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CPU DB: Recording  
Microprocessor History 

With this open database, you can mine microprocessor trends over the past 40 years.

Andrew Danowitz, Kyle Kelley, James Mao, John P. Stevenson, Mark Horowitz, Stanford University 

In November 1971, Intel introduced the world’s first single-chip microprocessor, the Intel 4004. 
It had 2,300 transistors, ran at a clock speed of up to 740 KHz, and delivered 60,000 instructions 
per second while dissipating 0.5 watts. The following four decades witnessed exponential growth 
in compute power, a trend that has enabled applications as diverse as climate modeling, protein 
folding, and computing real-time ballistic trajectories of angry birds. Today’s microprocessor chips 
employ billions of transistors, include multiple processor cores on a single silicon die, run at clock 
speeds measured in gigahertz, and deliver more than 4 million times the performance of the original 
4004. 

Where did these incredible gains come from? This article sheds some light on this question by 
introducing CPU DB (cpudb.stanford.edu), an open and extensible database collected by Stanford’s 
VLSI (very large-scale integration) Research Group over several generations of processors (and 
students). We gathered information on commercial processors from 17 manufacturers and placed it 
in CPU DB, which now contains data on 790 processors spanning the past 40 years.

In addition, we provide a methodology to separate the effect of technology scaling from 
improvements on other frontiers (e.g., architecture and software), allowing the comparison of 
machines built in different technologies. To demonstrate the utility of this data and analysis, we use 
it to decompose processor improvements into contributions from the physical scaling of devices, and 
from improvements in microarchitecture, compiler, and software technologies. 

AN OPEN REPOSITORY OF PROCESSOR SPECS
While information about current processors is easy to find, it is rarely arranged in a manner that is 
useful to the research community. For example, the data sheet may contain the processor’s power, 
voltage, frequency, and cache size, but not the pipeline depth or the technology minimum feature 
size. Even then, these specifications often fail to tell the full story: a laptop processor operates over a 
range of frequencies and voltages, not just the 2 GHz shown on the box label. 

Not surprisingly, specification data gets harder to find the older the processor becomes, 
especially for those that are no longer made, or worse, whose manufacturers no longer exist. We 
have been collecting this type of data for three decades and are now releasing it in the form of an 
open repository of processor specifications. The goal of CPU DB is to aggregate detailed processor 
specifications into a convenient form and to encourage community participation, both to leverage 
this information and to keep it accurate and current. CPU DB (cpudb. stanford.edu)  is populated 
with desktop, laptop, and server processors, for which we use SPEC13 as our performance-measuring 
tool. In addition, the database contains limited data on embedded cores, for which we are using 
the CoreMark benchmark for performance.5 With time and help from the community, we hope to 
extend the coverage of embedded processors in the database. 
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For users to analyze different processor features, CPU DB contains many data entries for each CPU, 
ranging from physical parameters such as number of metal layers, to overall performance metrics 
such as SPEC scores. To make viewing relevant data easier, the database includes summary fields, 
such as nominal clock frequency, that try to represent more detailed scaling data. Table 1 shows the 
current list of CPU DB parameters. Table 2 summarizes the “microarchitecture” specifications. 

All high-performance processors today tell the system what supply voltage they need within a 
range of allowable values. This makes it difficult to track how power-supply voltage has scaled over 
time. Instead of relying on the specified worst-case behavior, researchers are free to analyze the power, 
frequency, and voltage that a processor actually uses while running an application, and then add it to 
the CPU DB repository. Table 3 is a summary of the measured parameters tracked in CPU DB. 

Category 
Processor architecture 
and microarchitecture 

Memory  
system 

Physical  
characteristics 

Technology 

Summary Parameter 
Architecture  
family 

Last level  
cache 

Vdd nominal  
Clock frequency TDP 

Process  
size 

Parameters 
Manufacturer 
Family name 
Code name 
Model name 
Date released 
Number of cores 
Threads per core 
Word size 

L1 data size 
L1 instruction size 
L2 size 
L3 size 
Memory bandwidth 
FSB pins 
Memory pins 
Power and ground 
pins I/O pins 

Vdd high 
Vdd low 
Nominal frequency 
Turbo frequency 
Low power frequency  
TDP
Die size 
Number of transistors 

Process name 
Process type 
Feature size 
Effective channel  length
Number of metal layers
Metal type 
FO4 delay

TABLE 1: Categories used to organize per-processor specifications in CPU DB. 

TABLE 2: Microarchitectural parameters contained in CPU DB.  

TABLE 3: Measured parameters in CPU DB.*   

• Note: Spec benchmarks also include comprehensive fields for performance on individual spec subtests.

Manufacturer Microarchitecture Revision ISA 
ISA  
version 

ISA  
extensions 

Floating point  pipe 
stages 

Integer  
pipe stages 

Max uOps issued  
per cycle 

Integer functional  
units 

Load store  
functional units 

Floating point  
functional units 

Total functional  
units 

Max instructions de-
coded per cycle 

Reorder  
buffer 

Instruction  
window size 

Instruction fetch 
queue size 

Branch history  
table 

Branch target  
buffer 

Branch predictor  
accuracy 

Integer  
registers 

Floating point  
registers 

Total  
registers 

Floating point  
coproc. 

TLB  
entries 

Out of  
order

Integrated mem.  
controller

---

Power Power for specified load, Idle power, Max operating power
Voltage Vdd for specified load, Vdd idle, Vdd at max power

Performance SPECRate 2006, SPEC 2006, SPEC 2000, SPEC 1995,SPEC 1992, MIPs 
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While CPU DB includes a large set of processor data fields, certain members of the architecture 
community will likely want to explore data fields that we did not think to include. To handle such 
situations, users are encouraged to suggest new data columns. These suggestions will be reviewed and 
then entered in the database. 

A similar system helps keep CPU DB accurate and up to date. Users can submit data for new 
processors and architectures, and suggest corrections to data entries. We understand that users may 
not have data for all of the specifications, and we encourage users to submit any subsets of the data 
fields. New data and corrections will be reviewed before being applied to the database. 

With these mechanisms for adding and vetting data, CPU DB will be a powerful tool for architects 
who wish to incorporate processor data into their studies. Because many database users will probably 
want to perform analyses on the raw CPU DB data, the full database is downloadable in comma-
separated value format. 

TECHNOLOGY NORMALIZATION METHODOLOGY
CPU DB allows side-by-side access to performance data for relatively simple in-order processors 
(up to the mid-1990s) and modern out-of-order processors. One could ask if, at the cost of lower 
performance, the simplicity of the older designs conferred an efficiency advantage. Unfortunately, 
direct comparisons using the raw data are difficult because, over the years, manufacturing 
technologies have improved significantly. A fair comparison would be possible if both processors 
were manufactured using the same process; but since porting all of these older processors to modern 
technologies is not feasible, we need another approach. To enable such comparisons, we instead 
estimate how processor performance and power would scale with technology.

Our main performance metric is based on industry-standard SPEC CPU2006 scores.13 
Unfortunately, most older processors did not run SPEC 2006 and instead measured performance 
in MIPS (million instructions per second) and, later, in terms of SPEC 1989, SPEC 1992, SPEC 1995, 
and SPEC 2000. In those cases we estimate SPEC 2006 numbers by converting old scores into a SPEC 
2006 equivalent score using a conversion factor. The conversion values are determined by examining 
systems that have scores for two versions of SPEC and then taking the geometric mean of the set of 
ratios between overlapping scores. This method was used to create the summary performance scores 
in the database. We also provide the raw scores so that users can develop better conversion methods 
over time.

To estimate the performance of a processor if it were manufactured using a newer process, we 
calculate the clock frequency in that technology using gate-delay data. While the speed of the cache 
memory on the processor scales with technology, the delay going to main memory has scaled only 
slowly with time. As a result, doubling the clock frequency generally does not double the processor’s 
performance. We finesse this issue the same way the microprocessor industry does: by scaling the 
on-chip cache so the percentage memory stall time remains constant. Using the empirical rule that 
miss rates are proportional to the square root of the cache size,9,14 we expand the last-level cache by 
four times for each doubling of clock frequency. Thus, we assume that the processor performance 
scales with clock frequency, but we penalize the energy and area of the processor by growing its 
cache. 

For the clock-cycle time estimate, we need to know how the delays of the gates and wires will 
scale. Fortunately, the delay scaling of different logic gates is similar, so it is sufficient to measure 
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how the delay of a single gate scales. Our analysis uses the delay of an inverter driving four 
equivalent inverters (a fanout of four, or FO4) as the gate-speed metric. Inverters are the most 
common gate type, and their delay is often published in technology papers. For wire delay it is 
important to remember that a design’s area will shrink with scaling, so its wire delay will, in general, 
reduce slowly or, at worst, stay constant. Its effect on cycle time depends on the internal circuit 
design. Designers generally pipeline long wires, so they tend not to limit the critical path. Thus, we 
ignore wire delay and make the slightly optimistic assumption that a processor’s frequency in the 
new technology will be greater by the ratio of FO4s from old to new: 
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Using FO4 as a basic metric has an additional advantage: it cleanly covers the performance/energy 
variation that comes from changing the supply voltage. Two processors, even built in the same 
technology, might be operated at different supply voltages. The energy difference between the two 
can be calculated directly from the supply voltage, but the voltage’s effect on performance is harder 
to estimate. Using FO4 data for these designs at two different voltages provides all the information 
that is needed. 

Having accounted for the effect of the scaled memory systems, we find that estimating the power 
of a processor with scaled technology is fairly straightforward. Processor power has two components: 
dynamic and leakage. In an optimized design, the leakage power is around 30 percent of the 
dynamic power, and the leakage power will scale as the dynamic power scales.16 

Dynamic power is given by the product of the processor’s average activity factor,  (the probability 
that a node will switch each cycle), the processor frequency, and the energy to switch the transistors: 

Energy=C(Vdd)
2

The processor’s average activity factor depends on the logic and not the technology, so it is 
constant with scaling. Since capacitance per unit length is roughly constant with scaling, C should 
be proportional to the feature size  We have already estimated how the frequency will scale, so the 
estimated power and performance scaling for technology is: 
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For analyzing processor efficiency, it is often better to look at energy per operation rather than 
power. Energy/op factors out the linear relationship that both performance and power have with 
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frequency (FO4). Lowering the frequency changes the power but does not change the energy/op. 
Since energy/op is proportional to the ratio of power over performance, we derive the next next
equation by dividing the previous two:     
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With these expressions, it is possible to normalize CPU DB processors’ performance and energy 
into a single process technology. While Intel’s Shekhar Borkar et al. gave a rough sketch of how 
technology scaling and architectural improvement contributed to processor performance over the 
years,2 our data and normalization method can be used to generate an actual scatter plot showing 
the breakdown between the two factors: faster transistors (resulting from technology scaling) and 
architectural improvement. As seen in figure 1, process scaling and microarchitectural scaling each 
contribute nearly the same amount to processor performance gains. 

As a quick sanity check for our normalization results, we plot normalized performance versus 
transistor count and normalized area in figures 2 and 3. These plots look at Pollack’s rule, which 
states that performance scales as the square root of design complexity.1 Pollack’s rule has been used 
in numerous published studies to compare performance against processor die resource usage.2,4,10,15 

∝
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Processor Performance Improvements Over Time

All processors are normalized to the performance of the Intel 386. The squares indicate how processor performance actu-
ally scaled with time, while the diamonds denote how much speedup came from improving the manufacturing process.
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Figures 2 and 3 show that our normalized data is in close agreement with Pollack’s rule, suggesting 
that our normalization method accurately represents design performance.

PHYSICAL SCALING
One of the nice side benefits of collecting this database is that it allows one to see how chip 
complexity, voltage, and power have scaled over time, and how well scaling predictions compare 
with reality. The rate of feature scaling has accelerated in recent years (figure 4). Up through the 130 
nm (nanometer) process generation, feature size scaled down by a factor of 

roughly every two to three years. Since the 90 nm generation, however, a new process has been 
introduced roughly every two years. Intel appears to be driving this intense schedule and has been 
one of the first to market for each process since the 180 nm generation. 

As a result of this exponential scaling, in the 25 years since the release of the Intel 80386, transistor 
area has shrunk by a factor of almost 4,000. If feature size scaling were all that were driving processor 
density, then transistor counts would have scaled by the same rate. An analysis of commercial 
microprocessors, however, shows that transistor count has actually grown by a factor of 16,000. 

One simple reason why transistor growth has outpaced feature size is that processor dies have 
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Up to the 130 nm node, feature size scaled every two to three years. Since the 90 nm generation, 
feature size scaling has accelerated to every two years.
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grown. While the 80386 microprocessor had a die size of 103 mm2, modern Intel Core i7 dies 
have an area of up to 296 mm2. This is not the whole story behind transistor scaling, however. 
Figure 5 shows technology-independent transistor density by plotting how many square minimum 
features an average processor transistor occupies. We generated this data by taking the die area, 
dividing by the feature size squared, and then dividing by the number of transistors. From 1985 
to 2005 increasing metal layers and larger cache structures (with their high transistor densities) 
had decreased the average size of a transistor by four times. Interestingly, since 2005, transistor 
density actually dropped by roughly a factor of two. While our data does not indicate a reason for 
this change, we suspect it results from a combination of stricter design rules for sub-wavelength 
lithography, using more robust logic styles in the processor, and a shrinking percentage of the 
processor area used for cache in chip multiprocessors. 

Our data also provides some interesting insight into how supply voltages have scaled over time. 
Most people know voltage scales with technology feature size, so many assume that this scaling 
is proportional to feature size as originally proposed in Robert Dennard’s 1974 article.6 As he and 
others have noted, however, and as shown in figure 6, voltage has not scaled at the same pace as 
feature size.3,12 Until roughly the 0.6 µm node, processors maintained an operating voltage of 5 
volts, since that was the common supply voltage for popular logic families of the day, and processor 
power dissipation was not an issue. It was not until manufacturers went to 3.3 volts in the 0.6 µm 
generation that voltage began to scale with feature size. Fitting a curve on the voltage data from the 
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Note that features per transistor fell until about 2004, indicating a growth in technology-independent 
transistor density. In modern chips, transistors have started to grow.
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half-micron to the 0.13 µm process generations, our data indicates that, even when voltage scaled, it 
did so with roughly the square root of feature size. This slower scaling has been attributed to reaping 
a dual benefit of faster gates and better immunity to noise and process variations at the cost of 
higher chip-power density. 

From the 0.13 µm generation on, voltage scaling seems to have slowed. At the same time, however, 
trends in voltage have become much harder to estimate from our data. As mentioned earlier, today 
almost all processors define their own operating voltage. The data sheets have only the operating 
range. Figure 6 plots the maximum specified voltage. More user data should provide insight on how 
supply voltages are really scaling. 

CIRCUITS AND PIPELINING
Circuit designers and microarchitects were not content to scale frequency with gate speed—if they 
had been, then microprocessors would be running at only around 500 MHz today. As figure 7 shows, 
frequencies scaled much faster than simple gate speed. The reason for this discrepancy is largely 
because of architectural decisions that decreased the logic depth in each processor pipeline stage 
and increased the number of stages. From 1985 to around 2000, the frequency rapidly increased as 
a result of faster, more parallel circuit implementations of adders, branch units, and caches, and the 
use of aggressive pipelining. These trends are evident in the contrast between the two-stage fetch/
execute pipeline of the Intel 80386, and the 30-plus pipeline stages in the Prescott Pentium IV. 

feature size (um)

V dd
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Voltage Versus Feature Size

It is clear that voltage scaling did not follow one simple rule. First, by convention, it was maintained at 5 volts. Once 
voltage reductions were required, a new convention was established at 3.3 volts. Then voltage was reduced in pro-
portion to feature size until the 130 nm node. Log-space regression reveals that voltage scaled roughly as the square 
root of feature size between the 0.6 µm and 130 nm nodes.
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Since 2000, processor frequencies have stagnated, but this is not the whole story. Our data 
confirms that gate speeds have continued to improve with technology. What is different now, 
though, is that the industry has moved away from deeply pipelined machines and is now designing 
machines that do more work per pipeline stage. The reason for this change is simple: power. While 
short-tick machines are possible and might be optimal from a performance perspective,7,11,14 they are 
not energy efficient.8 

In light of slower voltage scaling and faster frequency scaling, it comes as no surprise that 
processor power has increased over time. As illustrated in figure 8, processor power density has 
increased by more than a factor of 32 from the release of the 80386 through 2005, although it has 
recently started to decrease as energy-efficient computing has grown in importance. 

Interestingly, scaling rules say power should be much worse. From the Intel 80386 to a Pentium 
4, feature size scaled by 16 times, supply voltage scaled by around four times, and frequency scaled 
by 200 times. This means that the power density should have increased by a factor of 16 · 200/4

2 

= 200, which is much larger than the power density increase of 32 times shown in figure 8. Figure 
9 compares observed power with how power should have scaled if we just scaled up an Intel 386 
architecture to match the performance of new processors. The eightfold savings represents circuit 
and microarchitectural optimizations—such as clock gating—that have been done during this 
period to keep power under control. The energy savings of these techniques had initially been 
growing, but, unfortunately, recently seem to have stabilized at around the eightfold mark. This is 
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not a good sign if we hope to continue to scale performance, since technology scaling of energy is 
slowing down.

MICROARCHITECTURE AND SOFTWARE
While process technologists were finding ways to scale transistors, processor architects were working 
equally hard in advancing and innovating at the microarchitecture level. Indeed, this effect can be 
seen in CPU DB where, after normalizing for technology, we observe a hundredfold improvement 
in microarchitecture/software performance since the Intel 80386 days. Historically, as the number 
of transistors per chip increased with technology scaling, architects found ways to use those 
transistors to create faster, more advanced uniprocessors. In addition to aggressive clock scaling, 
architects implemented features such as speculative execution, parallel instruction issue, out-of-order 
processing, and larger caches—all of which contributed to improved single-threaded performance. 

By roughly 2005, increasingly complex processors, along with slowed voltage scaling, caused 
processors to hit a new constraint: the power wall. This resulted in a significant shift in the 
industry. Moore’s law meant that processor designers could still expect an ever-increasing number 
of transistors, but they had to use these transistors in energy-efficient ways; increasing performance 
now meant decreasing energy/instruction to keep power constant. As a response to this challenge, 
the industry transitioned toward CMP (chip multiprocessor) designs that use many simple processors 
to increase the aggregate performance of the chip. 

Figure 10 plots the technology-normalized energy/op versus the normalized performance. For 
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this plot, we assume that the power needed to scale up the cache size is small compared with the 
processor power, providing an optimistic assumption of the efficiency of these early machines. 
This plot indicates that, for early processor designs, energy/op remains relatively constant while 
performance scales up. 

We noticed from this plot, however, that some of the early processors (e.g., the Pentium) appear 
far more energy efficient than modern processor designs. To estimate the scaled energy of these 
processors more fairly, we scale the caches by the square of the improvement in frequency to keep 
the memory stall percentage constant, and we estimate the power of a 45 nm low-power SRAM 
at around 0.5 W/MB. Including this cache energy-correction factor yields the results in figure 
11. Comparing these two plots demonstrates how critical the memory system is for low-energy 
processors. The leakage power of our estimated large on-chip cache increases the energy cost of an 
instruction by four to eight times for simple processors. 

Surprisingly, however, the original Pentium designs are still substantially more energy efficient 
than other designs in the plot. Clearly, more analysis is warranted to understand whether this 
apparent efficiency can be leveraged in future machines. 

In recent years, desktop processors have shifted toward high-throughput parallel machines. With 
this shift, it was unclear whether processor designers would be able to scale single-core performance. 
A brief analysis of the data in figure 12 shows that single-core performance continues to scale with 
each new architecture. Within an architecture, performance depends largely on the part’s frequency 
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and cache size. Figure 13 illustrates this point by plotting the performance versus frequency and 
cache size for several modern processor designs. Frequency scaling with each new architecture is 
slower than before, and peak frequencies are now often used only when the other processor cores 
are idle. Figure 14 plots cycle time measured in gate delays and shows why processor clock frequency 
seems to have stalled: processors moved to shorter pipelines, and the resulting slower frequency has 
taken some time to catch up to the older hyperpipelined rates. 

More interesting is that even when controlling for the effects of frequency and cache size, single-
core microarchitectural performance is still being improved with each generation of chips (figure 
13). Improvements such as on-chip memory controllers and extra execution units all play a role in 
determining overall system efficiency, and architects are still finding improvements to make. 

Our results, however, come with the caveat that some portion of the performance improvement 
in modern single-core performance comes from compiler optimizations. Figure 15 shows how 
performance of the SPEC 2006 benchmark Libquantum scales over time on the Intel Bloomfield 
architecture. Libquantum concentrates a large amount of computation in an inner for loop that 
can be optimized. As a result, Libquantum scores have risen 18 times without any improvement 
to the underlying hardware. Also, many SPEC scores for modern processors are measured with the 
Auto Parallel flag turned on, indicating that the measured “single-core” performance might still be 
benefiting from multicore computing. 

CONCLUSIONS
Over the past 40 years, VLSI designers have used an incredible amount of engineering expertise 
to create and improve these amazing devices we call microprocessors. As a result, performance has 
improved and the energy/op has decreased by many orders of magnitude, making these devices 
the engines that power our information technology infrastructure. CPU DB is designed to help 
explore this area. Using the data in CPU DB and some simple scaling rules, we have conducted 
some preliminary studies to show the kinds of analyses that are possible. We encourage readers to 
explore and contribute to the processor data in CPU DB, and we look forward to learning more about 
processors from the insights they develop.

For more information about the online CPU database and how to contribute data, please visit  
http://cpudb. stanford.edu. 
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