Mixing
// create a value of 0. or 1. from the value of x wrt edge:

```cpp
float t = step( float edge, float x );
```

// create a value in the range 0. to 1. from the value of x wrt edge0 and edge1:

```cpp
float t = smoothstep( float edge0, float edge1, float x );
```
Using that Mixing Parameter to Blend Two Quantities

// use the returned value from step() or smoothstep() to blend value0 to value1:

\[T \text{ out } = \text{mix}(T \text{ value0}, T \text{ value1}, \text{ float } t); \]

where \(T \) can be just about any type: float, vec2, vec3, vec4, ...

\[\text{out } = (1.-t) \times \text{value}_0 + t \times \text{value}_1 \]

One would expect \(0 \leq t \leq 1 \).
but that doesn’t have to be true. After all, these are just numbers.

For a fun exercise with this, change the morphing slider to go beyond 0.-1.

As we will see later, there are really good uses for going beyond the range 0.-1.
in float vX, vY;
in vec3 vColor;
in float vLightIntensity;

uniform float uA;
uniform float uP;
uniform float uTol;

const vec3 WHITE = vec3(1., 1., 1.);

void main()
{
 float f = fract(uA*vX);

 float t = smoothstep(0.5-uP-uTol, 0.5-uP+uTol, f) - smoothstep(0.5+uP-uTol, 0.5+uP+uTol, f);
 vec3 rgb = vLightIntensity * mix(WHITE, vColor, t);
 gl_FragColor = vec3(rgb, 1.);
}
Fun With One

Moral: There are many ways to turn [0. - 1.] into [0. - 1.]

\[y = \sin^2 \left(\frac{\pi}{2} x \right) \]

\[y = 3x^2 - 2x^3 \]

\[y = \sqrt{x} \]

\[y = \sqrt[3]{x} \]

\[y = x \]

\[y = \sin \left(\frac{\pi}{2} x \right) \]

\[y = x^3 \]

\[y = x^4 \]

\[y = x^5 \]

\[y = \sqrt{x} \]

\[y = \sin^2 \left(\frac{\pi}{2} x \right) \]

\[y = \sin^3 \left(\frac{\pi}{2} x \right) \]

Linear

Linear^2

Linear^3

Linear^4

Linear^5

Sqrt

Cbrt

Sin

Sin^2

Sin^3

Cubic
Sidebar: Why Do These Two Curves Match So Closely?

\[y = \sin^2 \left(\frac{\pi}{2} x \right) \]

\[y = 3x^2 - 2x^3 \]

The Taylor Series expansion of \(y = \sin^2 \left(\frac{\pi}{2} x \right) \) around \(x = 0.5 \) is:

\[
y = \left(\frac{1}{2} - \frac{\pi}{4} + \frac{\pi^3}{96} \right) + x \left(\frac{\pi}{2} - \frac{\pi^3}{16} \right) + x^2 \left(\frac{\pi^3}{8} \right) - x^3 \left(\frac{\pi^3}{12} \right)
\]

\[
= 0.038 - 0.37x + 3.88x^2 - 2.58x^3
\]

which is pretty close to: \(y = 3x^2 - 2x^3 \)
Both go from 0. to 1.
Both have initial and final slopes of 0.
The quintic has initial and final curvatures of 0.