
1

What You Really Need to Know About
Recent Changes to OpenGL and GLSL

Mike Bailey
mjb@cs.oregonstate.edu

Oregon State University

mjb – May 24, 2010

Oregon State University
Computer Graphics

OpenGL Release GLSL Release When
1.0 --- 1993
1.1 --- 1997
1.2 --- 1998
1.3 --- 2001
1.4 --- 2002

OpenGL / GLSL Release History

mjb – May 24, 2010

Oregon State University
Computer Graphics

1.5 --- 2003
2.0 1.10 2004
2.1 1.20 2006
3.0 1.30 2008
3.3 3.30 2009
4.0 4.00 2010

Features of OpenGL 2.0 / GLSL 1.1 Worth Knowing About
(in the order of what I think are most important)

• Programmable vertex and fragment shaders

• Vertex buffer objects

• Occlusion queries

• Texture-mapped point sprites

• Separate stencil operations for front and back faces

Oh, yeah!

Store vertex arrays in graphics memory

Good for many small 2D objects

Ask how many pixels a particular scene element would occupy if displayed

Good for shadowing

mjb – May 24, 2010

Oregon State University
Computer Graphics

Features of OpenGL 3.3 / GLSL 3.3 Worth Knowing About
(in the order of what I think are most important)

• Geometry shaders

• Texture buffer objects

• Named uniform variable blocks

• Texture size query

• Centroid, flat, invariant, noperspectve qualifiers

Buffer object subimage mapping

Primitive expansion

Textures and parameters stored in graphics memory

Ask the size of a texture so know how to advance to adjacent texels

More efficient way t pass blocks of uniform variables

Affect how varying variables are interpolated

mjb – May 24, 2010

Oregon State University
Computer Graphics

• Buffer object subimage mapping

• Texture arrays

• Layout qualifiers

• 16-bit floats

• Rectangular textures

Set some characteristics of named block variables

Able to memory-map part of a buffer object

16-bit floating point variables

Integer-addressed, reduced functionality texture, useful for video processing

Keep arrays of textures, including cube ,maps

OpenGL 3.x deprecated several things

“Deprecate” doesn’t mean it has gone away now, but means that it will
go away “at some time”, which is undefined so far.

Deprecated features include:
• The Fixed-Function pipeline (will need to use shaders for everything)

• glBegin / glEnd (use vertex arrays and vertex buffers)

mjb – May 24, 2010

Oregon State University
Computer Graphics

• glBegin / glEnd (use vertex arrays and vertex buffers)

• Display lists (use vertex arrays and vertex buffers) [?????]

• Quads (use triangles)

• Polygons (use triangles)

What was Different about OpenGL 3.0?

• There is no Fixed-Function pipeline. All graphics functionality needs to be
implemented with GLSL shaders.

• There are no Display Lists

• There is no glBegin() - glEnd(). All primitives are drawn with Vertex Arrays or
Vertex Buffers.

OpenGL 3.0 was the same as the OpenGL you knew with the following differences:

mjb – May 24, 2010

Oregon State University
Computer Graphics

• GLSL variables can have precision qualifiers These are lowp, mediump, and
highp. These don’t do anything, but makes the language compaticle with GLSL
for OpenGL ES.

• GLSL variables can have the invariant qualifier so that the compiler will not use
any optimizations when computing them. This is useful to be sure that
successive rendering passes produce the same coordinates.

2

OpenGL 3.x Data Types

Type

Byte 8 b

Unsigned byte 8 ub

Short 16 s

Bits
Function

Suffix

mjb – May 24, 2010

Oregon State University
Computer Graphics

Unsigned short 16 us

Int 32 i

Unsigned int 32 ui

Fixed point 32 (16.16) x

Floating point 32 f

OpenGL 3.x Optional Half-float Data Type

1-bit
sign

5-bit exponent 10-bit mantissa

mjb – May 24, 2010

Oregon State University
Computer Graphics

1-bit
sign

8-bit exponent 23-bit mantissa

(As a reference, this is the number of bits in a 32-bit floating point number)

GLSL 3.30 deprecated several things

“Deprecate” doesn’t mean it has gone away now, but means that it will
go away “at some time”, which is undefined so far.

Deprecated features include:

• The Fixed Function pipeline (in the future, all OpenGL programs will require you
to use shaders)

mjb – May 24, 2010

Oregon State University
Computer Graphics

• The attribute and varying keywords (replaced with out and in)

• gl_ClipCoord (replaced with gl_ClipDistance[])

• The ftransform() function

• Almost all built-in variables, such as gl_ModelViewMatrix, gl_Color, etc. These
are replaced with variables that you define for yourself as inputs to your shaders.

What was Different about GLSL 3.30?

GLSL 3.30 was the same as the GLSL you knew with the following differences:

• Full integer support, including all standard C integer operations

• Full unsigned integer support, including all standard C unsigned integer operations

• Hyperbolic and inverse hyperbolic trigonometric functions

• Switch statements

mjb – May 24, 2010

Oregon State University
Computer Graphics

• attribute variables in a vertex shader will now be declared in

• varying variables in a vertex shader will be declared out.

• varying variables in a fragment shader will be declared in

• gl_FragColor and gl_FragData[] in a fragment shader are no longer used. You define
your own variable names and declare them out

What was Different about GLSL 3.30?

GLSL 3.30 was the same as the GLSL you knew with the following differences:

• varying in variables in a geometry shader are declared in

• varying out variables in a geometry shader are declared out

• Textures can be indexed by integers

• Textures can return integer values

mjb – May 24, 2010

Oregon State University
Computer Graphics

• Texture sizes can be queried

• Texture arrays

• The preprocessor can perform token-pasting (##)

What was Different about GLSL 3.30?

GLSL 3.30 was the same as the GLSL you knew with the following differences:

• There is a new gl_VertexId variable which tells you which vertex this is in a vertex
array

• User-clipping is performed with the gl_ClipDistance[] array

• An overloaded version of the mix() function has a Boolean as the third argument,
which lets it act as a switch between the first two arguments

mjb – May 24, 2010

Oregon State University
Computer Graphics

• Where you used to used ftransform() to get an exact gl_Position for multipass
rendering, now use the invariant keyword.

3

Features of OpenGL 4.0 / GLSL 4.0 Worth Knowing About
(in the order of what I think are most important)

• Tessellation shaders

• Subroutines

• Instanced geometry shaders

• Precise qualifier

• Function overloading

Fused multiply add

Subdivide geometry into smaller pieces for smoothness and displacement mapping

Keep multiple ways of doing things in a single shader, but avoid if-statements by using
function jump tables

Able to do multiple iterations through a single geometry
shader to recursively subdivide

Optionally prevents the compiler from optimizing an expression – useful
to maintain computational consistency in multipass algorithms

Just like C++

fma(a,b,c) performs (a*b)+c but in a single instruction without

mjb – May 24, 2010

Oregon State University
Computer Graphics

• Fused multiply-add

• #include

• Geometry shader streams

• Double precision

• Texture gather

• Timer query

()
the loss of precision that happens with an intermediate result

Transform feedback from a geometry shader

64-bit IEEE floating point variables

Grab the four surrounding texel values and interpolate them yourself

Asynchronous timing of individual pipeline instructions

Finally!

Why do we need a Tessellation step right in the pipeline?

• You can perform adaptive subdivision based on a variety of criteria

• You can provide coarser models (≈ geometric compression)

• You can apply detailed displacement maps without supplying equally
detailed geometry

• You can adapt visual quality to the required level of detail

• You can create smoother silhouettes

mjb – May 24, 2010

Oregon State University
Computer Graphics

• You can perform skinning easier

Pipeline Organization without Tessellation

Vertex Shader

Primitive Assembly

mjb – May 24, 2010

Oregon State University
Computer Graphics

Geometry Shader

Rasterizer

Fragment Shader

Primitive Assembly

Tesselation Control Shader

Tessellation Primitive Generator

Primitive Assembly

Pipeline Organization with Tessellation

Vertex Shader

mjb – May 24, 2010

Oregon State University
Computer Graphics

Geometry Shader

Rasterizer

Fragment Shader

Primitive Assembly

Tessellation Evaluation Shader

Primitive Assembly

Tessellation Shader Organization

Tessellation Control Shader

Tessellation Primitive Generator

One call per output vertex.
Consumes the entire patch.
Determines how much to tessellate.

One call per patch.
Tessellate curve or surface into

 di t

Transformed xyz Patch Vertices from
the Vertex Shader

New Patch Vertices in xyz
How much to tessellate

Per-vertex attributes

h
Ve

rt
ic

es
 a

nd

at
ch

 A
ttr

ib
ut

es

mjb – May 24, 2010

Oregon State University
Computer Graphics

Tessellation Evaluation Shader

uvw coordinates.

One call per generated uvw vertex.
Evaluate the curve or surface.
Possibly apply a displacement map.

Pa
tc

h
Pe

r-
pa

uvw vertices for the
tessellated primitives Topology

xyz vertices

Primitive Assembly

Tessellation Shader Organization

The Tessellation Control Shader (TCS) transforms the input coordinates to a
regular surface representation. It also computes the required tessellation level
based on distance to the eye, screen space spanning, hull curvature, or
displacement roughness. There is one invocation per output vertex.

The Fixed-Function Tessellation Primitive Generator (TPG) generates semi-
regular u-v-w coordinates. There is one invocation per patch.

mjb – May 24, 2010

Oregon State University
Computer Graphics

The Tessellation Evaluation Shader (TES) evaluates the surface in uvw
coordinates. It interpolates attributes and applies displacements. There is one
invocation per generated vertex.

There is a new “Patch” primitive – it is the face and its neighborhood:
glBegin(GL_PATCHES)

There is no implied order – that is user-given.

4

glBegin(GL_PATCHES);
glVertex3f(…);
glVertex3f(…);

glEnd();

In the OpenGL Program

GLuint tcs = glCreateShader(GL TESS CONTROL SHADER);

These have no implied topology

mjb – May 24, 2010

Oregon State University
Computer Graphics

g (_ _ _);

GLuint tes = glCreateShader(GL_TESS_EVALUATION_SHADER);

What are GLSL Subroutines?

• Essentially, they are “jump tables” through which you can make an
indexed function call.

• This is important in some applications because if-statements are so
costly in a SIMD environment

• An example might be different kinds of lighting. Rather than changing
the shader program or doing sets of if-tests, you could have functions that
do the different types of lighting, and just decide which set of functions

mjb – May 24, 2010

Oregon State University
Computer Graphics

yp g g, j
need to get called

• GLSL subroutines are context-state, not program-state like normal
uniform variables. This is because it has been anticipated that these will
be used across a number of GLSL programs.

#extension GL_ARB_shader_subroutine : required;
subroutine vec3 SetColor(float);
vec3 SetRed(float);
vec3 SetGreen(float);

main()
{

subroutine uniform SetColor WhichColor;

vec3 color = WhichColor(Scale);
}

In the GLSL Code

Define the SetColor collection of functions

Define GLSL functions as usual
Declare a uniform variable which the proper
function will be “jumped through”

Do the indirect function call

mjb – May 24, 2010

Oregon State University
Computer Graphics

subroutine(SetColor)
vec3
SetRed(float s)
{

return vec3(s, 0., 0.);
}

subroutine(SetColor)
vec3
SetGreen(float s)
{

return vec3(0., s, 0.);
}

The indirect function call will really call one
of these

Note: undefined things will happen if the
WhichColor variable is not assigned to
by the OpenGL program !

GLint where = glGetSubroutineUniformLocation(program, shader_type, “WhichColor”);

if(where < 0) { . . . }

GLuint setred = glGetSubroutineIndex(program, shader_type, “SetRed”);
GLuint setgreen = glGetSubroutineIndex(program, shader_type, “SetGreen”);

glUniformSubroutinesuiv(shader_type, 1, &setgreen);

In the OpenGL Code

Where “WhichColor” is in
the shader symbol table

What the index numbers of the
different “SetColor” functions are

Set which of the SetColor
functions will get called

mjb – May 24, 2010

Oregon State University
Computer Graphics

functions will get called.

