
1/2/2022

1

mjb – January 2, 2022

1

Computer Graphics

Homogeneous Coordinates

Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

homogcoords.pptx mjb – January 2, 2022

2

Computer Graphics

Homogeneous Coordinates:
Adding a 4th Value to an XYZ Triple

We usually think of a 3D point as being represented by a triple: (x,y,z).

Using homogeneous coordinates, we add a 4th number: (x,y,z,w)

A graphics system, by convention, performs transformations and clipping using
(x,y,z,w) and then divides x, y, and z by w before it uses them.

, ,
x y z

X Y Z
w w w

  

Thus (1,2,3,1) , (2,4,6,2) , (-1,-2,-3,-1) all represent the same 3D point.

When you write:

glVertex3f(x, y, z);

OpenGL really calls:

glVertex4f(x, y, z, 1.);

mjb – January 2, 2022

3

Computer Graphics

This Seems Awkward – Why Do It?

One reason is that it allows for perspective division within the matrix way of doing things.
The OpenGL call glFrustum(left, right, bottom, top, near, far) creates this matrix:

2
0 0

'
2

0 0'

'
() 2

0 0' 1

0 0 1 0

near right left

right left right left
x x

near top bottom
y y

top bottom top bottom
z z

far near far near
w

far near far near

 
      

                            
  





 

This gives w’ = -z, which is the necessary divisor for perspective.

mjb – January 2, 2022

4

Computer Graphics

X

Y

Z

xleft

xright

ybottom

ytop

znear

zfar

X

Y

Z

xleft
xright

ybottom

ytop

znear

zfar

Parallel/Orthographic Perspective

How the Viewing Volumes Look from the Outside

glOrtho(xl, xr, yb, yt, zn, zf); glFrustum(xl, xr, yb, yt, zn, zf);

OpenGL treats the eye as being at the origin looking in -Z

mjb – January 2, 2022

5

Computer Graphics

The Effect of the Perspective Projection Matrix

0.
0.

−𝑛𝑒𝑎𝑟
1

=

0.
0.

−𝑛𝑒𝑎𝑟
𝑛𝑒𝑎𝑟

=
0.
0.
−1.

0.
0.

−𝑓𝑎𝑟
1

=

0.
0.
𝑓𝑎𝑟

𝑓𝑎𝑟

=
0.
0.
+1.

glFrustum(left, right, bottom, top, near, far);

mjb – January 2, 2022

6

Computer Graphics

0.
0.

−𝑛𝑒𝑎𝑟
1

=

0.
0.
−1.
1.

=
0.
0.
−1.

0.
0.

−𝑓𝑎𝑟
1

=

0.
0.
1.
1.

=
0.
0.
+1.

glOrtho(left, right, bottom, top, near, far);

While We’re At It: The Effect of the Orthographic Projection Matrix

1 2

3 4

5 6

1/2/2022

2

mjb – January 2, 2022

7

Computer Graphics

The Effect of the Projection Matrices

So, the effect of each OpenGL projection matrix is to project and to scrunch
the scale of the scene into a box of size (-1.,-1.,-1.) to (+1.,+1.,+1.).

This is called Normalized Device Coordinates.

Both projection matrices are designed to take:

• The range of left ≤ x ≤ right and map it to -1. ≤ x′ ≤ +1.
• The range of bottom ≤ y ≤ top and map it to -1. ≤ y′ ≤ +1.
• The range of -near ≤ z ≤ -far and map it to -1. ≤ z′ ≤ +1.

mjb – January 2, 2022

8

Computer Graphics

void
gluPerspective(float fovy, float aspect, float near, float far)
{

// tangent of the y field-of-view angle:

float tanfovy = tan(fovy * (M_PI / 180.) / 2.);

// the top and bottom boundaries come from near:

float top = near * tanfovy;
float bottom = -top;

// the left and right boundaries come from the x/y aspect ratio:

float right = aspect * top;
float left = aspect * bottom;

// ask for a viewing volume in terms of glFrustum:

glFrustum(left, right, bottom, top, near, far);
}

Wait -- where does gluPerspective() come into all of this?

mjb – January 2, 2022

9

Computer Graphics

Another Reason to have Homogeneous Coordinates
is to be able to represent Points at Infinity

This is useful to be able specify a parallel light source by placing the light source
location at infinity.

The point (1,2,3,1) represents the 3D point (1,2,3)

The point (1,2,3,.5) represents the 3D point (2,4,6)

The point (1,2,3,.01) represents the point (100,200,300)

So, (1,2,3,0) represents a point at infinity, but along the ray from the origin through
(1,2,3)

Points-at-infinity are used for parallel light sources and some shadow algorithms

mjb – January 2, 2022

10

Computer Graphics

However, when Using Homogeneous Coordinates, You Sometimes
Just Need to be able to get a Vector Between Two Points

(, ,) (, ,)
(, , ,) (, , ,)

(, ,) (, ,)

b b b a a a
b b b b a a a a

b a

a b a b a b b a b a b a

a b

x y z x y z
x y z w x y z w

w w

w x w y w z w x w y w z

w w

  




To get a vector between two homogeneous points, we subtract them:

Fortunately, most of the time that we do this, we only want a unit vector in that
direction, not the full vector. So, we can ignore the denominator, and just say:

ˆ (, ,);a b b a a b b a a b b av normalize w x w x w y w y w z w z   

vec3
VectorBetween(vec4 a, vec4 b)
{

return normalize(vec3(a.w*b.x – b.w*a.x , a.w*b.y – b.w*a.y , a.w*b.z – b.w*a.z));
}

However, to save space in the sample code, these notes will assume that w = 1.

7 8

9 10

