Geometric Morphing with the Vertex Shader

Mike Bailey
mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

Morphing a Sphere into a Circle

Blend = 0.00
Blend = 0.25
Blend = 0.50
Blend = 0.75
Blend = 1.00

Morphing a Cow into a Sphere

Note: the "face" in the sphere cow is there because the normals were not morphed into sphere normals – they were left as cow normals.

Morphing a Cow into a Cube

Note: the "face" in the cube cow is there because the normals were not morphed into cube normals – they were left as cow normals.

Original texture map
Mapped onto a Sphere
Morphed into a Circle

A possible vis application ??
What an interesting 2D view of Earth!

Original model coords (sphere):
vec4 vertex0 = gl_Vertex;
vec3 norm0 = gl_Normal;

Circle coords:
vec4 circle = vec4(radius*cos(theta), radius*sin(theta), 0., 1.);
vec3 circlenorm = vec3(0., 0., 1.);
vec2(OffsetS, OffsetT);

// blend:
vec4 theVertex = mix(vertex0, circle, Blend);
vec3 theNormal = normalize(mix(norm0, circlenorm, Blend));

Morphing a Cow into a Cube

const float SIDE = 2.;
vec4 vertex = gl_Vertex;
vertex.xyz *= 4. / length(vertex.xyz);
vertex.xyz = clamp(vertex.xyz, -SIDE, SIDE);

Original model coords (sphere):
vec4 vertex0 = gl_Vertex;
vec3 norm0 = gl_Normal;

Circle coords:
vec4 circle = vec4(radius*cos(theta), radius*sin(theta), 0., 1.);
vec3 circlenorm = vec3(0., 0., 1.);
vec2(OffsetS, OffsetT);

// blend:
vec4 theVertex = mix(vertex0, circle, Blend);
vec3 theNormal = normalize(mix(norm0, circlenorm, Blend));

Morphing a Cow into a Cube

const float SIDE = 2.;
vec4 vertex = gl_Vertex;
vertex.xyz *= 4. / length(vertex.xyz);
vertex.xyz = clamp(vertex.xyz, -SIDE, SIDE);

Original model coords (sphere):
vec4 vertex0 = gl_Vertex;
vec3 norm0 = gl_Normal;

Circle coords:
vec4 circle = vec4(radius*cos(theta), radius*sin(theta), 0., 1.);
vec3 circlenorm = vec3(0., 0., 1.);
vec2(OffsetS, OffsetT);

// blend:
vec4 theVertex = mix(vertex0, circle, Blend);
vec3 theNormal = normalize(mix(norm0, circlenorm, Blend));

Original model coords (sphere):
vec4 vertex0 = gl_Vertex;
vec3 norm0 = gl_Normal;

Circle coords:
vec4 circle = vec4(radius*cos(theta), radius*sin(theta), 0., 1.);
vec3 circlenorm = vec3(0., 0., 1.);
vec2(OffsetS, OffsetT);

// blend:
vec4 theVertex = mix(vertex0, circle, Blend);
vec3 theNormal = normalize(mix(norm0, circlenorm, Blend));

Original model coords (sphere):
vec4 vertex0 = gl_Vertex;
vec3 norm0 = gl_Normal;

Circle coords:
vec4 circle = vec4(radius*cos(theta), radius*sin(theta), 0., 1.);
vec3 circlenorm = vec3(0., 0., 1.);
vec2(OffsetS, OffsetT);

// blend:
vec4 theVertex = mix(vertex0, circle, Blend);
vec3 theNormal = normalize(mix(norm0, circlenorm, Blend));

Original model coords (sphere):
vec4 vertex0 = gl_Vertex;
vec3 norm0 = gl_Normal;

Circle coords:
vec4 circle = vec4(radius*cos(theta), radius*sin(theta), 0., 1.);
vec3 circlenorm = vec3(0., 0., 1.);
vec2(OffsetS, OffsetT);

// blend:
vec4 theVertex = mix(vertex0, circle, Blend);
vec3 theNormal = normalize(mix(norm0, circlenorm, Blend));

For you movie fans, what about “Real Morphing”?

“Real Morphing” involves interpolating key points from one object into key points in another. This flies in the face of graphics hardware’s philosophy of dealing with one triangle and then getting rid of any record of it. Movies do this in software. We got away with it in our class because we knew the equation of a disk, a sphere, and a cube and so could interpolate in a vertex shader.

The first movie-morphing I remember seeing is from the fantasy movie Willow:

https://www.youtube.com/watch?v=rKbdsDG5Spc

The “making of” video for this is here:
https://www.youtube.com/watch?v=kVVeNIZDOQJ0

But, my nomination for #1 morphing ever is in Michael Jackson’s Black or White video:
https://www.youtube.com/watch?v=53AI7P15UJ0

The morphing starts at around 05:30.