Mixing

Getting a Mixing Parameter

// create a value of 0. or 1. from the value of x with respect to the location of an edge:
float t = step(float edge, float x);

// create a value in the range 0. to 1. from the value of x with respect to the location
// of edge0 and edge1:
float t = smoothstep(float edge0, float edge1, float x);

Using that Mixing Parameter to Blend Two Quantities

// use the returned value from step() or smoothstep() to blend value0 to value1:
T out = mix(T value0, T value1, float t);

where T can be just about any type: float, vec2, vec3, vec4, ...

out = (1.-t) * value0 + t * value1

One would expect 0. ≤ t ≤ 1.
But that doesn’t have to be true. After all, these are just numbers.

For a fun exercise with this, change the morphing slider to go beyond 0.-1.
As we will see later, there are really good uses for going beyond the range 0.-1.

“SmoothPulse” in a Fragment Shader

In float vX, vY;
in vec3 vColor;
in float vLightIntensity;
uniform float uA;
uniform float uP;
uniform float uTol;
const vec3 WHITE = vec3(1., 1., 1.);

void main()
{
float f = fract(uA*vX);
float t = smoothstep(0.5-uP-uTol, 0.5-uP+uTol, f) - smoothstep(0.5+uP-uTol, 0.5+uP+uTol, f);
vec3 rgb = vLightIntensity * mix(WHITE, vColor, t);
gl_FragColor = vec3(rgb, 1.);
}
Fun With One

Moral: There are many ways to turn \([0. \, -1.]\) into \([0. \, -1.]\)

Sidebar: Why Do These Two Curves Match So Closely?

The Taylor Series expansion of \(y = \sin \left(\frac{\pi}{2} \right)\) around \(x=0.5\) is:

\[
y = \left(\frac{1}{2!} \cdot \frac{\pi}{2} - \frac{\pi^3}{3!} \right) + \left(\frac{\pi}{2} - \frac{\pi^3}{3!} \right) + \left(\frac{\pi}{2} - \frac{\pi^3}{3!} \right) + \left(\frac{\pi}{2} - \frac{\pi^3}{3!} \right)
\]

which is pretty close to: \(y = 3x^3 - 2x^3\)

Cubic vs. Quintic

Both go from 0. to 1.
Both have initial and final slopes of 0.
The quintic has initial and final curvatures of 0.