Using Noise to Automatically Generate Generic Terrain

Mike Bailey
mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

The General Idea

Use noise to determine terrain heights. Utilize as many different parameters as we can to give a variety of terrain.

Reading a texture from within the vertex shader

Cross product to get a normal vector

It's always a heated discussion about how much quality lighting to put on terrain. We usually don't multiply by the normal matrix because you generally don't turn a landform around in your hands.

Cross product to get a normal vector

It's always a heated discussion about how much quality lighting to put on terrain. We usually don't multiply by the normal matrix because you generally don't turn a landform around in your hands.
void main()
{
 vec3 Normal = vec3(0., 0., 1.);
 vec3 color = BLUE;
 if(vMC.z > 0.)
 {
 float t = smoothstep(uLevel1-uTol, uLevel1+uTol, vMC.z);
 color = mix(GREEN, GRAY, t);
 Normal = normalize(vNs);
 }
 if(vMC.z > uLevel1+uTol)
 {
 float t = smoothstep(uLevel2-uTol, uLevel2+uTol, vMC.z);
 color = mix(GRAY, WHITE, t);
 Normal = normalize(vNs);
 }
 vec3 Light = normalize(vLs);
 vec3 Eye = normalize(vEs);
 vec3 ambient = uKa * color;
 float d = dot(Normal,Light);
 vec3 diffuse = uKd * d * color;
 float s = 0.;
 if(d > 0.) // only do specular if the light can see the point
 {
 vec3 ref = normalize(2. * Normal * dot(Normal,Light) - Light);
 s = pow(max(dot(Eye,ref),0.), uShininess);
 }
 vec3 specular = uKs * s * uSpecularColor.rgb;
 gl_FragColor = vec4(ambient.rgb + diffuse.rgb + specular.rgb, 1.);
}

What does it mean to do specular lighting on terrain? No, I don’t know either, but here it is if you want it.