In 2D, a slope m = dy/dx. It can be expressed as the vector [1,m]. The normal to the shape is the vector perpendicular to the vector slope: Note that $[1,m] \cdot [-m,1] = 0$, as it must be. So, if $z = -Amp * cos(2\pi x/Pd - 2\pi Time)$, then the slope dz/dx is: $dz/dx = Amp * 2\pi/Pd * sin(2\pi x/Pd - 2\pi Time), and the vector slope is:$ Slope = [1., 0., Amp * $2\pi/Pd$ * $sin(2\pi x/Pd - 2\pi Time)$] Following the pattern from before, the normal vector is: [Normal] = [-Amp * $$2\pi/Pd$$ * $sin(2\pi x/Pd - 2\pi Time), 0., 1.]$ This is true along just the X axis. The trick now is to rotate the normal vector into where we really are. Because we are just talking about a rotation, the transformation is the same as if we were rotating a vertex. $$Nx' = Nx * cos\Theta - Ny * sin\Theta = Nx * cos\Theta$$ $$Ny' = Nx * sin\Theta + Ny * cos\Theta = Nx * sin\Theta$$ $$Nz' = Nz = 1$$. (Note that in the final version, you will substitute R for x in the slope equation)