
mjb – December 29, 2024

1

Computer Graphics

Normal-Mapping

normalmapping.pptx

Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

mjb – December 29, 2024

2

Computer Graphics

The Scenario:

You want to do bump-mapping. You have a very specific and detailed set of
surface normal vectors but don’t have an equation that describes them. Yet you
would still like to somehow “wrap” the normal vector field around a lower-resolution
object so that you can perform good lighting everywhere.

The Next Step in Bump-Mapping

This is a job for Normal-Maps!

mjb – December 29, 2024

3

Computer Graphics

What is Normal-Mapping?

Normal-Mapping is a modeling technique where, in addition
to you specifying the color texture, you also create a texture
image that contains all of the normal vectors on the object

Color Texture Normal-Map Texture

Color map and normal map provided by Michael Tichenor

mjb – December 29, 2024

4

Computer Graphics

How Do You Store a Surface Normal Field in a Texture?

The three components of the normal vector (nx, ny, nz) are mapped
into the three color components (red, green, blue) of the texture:

in the range -1. → 1. are placed into the texture’s in the range 0. → 1.
𝑛𝑥
𝑛𝑦
𝑛𝑧

𝑟𝑒𝑑
𝑔𝑟𝑒𝑒𝑛
𝑏𝑙𝑢𝑒

௫
௬
௭

ା
ଵ.
ଵ.
ଵ.

ଶ.

To convert the normal to a color:

To convert the color back to a normal:

mjb – December 29, 2024

5

Computer Graphics

This Gets Us Better Lighting Behavior, While Still
Maintaining the Advantages of Bump-Mapping

Ordinary Texture Normal-Mapping

mjb – December 29, 2024

6

Computer Graphics

Small Specular Shininess

Large Specular Shininess

This Gets Us Better Lighting Behavior, While Still
Maintaining the Advantages of Bump-Mapping

mjb – December 29, 2024

7

Computer Graphics

#version 330 compatibility

out vec3 vSurfacePosition;
out vec3 vSurfaceNormal;
out vec3 vEyeVector;
out vec2 vST;

void
main()
{

vSurfacePosition = (gl_ModelViewMatrix * gl_Vertex).xyz;
vSurfaceNormal = normalize(gl_NormalMatrix * gl_Normal);
vEyeVector = vec3(0., 0., 0.) – vSurfacePosition;

vST = gl_MultiTexCoord0.st;

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}

Vertex shader

mjb – December 29, 2024

8

Computer Graphics

#version 330 compatibility

uniform float uKa;
uniform float uKd;
uniform float uKs;
uniform float uShininess;
uniform float uFreq;
uniform sampler2D Color_Map;
uniform sampler2D Normal_Map;

in vec3 vSurfacePosition;
in vec3 vSurfaceNormal; // not actually using this – just here if we need it
in vec3 vEyeVector;
in vec2 vST;

const vec3 LIGHTPOSITION = vec3(0., 10., 0.);
const vec3 WHITE = vec3(1., 1., 1.);

void
main()
{

vec3 P = vSurfacePosition;
vec3 E = normalize(vEyeVector);
vec3 N = normalize(gl_NormalMatrix * (2.*texture(Normal_Map, uFreq*vST).xyz - vec3(1.,1.,1.)));
vec3 L = normalize(LIGHTPOSITION – P);

vec3 Ambient = uKa * texture(Color_Map, uFreq * vST).rgb;
float Diffuse_Intensity = dot(N, L);
vec3 Diffuse = uKd * Diffuse_Intensity * texture(Color_Map, uFreq * vST).rgb;
float Specular_Intensity = pow(max(dot(reflect(-L, N), E), 0.), uShininess);
vec3 Specular = uKs * Specular_Intensity * WHITE;
gl_FragColor = vec4(Ambient+ Diffuse + Specular, 1.);

}

Fragment shader

mjb – December 29, 2024

9

Computer Graphics

Generating a Normal Map: A Blender Example

mjb – December 29, 2024

10

Computer Graphics

8,192
triangles

240
triangles

Generating a Normal Map: A Blender Example

