes the rest of the line to be treated as a comment and ignored
• A // causes the rest of the line to be treated as a comment and ignored
• A backslash (\) at the end of a line causes the carriage return to be ignored. The current line is

continued onto the next line.

GSTAP
Variables like gl_Vertex and gl_ModelViewMatrix have been built-in to the GLSL language from
the start. They are used like this:

vec4 ModelCoords = gl_Vertex;

vec4 EyeCoords = gl_ModelViewMatrix * gl_Vertex;

vec4 ClipCoords = gl_ModelViewProjectionMatrix * gl_Vertex;

vec3 TransfNorm = gl_NormalMatrix * gl_Normal;

However, starting with OpenGL 3.0, they have been deprecated in favor of defining our own variables
and passing them in from the application. The built-ins still work if compatibility mode is enabled, but
we should all be prepared for them to go away some day. Also, OpenGL- ES has already completely
eliminated the built-ins. What to do?

We have chosen to pretend that we have created variables in an application and have passed them in. So,
the previous lines of code would be changed to look like this:

vec4 ModelCoords = aVertex;

vec4 EyeCoords = uModelViewMatrix * aVertex;

vec4 ClipCoords = uModelViewProjectionMatrix * aVertex;

vec3 TransfNorm = uNormalMatrix * aNormal;

Eventually, you will need to stop using the old built-in names. And, it would be nice to be able to write
the shader code in the new style so that you don’t need to modify your shaders in the future. The glman
GSTAP command is a halfway-measure. GSTAP lets you use new names (thus preparing for an eventual
transition), by including a set of #defines at the top of your shader code for you:

// uniform variables:

#define uModelViewMatrix gl_ModelViewMatrix
#define uProjectionMatrix gl_ProjectionMatrix
#define uModelViewProjectionMatrix gl_ModelViewProj ectionMatrix
#define uNormalMatrix gl_NormalMatrix
#define uModelViewMatrixInverse gl_ModelViewMatrixI nverse

// per-vertex attribute variables:

#define aColor gl_Color
#define aNormal gl_Normal

mjb – December 29, 2011 8

#define aVertex gl_Vertex
#define aTexCoord0 gl_MultiTexCoord0
#define aTexCoord1 gl_MultiTexCoord1
#define aTexCoord2 gl_MultiTexCoord2
#define aTexCoord3 gl_MultiTexCoord3
#define aTexCoord4 gl_MultiTexCoord4
#define aTexCoord5 gl_MultiTexCoord5
#define aTexCoord6 gl_MultiTexCoord6
#define aTexCoord7 gl_MultiTexCoord7

#line 1

(The #line statement is there so that compiler error messages give the correct line numbers and do not
include these lines in the count.)

GSTAP stands for Graphics Shaders: Theory and Practice, the book in which this file originally
appeared (Second Edition, A.K. Peters, 2011).

Using Textures

As indicated above, there are two ways of inputting a 2D texture: as a 24-bit color uncompressed BMP
file or as a raw texture file. If you want this to work on any graphics system, be sure the image
dimensions are powers of two. The NVIDIA cards in the OSU Computer Graphics Education Lab quietly
don’t require this to be true, but for now, many other systems still do.

The 2D texture raw format is very simple. The first 8 bytes are two 4-byte integers, declaring the S and T
image dimensions. The following bytes are the RGBA values for each texel. These RGBA values can be
unsigned bytes or 32-bit floats. glman will look at the size of the file and do the right thing.

When writing a raw glman 2D texture file from another application, the order of writing should be:

FILE *fp = fopen(“example.tex”, “wb”);
if(fp == NULL)
{
 . . . Print message and exit . . .
}
fwrite(&nums, 4, 1, fp);
fwrite(&numt, 4, 1, fp);

for(int t = 0; t < numt; t++)
{
 for(int s = 0; s < nums; s++)
 {
 float red, green, blue, alpha;
 . . .
 fwrite(&red, 4, 1, fp);

fwrite(&green, 4, 1, fp);
 fwrite(&blue, 4, 1, fp);

fwrite(&alpha, 4, 1, fp);
 }
}

mjb – December 29, 2011 9

The 3D texture raw format is just as simple. The first 12 bytes are three 4-byte integers, declaring the S,
T, and P volume dimensions. The following bytes are the RGBA values for each texel. These RGBA
values can be unsigned bytes or floats. glman will look at the size of the file and do the right thing.

When writing a raw 3D texture file, the order of writing should be:

fwrite(&nums, 4, 1, fp);
fwrite(&numt, 4, 1, fp);
fwrite(&nump, 4, 1, fp);

for(int p = 0; p < nump; p++)
{

for(int t = 0; t < numt; t++)
{

 for(int s = 0; s < nums; s++)
 {
 float red, green, blue, alpha;
 . . .
 fwrite(&red, 4, 1, fp);

fwrite(&green, 4, 1, fp);
 fwrite(&blue, 4, 1, fp);

fwrite(&alpha, 4, 1, fp);
 }
 }
}

glman expects raw texture binary byte-ordering to be consistent with an Intel x86 architecture. If you
write raw texture files from a UNIX workstation (e.g., Sun or SGI), you must reverse the byte ordering.

The second argument on the Texture2D and Texture3D lines is the OpenGL texture unit to assign this
texture to. You then need to tell your shaders what that texture uniform number is. For example, the
GLIB line might be:

Program Texture TexUnit 7

And your fragment shader might look like:

uniform sampler2D TexUnit;

void
main()
{
 vec3 rgb = texture2D(TexUnit, vST).rgb;
 gl_FragColor = vec4(rgb, 1.);
}

Or, starting with GLSL 3.30, you can set the value of the texture unit right in the shader

Program Texture

And your fragment shader would look like:

layout(binding=7) uniform sampler2D TexUnit;

mjb – December 29, 2011 10

void
main()
{
 vec3 rgb = texture2D(TexUnit, vST).rgb;
 gl_FragColor = vec4(rgb, 1.);
}

BTW, don’t use texture units 2 and 3 yourself. glman uses these already to tell your shaders
about its built-in 2D and 3D noise textures.

Interestingly enough, a limitation of GLSL is that you cannot hardcode the texture unit number in the call
to texture2D(). For example, you cannot say:

 vec3 rgb = texture2D(7, vST]).rgb;

Rendering to a Texture

You can use glman to render to a texture, and then read that texture (or textures) back into another shader
program. You first need to setup the texture(s) to be rendered to by defining their storage size:

Texture2D texture_unit dims dimt

This is the resolution of the “texture framebuffer” that you will be rendering into. Don’t make this too
small – the resulting texture will look chunky. 1024x1024 is a good nominal resolution, if you have no
other preference.

Then, to render into this texture, use the glib command

RenderToTexture texture_unit [texture_unit] [textu re_unit] . . .

This switches the output from the screen framebuffer to the texture framebuffer. To go back to using the
screen framebuffer as the output, use:

RenderToTexture

You can then pass in the texture unit to the next shader program as you would any other texture unit
input.

An example of using render-to-texture is to use the second pass to filter the first pass’s rendered scene:

##OpenGL GLIB
Perspective 90

Texture2D 6 1024 1024

RenderToTexture 6

Background 0. 0. 0.
Clear

mjb – December 29, 2011 11

Vertex filter.vert
Fragment filter.frag
Program Filter1 \
 Ad <.05 .1 .5> Bd <.05 .1 .5> \
 Tol <0. 0. .25> \
 NoiseAmp <0. 0. 3.> NoiseFreq <0. 1. 10.>

Color 1. .9 0
Teapot

RenderToTexture

Background .2 0 0
Clear

Vertex image.vert
Fragment image.frag
Program Filter2 \

 InUnit 6 \
 EdgeDetect <false> \
 TEdge <0. 1. 1.> \
 TSharp <0. 1. 10.> \
 ResS 1024 ResT 1024

Translate 0 0 0.
QuadXY .2 2.

Image Load and Store

Image loading and storing are a new feature in GLSL 4.20. They allow you to read or write any texel in a
2D or 3D texture. The image reading differs from just reading a texture in that the value read from the
texture is unfiltered by the sampler. The image writing differs from render-to-texture in that any texel can
be written from any shader.

More information on how to gain access to this from glman is coming soon.

Atomic Buffers

Atomic buffers are a new feature in GLSL 4.20. They allow you to read, write, or modify scalar values
from any shader.

More information on how to gain access to this from glman is coming soon.

mjb – December 29, 2011 12

Specifying Uniform Variables

Uniform variables are specified on the Program command line in a
tag-value pair format:

• Scalar variables are just listed as numbers.

• Array variables are enclosed in square brackets. []

• Range variables are enclosed in angle brackets. < > These are

scalar variables, but will generate a slider in the Uniform
Variable user interface so that the you can then change this value
on the fly. The 3 values in the brackets are : <min current max>.
This can be used for variables that are type int or float. glman
will look at your symbol table and do the right thing.

• Color variables are enclosed in curly brackets. { }
They are:
 {red green blue alpha}
and will generate a button in the UI that, when
clicked, brings up a color selector window. The
color selector allows you to change this color
variable on-the-fly.

• The < > angle brackets can also be used for
Boolean variables. Enclose a single number in the
angle bracket: 0 for false and non-zero for true.
(The words <true> and <false> can also be used in
the angle brackets for readability.) This will generate a checkbox in the user interface. This must be
used only for variables in your shader that are type bool. glman will look at your symbol table to
confirm this.

• Multiple vertex-tessellation-geometry-fragment-program combinations are allowed in the same GLIB
file. If there is more than one combination, then they will appear as separate rollout panels in the user
interface. The first program rollout will be open, and all the others will be closed. Open the ones you
need when you need them.

For example, the user interface window shown above was created as a result of these lines in the
GLIB file:

Vertex colortest.vert
Fragment colortest.frag
Program ColorTest

DeltaScale <0. 0. 5.> \
A <0 1. 10> \
P <0. .25 1.> \
Tol <0. 0. .5> \

mjb – December 29, 2011 13

ColorA {1. 1. 1. 1.} \
ColorB {1. .5 0. 1.}

Timer Variable

If you would like to add programmed motion to your scene, glman automatically updates a uniform
floating point variable called Timer by incrementing it from 0. to 1., 0. to 1., 0. to 1., etc. in a sawtooth
pattern,. in a certain number of seconds. The default is 10 seconds, although this can be changed using
the Glib Timer command, or by scaling it in your shader code.

For example, if n is a noise value between -1. and 1., you could oscillate the use of that noise value by:

uniform float Timer;
const float PI = 3.14158265;
 . . .
float newrad = oldrad + NoiseAmp*n*sin(2.*PI*NoiseS peed*Timer);

Note that the sin function is used to turn the Timer saw tooth function into something that oscillates, and
that NoiseSpeed is used to scale the speed.

glman only bothers enabling timer interrupts if it spots the use of Timer in your shader program symbol
table, so you don’t end up incurring the overhead unless you actually need to.

Noise

glman automatically creates a 3D noise texture and places it into Texture Unit 3. Your shaders can get at
it through the pre-created uniform variable called Noise3 . Reference it in your shader as:

uniform sampler3D Noise3;
 . . .
vec3 stp = ...
vec4 nv = texture3D(Noise3, stp);

The noise texture is a vec4. The .r component is the low frequency noise. The .g component is twice the
frequency and half the amplitude of the .r component, and so on for the .b and .a components. Each
component is centered on a value of .5, so that if you want a plus-or-minus-from-zero effect, subtract .5
from each component. To get a nice 4-octave noise value between 0. and 1. (useful for noisy mixing),
add up all four components, subtract 1., and divide the whole thing by 2.

Component Term Term Range
0 nv.r 0.5 ± .5000
1 nv.g 0.5 ± .2500
2 nv.b 0.5 ± .1250
3 nv.a 0.5 ± .0675
 sum 2.0 ± ~ 1.0
 sum - 1 1.0 ± ~ 1.0
 (sum - 1) / 2 0.5 ± ~ 0.5

mjb – December 29, 2011 14

float sum = nv.r + nv.g + nv.b + nv.a; // range is 1. -> 3.
sum = (sum - 1.) / 2.; // range is now 0. -> 1.

If you would like to have a 4-octave noise function that ranges from -1. to 1., then do this instead:

float sum = nv.r + nv.g + nv.b + nv.a; // range is 1. -> 3.
sum = sum - 2.; // range is now -1. -> 1.

Accessing the 2D noise texture works the same as the 3D one, except you use:

uniform sampler2D Noise2;
 . . .
vec2 st = ...
vec4 nv = texture2D(Noise2, st);

By default, the noise textures are 64x64 and 64x64x64. You can change this by putting a command in
your GLIB file of the form:

Noise2D 128
or

Noise3D 128

or whatever resolution you want (up to around 400). The first time glman creates a 2D or 3D noise
texture for you, it will take a few seconds. But, it then writes it to a file in the current folder. The next
time glman needs this noise texture, it will read it directly from the file, which is a lot faster.

Editing Files

The .glib, .vert, .frag, .geom, .tcs, and .tes files can be edited any
way you want. If you want to easily open a WordPad editing
window on a file, click on one of these buttons and then select
the file. You can have as many of these WordPad windows
open at one time as you want.

If your system does not support Geometry Shaders, then the
“Edit a Geom File” button will not appear.

If your system does not support Tessellation Shaders, then the “Edit a Tess Control File” and “Edit a Tess
Evaluation File”” buttons will not appear.

Generating and Displaying an Image
Hardcopy of the Screen

Create Hardcopy File As you will be doing cool
things with glman, you will often want to copy the
graphics window to an image file. The Create
Hardcopy button will do that, and will let you
specify the name of the .bmp file it will be written into. Because glman does this by rendering to an

mjb – December 29, 2011 15

internal off-screen framebuffer, the resolution can be (almost) arbitrary. This is useful if you need more
pixels in your hardcopy image than you have on your physical screen, as you might need for a high-
quality print image or for a poster.

Display the Hardcopy File To confirm what you got, and to perhaps send the image to a printer, click
here. This will be grayed out until you actually create a Hardcopy.

Show Variable Labels This checkbox shows up in the
Uniform Variable user interface window. Clicking it will
superimpose the values of the uniform variables on top of
your graphics scene. This is very handy for doing screen
captures of the graphics scene and being able to later
recall what uniform variable values made this scene look
like what it did.

Global Scene Transformation

This row of widgets allows you to transform
the entire scene in the graphics window. The
scene can also be rotated by holding down the
left mouse button with the cursor in the
graphics window. The scene can also be scaled
by holding down the middle mouse button in
the graphics window.

It is important to realize that, unlike what is normally done in an OpenGL program, these transformations
do not end up in the ModelView matrix. This row of transformations ends up in the Projection matrix so
that they will have no impact on anything your shaders do in Eye Coordinates. That is, these scene
transformations can be used to see the back of a scene, without changing the Eye Coordinate behavior of
the shaders.

Eye Transformation

This row of widgets also allows you to
transform the scene in the graphics window.

It is important to realize that these
transformations do end up in the ModelView
matrix, just as if the OpenGL gluLookAt()
routine had been called. That is, these scene transformations will change the Eye Coordinate behavior of
the shaders.

Often, your first move upon opening up a new .glib scene is to use this “Trans Z” widget to push

the scene back into the viewing volume where it is more visible.

mjb – December 29, 2011 16

Texture Transformation

This row of widgets allows you to put a
transform into the built-in texture matrix
gl_TextureMatrix[0] . Note that, once you
are no longer using the fixed-function pipeline,
the texture matrix does not automatically take
effect. You must do this yourself in your
shader. (This is really here just to give your shaders another transformation matrix to play with.)

Object Picking and Transformation

Individual objects in the scene can be picked and independently
transformed. This is a good way to test shaders that operate in Eye
Coordinates rather than Model Coordinates. To do this, you must first
enable object picking by turning on this checkbox.

Then, clicking
on a 3D object
in the scene
with the left
mouse button
will cause that
object to be
selected. A large 3D cursor becomes centered on

the object to show that it is selected. The 3D cursor will be drawn using the same shaders as the selected
object is, so its appearance might look a little weird.

At that time, the Object Transformation row of widgets will become active. These widgets allow you to
transform the selected object. The object transformations go into the ModelView matrix just for the
selected object, where they will impact any shader that performs operations in Eye Coordinates.

To de-select an object, either click in an open area of the graphics window, or uncheck the Enable Object
Picking checkbox

Monitoring the Frame Rate

It is sometimes useful to get an idea of how much certain shader
operations affect the overall speed of the graphics pipeline. For
example, certain math functions are implemented in hardware, some in software. If-tests often cause a
slowdown. Low count for-loops are often better unrolled. To see what your current frame rate is, click
this checkbox on. This causes glman to time your display as you interact. After you turn this option on,
you will see two things: (1) a frames-per-second (FPS) number will be superimposed on top of the
graphics window, and (2) your display speed will drop sharply. This speed drop is because glman loops
through multiple instances of your display to acquire more precision on the timing. Your speed will go
back to normal once you turn this option off.

mjb – December 29, 2011 17

The timing does not include the initial setting and clearing of the frame buffers. Nor does it include the
swapping of the double buffers. It just includes the drawing of your scene. Thus, the displayed FPS in
this case can exceed the monitor refresh rate. However, when you include the monitor refresh rate
(MRR), the actual frames-per-second performance you will get is:

'
MRR

FPS
MRR

FPS

=

where is the ceiling function.

Miscellaneous

Verbose Normally, If you would like to see more of
what is really going on behind the scenes, click this
checkbox on. It can be, at times, voluminous. Don’t say
I didn’t warn you.

Quit Obvious.

Questions? Comments?

Send glman questions, comments, and suggestions to:

Prof. Mike Bailey
Computer Science
Oregon State University
2117 Kelley Engineering Center
Corvallis, OR 97331-5501
541-737-2542
mjb@cs.oregonstate.edu

