
1

mjb – December 26, 2024

1

Computer Graphics

Using Shaders to Enhance Scientific Visualizations

Mike Bailey

mjb@cs.oregonstate.edu

vis.pptx mjb – December 26, 2024

2

Computer Graphics

You Can Do Image Processing on Dynamic Scenes
with a Two-pass Approach

Pass #1

Pass #2

Render a 3D
dynamic scene

Texture

Render a quadrilateral Framebuffer

Lighting
Shader

Sharpening
Shader

mjb – December 26, 2024

3

Computer Graphics

Visualization Imaging -- Sharpening

mjb – December 26, 2024

4

Computer Graphics

Surprisingly, the negative of a 3D object often reveals additional details

mjb – December 26, 2024

5

Computer Graphics

Embossing

Changing the emboss angle is interesting.

mjb – December 26, 2024

6

Computer Graphics

Visualization Imaging – Edge Detection

2

mjb – December 26, 2024

7

Computer Graphics

Using the GPU to enhance scientific,
engineering, and architectural illustration

Toon Rendering for Non-Photorealistic Effects

mjb – December 26, 2024

8

Computer Graphics

A Vector Visualization Technique:
Hedgehog Plots

mjb – December 26, 2024

9

Computer Graphics

No Exaggeration

Exaggerated

Terrain Height Bump-mapping

mjb – December 26, 2024

10

Computer Graphics

Corvallis

Terrain Height Bump-mapping

Salem

Portland

Eugene

mjb – December 26, 2024

11

Computer Graphics

Bump-Mapping for Terrain Visualization

Visualization by Nick Gebbie

mjb – December 26, 2024

12

Computer Graphics

3D Object Silhouettes – Fragment Shader Version

3

mjb – December 26, 2024

13

Computer Graphics

3D Object Silhouettes – Geometry Shader Version

mjb – December 26, 2024

14

Computer Graphics

Visualization -- Polar Hyperbolic Space

Use the GPU to perform nonlinear
vertex transformations

'

'
R

R
R K

mjb – December 26, 2024

15

Computer Graphics

Dome Projection for Immersive Visualization

Use the GPU to perform nonlinear vertex transformations

mjb – December 26, 2024

16

Computer Graphics

Image Manipulation Example – Where is it Likely to Snow?

Visible Infrared Water vapor

if(have_clouds && have_a_low_temperature && have_water_vapor)
color = green;

else
color = from visible map

mjb – December 26, 2024

17

Computer Graphics

Writing 3D Point Cloud Data into a Floating-Point Texture for glman

fwrite(&nums, 4, 1, fp);
fwrite(&numt, 4, 1, fp);
fwrite(&nump, 4, 1, fp);

for(int p = 0; p < nump; p++)
{

for(int t = 0; t < numt; t++)
{

for(int s = 0; s < nums; s++)
{

float red, green, blue, alpha;
<< assign red, green blue, alpha >>
fwrite(&red, 4, 1, fp);
fwrite(&green, 4, 1, fp);
fwrite(&blue, 4, 1, fp);
fwrite(&alpha, 4, 1, fp);

}
}

}

mjb – December 26, 2024

18

Computer Graphics

Point Cloud from a 3D Texture Dataset

Full data

Low values culled

4

mjb – December 26, 2024

19

Computer Graphics

Where to Place the Geometry?

I personally like thinking of the data as living in a cube that ranges from -1. to 1. in X, Y,
and Z. It is straightforward to position geometry in this space and easy to view and
transform it. This means that any 3D object in that space, not just a point cloud, can map
itself to the 3D texture data space.

So, because the s texture coordinate goes from 0. to 1., then the linear mapping from
the physical x coordinate to the texture s coordinate is:

The same mapping applies to y and z to create the t and p texture coordinates.

In GLSL, this conversion can be done in one line of code using the vec3:

vec3 xyz = ???
. . .
vec3 stp = (xyz + 1.) / 2.;

You can also go the other way: vec3 xyz = -1. + (2. * stp);

𝑠 =
𝑥 + 1.

2.
-1. ≤ x ≤ 1. 0. ≤ s ≤ 1.

mjb – December 26, 2024

20

Computer Graphics

The Vertex Shader

out vec3 vMC;

void
main()
{

vMC = gl_Vertex.xyz;
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

}

mjb – December 26, 2024

21

Computer Graphics

The Fragment Shader

uniform float uMin, uMax;
uniform sampler3D uTexUnit;
in vec3 vMC;
const float SMIN = 0.;
const float SMAX = 120.;

void
main()
{

vec3 stp = (vMC + 1.) / 2.; // maps [-1.,1.] to [0.,1.]

if(any(lessThan(stp, vec3(0.,0.,0.))))
discard;

if(any(greaterThan(stp, vec3(1.,1.,1.))))
discard;

float scalar = texture(uTexUnit, stp).r; // data is hiding in the red component
if(scalar < uMin || scalar > uMax)

discard;

float t = (scalar - SMIN) / (SMAX - SMIN);
vec3 rgb = Rainbow(t);
gl_FragColor = vec4(rgb, 1.);

}

SIMD functions to help GLSL if-tests

mjb – December 26, 2024

22

Computer Graphics

A Problem with Uniform Pointclouds:
Row-of-Corn and Moire Patterns

Orthographic

Perspective

mjb – December 26, 2024

23

Computer Graphics

Uniform Points vs. Jittered Points

“Pointcloud”

“Jittercloud”

“Jittering” moves each point a small random amount
in ±x, ±y, and ±z. Because our data value lookup
comes from (s,t,p) which comes from (x,y,z), the
lookup will be correct at the jittered points.

mjb – December 26, 2024

24

Computer Graphics

Enhanced Point Clouds

The shaders can
potentially change:

• Color

• Alpha

• Pointsize

5

mjb – December 26, 2024

25

Computer Graphics

Now, change the Point Cloud geometry to a quadrilateral geometry. If we keep the coordinate
range from -1. to 1., then the same shader code will work, except that we now want to base
the color assignment on Eye Coordinates instead of Model Coordinates:

Color Cutting Planes

Note that the plane can be oriented at any angle because the s-t-p data lookup
comes from the transformed x-y-z coordinates of the cutting plane

in vec3 vEC;

void
main()
{

vec3 stp = (vEC + 1.) / 2.;
// maps [-1.,1.] to [0.,1.]
. . .

Eye (transformed) coordinates are
being used here because the cutting
plane is moving through the data.

mjb – December 26, 2024

26

Computer Graphics

The cutting plane is actually just being used as a fragment-generator. Each fragment is then
being asked “what data value lives at the same place you live”?

Color Cutting Planes

This is very much like how we handled rendering a rainbow.

in vec3 vEC;

void
main()
{

vec3 stp = (vEC + 1.) / 2.;
// maps [-1.,1.] to [0.,1.]

. . .

mjb – December 26, 2024

27

Computer Graphics

Let’s say that we want “contour gaps” at each 10 degrees of temperature. Then the main
change to the shader will be that we need to find how close each fragment’s interpolated
scalar data value is to an even multiple of 10. To do this, we add this discretization code to the
fragment shader:

float scalar10 = float(10*int((scalar+5.)/10.));
if(abs(scalar - scalar10) < uTol)

discard;

Notice that this uses a uniform variable called uTol, which is read from a slider and has a
range of 0. to 5. uTol is used to determine how close to an even multiple of 10 degrees we
will accept, and thus how thick we want the contour gaps to be.

Gapped-Contour Cutting Planes

mjb – December 26, 2024

28

Computer Graphics

Note that when uTol=5., the uTol if-statement

float scalar10 = float(10*int((scalar+5.)/10.));
if(abs(scalar - scalar10) < uTol)

discard;

always fails, and we end up with the same display as we had with the interpolated
colors. Thus, we wouldn’t actually need a separate color cutting plane shader at all.
Shaders that can do double duty are always appreciated!

Contour Cutting Planes are Also Color Cutting Planes

mjb – December 26, 2024

29

Computer Graphics

3D Data Probe – Mapping the Data to Arbitrary Geometry

Some shapes make better
probes than others do…

The cutting plane is actually being used as a fragment-generator. Each fragment is then being
asked “what data value lives at the same place you live”?

mjb – December 26, 2024

30

Computer Graphics

An Observation

Note that Point Clouds, Jitter Clouds, Colored Cutting Planes, Contour Cutting Planes, and
3D Data Probes are really all the same technique!

They just vary in what type of geometry the data is mapped to. They use the same shader
code, possibly with a switch between model and eye coordinates.

How about something less obvious like a torus?

6

mjb – December 26, 2024

31

Computer Graphics

OSU vx Transfer Function Sculpting Window

Visualization Transfer Function –
Relating Display Attributes to the Scalar Value

Opacity

Colors

Frequency
Histogram

Scalar Value

mjb – December 26, 2024

32

Computer Graphics

Visualization -- Don’t Send Colored Data to the GPU,
Send the Raw Data and a Separate Transfer Function to the

Fragment Shader

Use the GPU to turn the data into colored graphics on-the-fly

Visualizations by Chris Janik

mjb – December 26, 2024

33

Computer Graphics

A Visualization Scenario

100º

0º

A thermal analysis reveals that a bar has a temperature of 0º at one
end and 100º at the other end:

You want to color it with a rainbow scale as follows:

0º

Should you assign colors first then interpolate, or interpolate first then assign colors?
Will it matter? If so, how?

100º

You also want to use smooth shading, so that you can render the bar
as a single quadrilateral.

mjb – December 26, 2024

34

Computer Graphics

A Visualization Scenario

Assign colors from temperatures, then interpolate:

Interpolate temperatures first, then assign colors:

WRONG !

RIGHT !

Conclusion: let the rasterizer interpolate your scalar values and let your
fragment shader assign colors and alphas to those values

mjb – December 26, 2024

35

Computer Graphics

Point Clouds – Three Ways to Assign the Scalar Function

glBegin(GL_POINTS);
< convert s0 to r0,g0,b0, a0 >
glColor4f(r0, g0, b0, a0);
glPointSize(p0);
glVertex3f(x0, y0, z0);
. . .

glEnd();

Pattern.Use();
glBegin(GL_POINTS);

Pattern.SetAttributeVariable(″Temperature″, s0);
glVertex3f(x0, y0, z0);
. . .

glEnd();

Without shaders:
Assigning colors first – problems with interpolation

With shaders”
Put the data in attribute variables

mjb – December 26, 2024

36

Computer Graphics

Point Clouds – A Third Way – I really like this one

Pattern.Use();
glBegin(GL_POINTS);

glVertex4f(x0, y0, z0, s0);
. . .

glEnd();

With shaders:
“Hiding” the scalar value in the w component

out float vScalar;

void
main()
{

vScalar = gl_Vertex.w;
gl_Position = gl_ModelViewProjectionMatrix * vec4(gl_Vertex.xyz, 1.);

}

The hidden scalar value in the w component must be
extracted and replaced with 1.0 in the vertex shader

7

mjb – December 26, 2024

37

Computer Graphics

Volume Rendering – a different way to think of
visualizing 3D Scalar Data

OSU vx Transfer Function Sculpting Window Scalar Value

Each voxel has a color and opacity
depending on its scalar value

Visualization by Ankit Khare

mjb – December 26, 2024

38

Computer Graphics

12 2 2 2(1) ,color color black

01 1 1 1 12(1) ,color color color

*
0 0 0 01(1) .color color color

*
0 0 0 1 1 0 1 2 2 0 1 2(1) (1)(1) (1)(1)(1) .color color color color black

Gives the front-to-back equation:

Thinking about it back-to-front:

Volume Rendering – Compositing via Ray Casting

mjb – December 26, 2024

39

Computer Graphics

float astar = 1.;
vec3 cstar = vec3(0., 0., 0.);
for(int i = 0; i < uNumSteps; i++, STP += uDirSTP)
{

if(any(lessThan(STP, vec3(0.,0.,0.))))
continue;

if(any(greaterThan(STP, vec3(1.,1.,1.))))
continue;

float scalar = texture3D(uTexUnit, STP).r;
if(scalar < uMin)

continue;
if(scalar > uMax)

continue.;
float alpha = uAmax;

float t = (scalar - SMIN) / (SMAX - SMIN);
vec3 rgb = Rainbow(t);

cstar += astar * alpha * rgb;
astar *= (1. - alpha);

// break out if the rest of the tracing won't matter:

if(astar == 0.)
break;

}
gl_FragColor = vec4(cstar, 1.);

Volume Rendering – Compositing via Ray Casting

uMin = minimum scalar value to display

uMax = maximum scalar value to display

uAmax = alpha value to use if this voxel
is to be seen

mjb – December 26, 2024

40

Computer Graphics

Volume Rendering – Compositing via Ray Casting

mjb – December 26, 2024

41

Computer Graphics

Visualizations by Ankit Khare

Volume Filtering – Median Filter

mjb – December 26, 2024

42

Computer Graphics

Visualizations by Ankit Khare

Volume Filtering – High Pass Filter Followed by Median Filter

8

mjb – December 26, 2024

43

Computer Graphics

Volume Visualization for OSU’S College of Vet Medicine

Visualization by Chris Schultz

mjb – December 26, 2024

44

Computer Graphics

At each fragment:

1. Find the flow field velocity vector there

2. Follow that vector in both directions

3. Blend in the colors at the other
fragments along that vector

Vector Visualization: 2D Line Integral Convolution

=

Image

Circular
Flow Field

Use a vector field equation, or
“hide” the velocity field in another
texture image: (vx,vy,vz) ≡ (r,g,b)

+

mjb – December 26, 2024

45

Computer Graphics

uniform int uLength;
uniform sampler2D uImageUnit;
uniform sampler2D uFlowUnit;
uniform float uTime;
in vec2 vST;

void
main()
{

ivec2 res = textureSize(uImageUnit, 0);

// flow field direction:
vec2 st = vST;
vec2 v = texture(uFlowUnit, st).xy;
v *= 1./vec2(res);.

st = vST;
vec3 color = texture(uImageUnit, st).rgb;
int count = 1;

lic2d.frag, I

Vector Visualization: 2D Line Integral Convolution

mjb – December 26, 2024

46

Computer Graphics

st = vST;
for(int i = 0; i < uLength; i++)
{

st += uTime*v;
vec3 new = texture(uImageUnit, st).rgb;
color += new;
count++;

}

st = vST;
for(int i = 0; i < uLength; i++)
{

st -= uTime*v;
vec3 new = texture(uImageUnit, st).rgb;
color += new;
count++;

}

color /= float(count);

gl_FragColor = vec4(color, 1.);
}

lic2d.frag, II

Vector Visualization: 2D Line Integral Convolution

mjb – December 26, 2024

47

Computer Graphics

Flow around a corner

Flow in a circle

Vector Visualization: 2D Line Integral Convolution

mjb – December 26, 2024

48

Computer Graphics

http://hint.fm/wind/

Vector Visualization:
a Cool 2D Line Integral Convolution Example

9

mjb – December 26, 2024

49

Computer Graphics

Vector Visualization: 3D Line Integral Convolution

Visualizations by Vasu Lakshmanan

