Using Vertex Shaders for Hyperbolic Geometry

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Mike Bailey
mjb@cs.oregonstate.edu

1

Zooming and Panning Around a Complex 2D Display

• Standard (Euclidean) geometry zooming forces much of the information off the screen
• This eliminates the context from the zoomed-in display
• This problem can be solved with hyperbolic methods if we are willing to give up Euclidean geometry
• At one time, this would have also meant severely giving up graphics performance, but now

2

Zooming in Euclidean Space

123,101 line strips
446,585 points

3

Zooming in Polar Hyperbolic Space

4

Polar Hyperbolic Equations

Overall theme: something divided by something a little bigger

\[
\begin{align*}
\lim_{K \to 0} R' &= 1 \\
\lim_{K \to \infty} R' &= 0 \\
X' &= R' \cos \theta' \\
Y' &= R' \sin \theta'
\end{align*}
\]

5

Polar Hyperbolic Equations

\[
\begin{align*}
R &= \sqrt{X^2 + Y^2} \\
\Theta &= \tan^{-1}\left(\frac{Y}{X}\right) \\
R' &= \frac{R}{R + K} \\
X' &= \frac{X}{R + K} \\
Y' &= \frac{Y}{R + K}
\end{align*}
\]

6
Computer Graphics

Cartesian Hyperbolic Equations

\[
\begin{align*}
X' &= \frac{X}{\sqrt{X^2 + K^2}} \\
Y' &= \frac{Y}{\sqrt{Y^2 + K^2}}
\end{align*}
\]

Coordinates moved to outer edge when \(K = 0 \)
Coordinates moved to center when \(K = \infty \)

Zooming in Cartesian Hyperbolic Space

\begin{verbatim}
#version 330 compatibility
uniform bool uPolar;
uniform float uK;
uniform float uTransX;
uniform float uTransY;
out vec3 vColor;

void main(void)
{
 vec2 pos = (gl_ModelViewMatrix * gl_Vertex).xy;
 pos += vec2(uTransX, uTransY);
 float r = length(pos.xyz);
 vec4 pos2 = vec4(0., 0., -5., 1.);
 if(uPolar)
 pos2.xy = pos / (r + uK);
 else
 pos2.xy = pos / (pos*pos + uK*uK);
 gl_Position = gl_ProjectionMatrix * pos2;
}
\end{verbatim}

hyper.vert

\begin{verbatim}
#version 330 compatibility
in vec3 vColor;

void main()
{
 gl_FragColor = vec4(vColor, 1.);
}
\end{verbatim}

hyper.frag

Corvallis Streets, Buildings, Parks

Kelley Engineering Center

Data courtesy of the Corvallis Fire Department