Getting a Mixing Parameter

// create a value of 0 or 1. from the value of x wrt edge:
float t = step(float edge, float x);

// create a value in the range 0 to 1. from the value of x wrt edge0 and edge1:
float t = smoothstep(float edge0, float edge1, float x);
Using that Mixing Parameter to Blend Two Quantities

// use the returned value from step() or smoothstep() to blend value0 to value1:

\[
T \text{ out } = \text{ mix}(T \text{ value0}, T \text{ value1}, \text{ float } t); \\
\]

where T can be just about any type: float, vec2, vec3, vec4, …

\[
out = (1.-t) * value_0 + t * value_1
\]

One would expect \(0 \leq t \leq 1 \),
but that doesn’t have to be true. After all, these are just numbers.

For a fun exercise with this, change the morphing slider to go beyond 0.-1.

As we will see later, there are really good uses for going beyond the range 0.-1.

“SmoothPulse” in a Fragment Shader

in float vX, vY;
in vec3 vColor;
in float vLightIntensity;

uniform float uA;
uniform float uP;
uniform float uTol;

const vec3 WHITE = vec3(1, 1, 1);

void
main() {
 float f = fract(uA*vX);
 float t = smoothstep(0.5-uP-uTol, 0.5-uP+uTol, f) - smoothstep(0.5+uP-uTol, 0.5+uP+uTol, f);
 vec3 rgb = vLightIntensity * mix(WHITE, vColor, t);
 gl_FragColor = vec3(rgb, 1.);
}
Fun With One

Moral: There are many ways to turn \([0. - 1.] \) into \([0. - 1.] \).

Sidebar: Why Do These Two Curves Match So Closely?

The Taylor Series expansion of \(y = \sin^2 \left(\frac{\pi}{2} x \right) \) around \(x = 0.5 \) is:

\[
y = \left(\frac{1}{2} \right) \pi x + x \left(\frac{\pi}{2} \right) + x^2 \left(\frac{\pi}{8} \right) - x^3 \left(\frac{\pi^3}{12} \right)
\]

which is pretty close to: \(y = 3x^2 - 2x^3 \).
Both go from 0. to 1.
Both have initial and final slopes of 0.
The quintic has initial and final curvatures of 0.

\[y = 10x^3 - 15x^4 + 6x^5 \]

\[y = 3x^2 - 2x^3 \]