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How Have You Been Able to Gain Access
to GPU Power?
There have been three ways:

1. Write a graphics display
program (= 1985)

2. Write an application that looks
like a graphics display
program, but uses the fragment
shader to do some per-node
computation (= 2002)

3. Write in OpenCL or CUDA,
( which looks like C++ (= 2006)
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Why do we care about GPU Programming?
A History of GPU vs. CPU Performance
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Why do we care about GPU Programming? 4
A History of GPU vs. CPU Performance
Theoretical GFLOP/s at base clock
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The “Core-Score”. How can this be?
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Why have GPUs Been Outpacing CPUs in Performance?
Due to the nature of graphics computations, GPU chips are customized to handle
streaming data.
Another reason is that GPU chips do not need the significant amount of cache space that
occupies much of the real estate on general-purpose CPU chips. The GPU die real estate
can then be re-targeted to hold more cores and thus to produce more processing power.
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Why have GPUs Been Outpacing CPUs in Performance?

Another reason is that general CPU chips contain on-chip logic to do branch prediction
and out-of-order execution. This, too, takes up chip die space.

But, CPU chips can handle more general-purpose computing tasks.

So, which is better, a CPU or a GPU?

It depends on what you are trying to do!
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Originally, GPU Devices were very task-specific
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Today’s GPU Devices are much less task-specific
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 Consider the architecture of the NVIDIA Tesla V100’s 10
that we have in our GDX System
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Raster Engine

84 Streaming Multiprocessors (SMs) / chip
64 cores / SM
Wow! 5,396 cores / chip? Really?
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11
What is a “Core” in the GPU Sense?

Look closely, and you'll see that NVIDIA really calls these “CUDA Cores”

Look even more closely and you'll see that these CUDA Cores have no control logic —
they are pure compute units. (The surrounding SM has the control logic.)

Other vendors refer to these as “Lanes”. You might also think of them as 64-way SIMD.
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A Mechanical Equivalent...

“Streaming Multiprocessor”

“CUDA Cores”

“Data”

http://news.cision.com
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How Many Robots Do You See Here?

Oreg_xs_ta[e
coﬁmmpmcs ’ 12?7 72?7 Depends what you count as a “robot”. o
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A Spec Sheet Example
Streaming

Multiprocessors CUDA Cores per SM

/ /

Tesla Product / Tesla K40 / Tesla M40 Tesla P100 Tesla V100
GPU /| ctsoiedion—om | -Ghaeaimaceal | GV100 (Vola)
s 5/ 2% s6 80
| Tecs —+ 40
< TP32 Cores / SM 192 ¥ 128 64 64 5

FP32 Cores / GPU Y 3557 5120 |
FP64 Cores / SM 64 4 32 32

| FP64 Cores / GPU 960 % 1792 2560
Tensor Cores / SM NA NA NA 8
Tensor Cores / GPU NA | NA NA 640
GPU Boost Clock 810/875MHz | 1114 MHz 1480 MHz 1530 MHz
Peak FP32 TFLOPS! 5 6.8 10.6 157
Peak FP64 TFLOPS 17 21 53 7.8
Peak Tensor TFLOPS! | NA NA NA 125

[ Texture Units 240 192 224 320
Memory Interface 384-bit GDDRS | 384-bit GDDRS 4096-bit HBM2 | 4096-bit HBM2
Memory Size Upto 12 GB Upto 24 GB 16 GB 16 GB -
L2 Cache Size 1536 KB 3072 KB 4096 KB 6144 KB
Shared Memory Size / | 16 KB/32 KB/48 | 96 KB 64 KB Configurable up
M ) 0 96 kB
Register File Size /SM | 256 KB | 256 kB 256 KB 256KB
Register File Size / 3840 KB 6144 KB 14336 kB 20480 KB

| GPU
TOP 235 Watts 250 Watts 300 Watts 300 Watts
Transistors 7.1 billion 8 billion 153 billion 211bilion |
GPU Die Size 551 mm? 601 mm? 610 mm? 815 mm?

Dre| Manufacturing | 28 nm 28 nm 16 nm FinFET+ 12 nm FFN NVIDIA
U] Process
Computer Graphics
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The Bottom Line is This

So, the Titan Xp has 30 processors per chip, each of which is optimized to do 128-way
SIMD. This is an amazing achievement in computing power. But, it is obvious that it is
difficult to directly compare a CPU with a GPU. They are optimized to do different things.

So, let’s use the information about the architecture as a way to consider what CPUs
should be good at and what GPUs should be good at

CPU GPU
General purpose programming Data parallel programming
Multi-core under user control Little user control
Irregular data structures Regular data structures
Irregular flow control Regular Flow Control

BTW,
The general term in the OpenCL world for an SM is a Compute Unit.

15

# The general term in the OpenCL world for a CUDA Core is a Processing Element.
N
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Compute Units and Processing Elements are Arranged in Grids
 Patom >
Device #0
........ < Device >
oy N _cu > «cu cu
cu cu cu
A GPU Platform can have one or more Devices. """" oo

A GPU Device is organized as a grid of Comput@
Units.

Each Compute Unit is organized as a grid of
Processing Elements.

So in NVIDIA terms, their new V100 GPU has 84
Compute Units, each of which has 64 Processing
Elements, for a grand total of 5,396 Processing
Elements.

mjo - May 5, 2020
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Thinking ahead to CUDA and OpenCL... 17

How can GPUs execute General C Code Efficiently?

*» Ask them to do what they do best. Unless you have a very intense Data Parallel
application, don’t even think about using GPUs for computing.

» GPU programs expect you to not just have a few threads, but to have thousands of them!

» Each thread executes the same program (called the kernel), but operates on a different
small piece of the overall data

* Thus, you have many, many threads, all waking up at about the same time, all executing the
same kernel program, all hoping to work on a small piece of the overall problem.

» OpenCL has built-in functions so that each thread can figure out which thread number it is,
and thus can figure out what part of the overall job it's supposed to do.

» When a thread gets blocked somehow (a memory access, waiting for information from
another thread, etc.), the processor switches to executing another thread to work on.
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So, the Trick is to Break your Problem 18
into Many, Many Small Pieces

Particle Systems are a great example.
1. Have one thread per each particle.

2. Put all of the initial parameters into an array in
GPU memory.

Tell each thread what the current Time is.

4. Each thread then computes its particle’s position,
color, etc. and writes it into arrays in GPU memory.

5. The CPU program then initiates OpenGL drawing
of the information in those arrays.

Note: once setup, the data never leaves
GPU memory!
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Something New — Tensor Cores

L0 Instruction Cache. LO Instruction Cache.
Warp Scheduler (32 threadick) | Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/cik) | Dispatch Unit (32 threadicik)
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Tensor Cores Accelerate Fused-Multiply-Add Arithmetic

FP16 or FP32

FP16 or FP32

CcUBLAS Mixed-Precision GEMM
(FP16 Input, FP32 Compute)
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What is Fused Multiply-Add?

Many scientific and engineering computations take the form:
D=A+(B*C);

A “normal” multiply-add would likely handle this as:
tmp = B*C;
D=A+tmp;

21

A “fused” multiply-add does it all at once, that is, when the low-order bits of B*C
are ready, they are immediately added into the low-order bits of A at the same
time the higher-order bits of B*C are being multiplied.

x 456

+ 789 Can start adding the 9 the moment the 8 is produced!

Consider a Base 10 example: 789 + ( 123*456 )
123
738

615
492

56,877

—
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Note: “Normal” A+(B*C) # “FMA” A+(B*C)
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There are Two Approaches to Combining CPU and GPU Programs

1.

‘.EAF

Combine both the CPU and GPU code in the same file. The CPU
compiler compiles its part of that file. The GPU compiles just its part
of that file.

Have two separate programs: a .cpp and a .somethingelse that get
compiled separately.

Advantages of Each

The CPU and GPU sections of the code know about each others’ intents.
Also, they can share common structs, #define’s, etc.

It's potentially cleaner to look at each section by itself. Also, the GPU
code can be easily used in combination with other CPU programs.

Who are we Talking About Here?
1 =NVIDIA's CUDA

2 = Khronos’s OpenCL

Oregon State
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We will talk about each of these separately — stay tuned!
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Looking ahead: 23
If threads all execute the same program,
what happens on flow divergence?

iflta>b)
Do This;
else

Do That;

1. Theline “if( a > b )" creates a vector of Boolean values giving the
results of the if-statement for each thread. This becomes a “mask”.

2. Then, the GPU executes all parts of the divergence:
Do This;
Do That;

3. During that execution, anytime a value wants to be stored, the mask
is consulted and the storage only happens if that thread’s location in
the mask is the right value.

E.-*-E‘
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+ GPUs were originally designed for the streaming-ness of computer graphics

* Now, GPUs are also used for the streaming-ness of data-parallel computing

* GPUs are better for some things. CPUs are better for others.

E..li
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Dismantling a Graphics Card 25

This is an Nvidia 1080 ti card — one that died on us. It willed its body to education.
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Dismantling a Graphics Card 26
Removing the covers:
==
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Dismantling a Graphics Card 27

Removing the heat sink:

0‘?‘:. This transfers heat
E from the GPU Chip
Drepuntat; to the cooling fins
University
Computer Graphics
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Dismantling a Graphics Card 28

Removing the fan assembly reveals the board:

GPU Chip

GT? ;
o’
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Dismantling a Graphics Card 29

Power half of the board:

o>
&
ang,ons}ate Power Power
Commer mies distribution input
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Dismantling a Graphics Card 30
Graphics half of the board:
T .
¢ 6 Video out GPU Chip
o’ This one contains 7.2 billion transistors!
e (Thank you, Moore’s Law)
Computer Graphics i iy 5, 2020
30
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Dismantling a Graphics Card

Underside of the board:

31
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Dismantling a Graphics Card 32
Underside of where the GPU chip attaches:
Here is a fun video of someone explaining the different parts of this same card:
https://www.youtube.com/watch?v=dSCNfODIBGE
Oregon State
i e
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Bonus -- Looking at a GPU Spec Sheet

33

GPU Kepler GK180 | Maxwell GM200 | Pascal GP100 | Volta GV100
Compute Capability 3.5 5.2 6.0 7.0
Threads / Warp 32 32 32 32
Max Warps / SM 64 64 64 64
Max Threads / SM 2048 2048 2048 2048
Max Thread Blocks / SM 16 32 32 32
Max 32-bit Registers / SM 65536 65536 65536 65536
Max Registers / Block 65536 32768 65536 65536
Max Registers / Thread 755 255 255 P e
Max Thread Block Size 1024 1024 1024 1024
FP32 Cores / SM 192 128 64 64
Ratio of SM Registers to FP32 | 341 512 1024 1024
Cores
Shared Memory Size / SM 16 KB/32 KB/ 96 KB 64 KB Configurable
48 KB up to 96 KB
(it
Oregon State
University
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Bonus -- Looking at a GPU Spec Sheet 34
Tesla Product Tesla K40 Tesla M40 Tesla P100 Tesla V100
GPU GK180 (Kepler) GM200 (Maxwell) | GP100 (Pascal) GV100 (Volta)
SMs 15 24 56 80
| TpCs 15 24 28 40
FP32 Cores / SM 192 128 64 64
FP32 Cores / GPU 2880 3072 3584 51207
FP64 Cores / SM 64 4 32 32
FP64 Cores / GPU 960 96 1792 2560
Tensor Cores / SM NA NA NA 8
Tensor Cores / GPU NA NA NA 640
GPU Boost Clock 810/875 MHz 1114 MHz 1480 MHz 1530 MHz
Peak FP32 TFLOPS! 5 6.8 10.6 15.7
Peak FP64 TFLOPS! 1.7 21 5.3 7.8
Peak Tensor TFLOPS! NA NA NA 125
| Texture Units 240 192 224 320
Memory Interface 384-bit GDDRS 384-bit GDDR5 4096-bit HBM2 | 4096-bit HBM2
Memory Size Upto 12 GB Up to 24 GB 16 GB 16 GB
L2 Cache Size 1536 KB 3072 KB 4096 KB 6144 KB
Shar;_d Memory Size / | 16 KB/32 KB/48 | 96 KB 64 KB Configurable up
SM KB to 96 KB
Register File Size /SM | 256 KB 256 KB 256 KB 256KB
Register File Size / 3840 KB 6144 KB 14336 KB 20480 KB
GPU
aﬁ«:- TDP 235 Watts 250 Watts 300 Watts 300 Watts
Transistors 7.1 billion 8 billion 15.3 billion 21.1 billion
A4 GPU Die Size 551 mm? 601 mm? 610 mm? 815 mm?
Oreg_ons_tate Manufacturing 28 nm 28 nm 16 nm FinFET+ 12 nm FFN
University .| Process
Computer Graphid= b — My §, 2020
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TITAN RTX

$2,499.0

Free Shipping
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of GPU-accelerated artificial intelligence and machine
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Language Translation (GNMT)

Image Recognition (ResNet-50)

ine Data in Minutes

TITAN RTX
TITAN XP
- z'/ ::-' &
Relative Deep Learning Training Performance
Analyzing 120M Records of Airli
End-to-end XGBoost
2xTan Rix (IR 2KTITANRTX
XTITAN RTX TXTITAN RTX
cpu i

Data Prep

2X TITAN RTX 423
TXTITAN RTX
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Graphics Processing Clusters

Texture Processing Clusters

Streaming Multiprocessors

CUDA Cores [single precision]

Tensor Cores

RT Cores

Base Clock [MHz]

Boost Clock [MHz]

576

72

1350 MHz

1770 MHz

37

Memaory Clock 7000 MHz
Memory Data Rate 14 Gbps
OregoSlal
University L2 Cache Size 6144 K
Computer Gra
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Total Video Memory

Memory Interface

Total Memory Bandwidth

Texture Rate [Bilinear]

Fabrication Process

Transistor Count

Connectors

0S Certification

Form Factor

Power Cannectors

Recommended Power Supply

Thermal Design Power (TDP]'

Thermal Threshold®

24 GB GDDRé

672GB/s

510 GigaTexels/sec

12 nm FFN

3 x DisplayPort , 1 x HDMI, 1 x USB Type-C

Windows 7 64-bit, Windows 10 &4-bit [April 2018 Update or
Later),Linux &4-bit

Dual Slot

Two 8-pin

650 Watts

280 Watts

89°C
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