
1

mjb – March 14, 2024

1

Computer Graphics

Caching Issues in Multicore Performance

cache.pptx

Mike Bailey

mjb@cs.oregonstate.edu

CPU Chip

Off-chip Memory

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

mjb – March 14, 2024

2

Computer Graphics

CPU
Chip

Main
Memory

This path is relatively slow, forcing the CPU to wait for up to 200 clock
cycles just to do a store to, or a load from, memory.

Depending on your CPU’s ability to process instructions out-of-order, it
might go idle during this time.

This is a huge performance hit!

Problem: The Path Between a CPU Chip and Off-chip Memory is Slow

mjb – March 14, 2024

3

Computer Graphics

CPU
Chip

Solution: Hierarchical Memory Systems, or “Cache”

Main
Memory

Smaller,
faster

The solution is to add intermediate memory systems. The one closest
to the ALU (L1) is small and fast. The memory systems get slower
and larger as they get farther away from the ALU.

L3 cache also exists on some high-end CPU chips

mjb – March 14, 2024

4

Computer Graphics

L2

Cache and Memory are Named by “Distance Level” from the ALU

L1

L3 cache has been added to
many CPU chips as well

mjb – March 14, 2024

5

Computer Graphics

DiskMemoryL3L2L1

DiskOff-chipOn-chipOn-chipOn-chip Type of Storage

Many
GBs

32 GB32 MB8 MB100 KBTypical Size

5,000,00050 10.8.50.25Typical Access
Time (ns)

231 days3.3 minutes43 seconds2 seconds1 secondScaled Access
Time

OSOSHardwareHardwareHardwareManaged by

Adapted from: John Hennessy and David Patterson, Computer Architecture: A
Quantitative Approach, Morgan-Kaufmann, 2007. (4th Edition)

Storage Level Characteristics

Usually there are two L1 caches – one for Instructions and one for Data. You will often see
this referred to in data sheets as: “L1 cache: 32KB + 32KB” or “I and D cache”

mjb – March 14, 2024

6

Computer Graphics

When the CPU asks for a value from memory, and that value is already
in the cache, it can get it quickly.
This is called a cache hit

When the CPU asks for a value from memory, and that value is not already
in the cache, it will have to go off the chip to get it.
This is called a cache miss

Cache Hits and Misses

Performance programming should strive to avoid as many cache misses as possible.
That’s why it is very helpful to know the cache structure of your CPU.

While cache might be multiple kilo- or megabytes, the bytes are transferred
in much smaller quantities, each called a cache line. The size of a cache
line is typically just 64 bytes.

1 2

3 4

5 6

2

mjb – March 14, 2024

7

Computer Graphics

Successful use of the cache depends on Spatial Coherence:

“If you need one memory address’s contents now, then you will probably
also need the contents of some of the memory locations around it soon.”

Spatial and Temporal Coherence

If these assumptions are true, then you will generate a lot of cache hits.

If these assumptions are not true, then you will generate a lot of cache misses,
and you end up re-loading the cache a lot.

Successful use of the cache depends on Temporal Coherence:

“If you need one memory address’s contents now, then you will probably
also need its contents again soon.”

mjb – March 14, 2024

8

Computer Graphics

How Bad Is It? -- Demonstrating the Cache-Miss Problem

C and C++ store 2D arrays a row-at-a-time, like this, A[i][j]:

43210

98765

1413121110

1918171615

2423222120

For large arrays, would it be better to add the
elements by row, or by column? Which will avoid
the most cache misses?

[i]

[j]

float f = Array[i][j] ;

float f = Array[j][i] ;

Sequential memory order

Jump-around-in-memory order

sum = 0.;
for(int i = 0; i < NUM; i++)
{

for(int j = 0; j < NUM; j++)
{

float f = ???
sum += f;

}
}

mjb – March 14, 2024

9

Computer Graphics

Demonstrating the Cache-Miss Problem – Across Rows

#define NUM 10000
float Array[NUM][NUM];
double MyTimer();

int
main(int argc, char *argv[])
{

float sum = 0.;
double start = MyTimer();
for(int i = 0; i < NUM; i++)
{

for(int j = 0; j < NUM; j++)
{

sum += Array[i][j]; // access across a row
}

}
double finish = MyTimer();
double row_secs = finish – start;

mjb – March 14, 2024

10

Computer Graphics

Demonstrating the Cache-Miss Problem – Down Columns

float sum = 0.;
double start = MyTimer();
for(int i = 0; i < NUM; i++)
{

for(int j = 0; j < NUM; j++)
{

sum += Array[j][i]; // access down a column
}

}
double finish = MyTimer();
double col_secs = finish - start;

mjb – March 14, 2024

11

Computer Graphics

Demonstrating the Cache-Miss Problem

Time, in seconds, to compute the array sums, based
on by-row versus by-column order:

Dimension (NUM)
(Total array size = NUMxNUM)

T
im

e
 (

se
co

n
ds

)

mjb – March 14, 2024

12

Computer Graphics

Good Object-Oriented Programming Style can
sometimes be Inconsistent with Good Cache Use:

class xyz
{

public:
float x, y, z;
xyz *next;
xyz();
static xyz *Head = NULL;

};

xyz::xyz()
{

xyz * n = new xyz;
n->next = Head;
Head = n;

};

This is good OO style – it encapsulates and
isolates the data for this class. Once you have
created a linked list whose elements are all over
memory, is it the best use of the cache?

7 8

9 10

11 12

3

mjb – March 14, 2024

13

Computer Graphics

But, Here Is a Compromise:

It might be better to create a large array of xyz structures and then have the
constructor method pull new ones from that list. That would keep many of the
elements close together while preserving the flexibility of the linked list.

When you need more, allocate another large array and link to it.

mjb – March 14, 2024

14

Computer Graphics

#include <cstdio>
#define NUMALLOC 1024

struct node
{

float data;
bool canBeDeleted;
struct node *next;

};
struct node *Head = NULL;

struct node *
GetNewNode()
{

if(Head == NULL)
{

struct node *array = new struct node[NUMALLOC];
Head = &array[0];
for(int i = 0; i < NUMALLOC - 1; i++)
{

array[i].canBeDeleted = false;
array[i].next = &array[i+1];

}
array[NUMALLOC-1].next = NULL;

}
struct node *p = Head;
Head = Head->next;
return p;

}

void
DeleteNode(struct node *n)
{

n->canBeDeleted = true;
}

But, Here Is a Compromise:

Remember: in this scheme, you
cannot delete an individual node
because it was allocated as part of an
array. The best you can do is track
which nodes can be deleted and then
when all of an array’s nodes are
flagged, delete the whole array.

mjb – March 14, 2024

15

Computer Graphics

Why Can We Get This Kind of Performance
Decrease as Data Sets Get Larger?

We are violating Temporal Coherence

mjb – March 14, 2024

16

Computer Graphics

Array Size (M)

S
p

e
e

d
 (

M
e

g
aM

u
lts

/S
e

co
n

d
)

We Can Help the Temporal Problem with Pre-Fetching

We will cover this in further detail when we discuss SIMD

mjb – March 14, 2024

17

Computer Graphics

An Example of Where Cache Coherence Really Matters:
Matrix Multiply

The usual approach is multiplying the entire A row * entire B column
This is equivalent to computing a single dot product

*

Row i of A Column j of B Element (i,j) of C

A[i][k] B[k][j] C[i][j]*

*

Σ

i

j

i

j

Sum and store

for(k = 0; k < SIZE; k++)

for(j = 0; j < SIZE; j++)

for(i = 0; i < SIZE; i++)

Problem: Column j of the B matrix is not doing a unit stride

k
k

mjb – March 14, 2024

18

Computer Graphics

Scalable Universal Matrix Multiply Algorithm (SUMMA)
Entire A row * one element of B row
Equivalent to computing one item in many separate dot products

*

Row i of A Row k of B

A[i][k] B[k][j] C[i][j]*

k

j

for(j = 0; j < SIZE; j++) Add to

for(k = 0; k < SIZE; k++)

Element (i,j) of C

for(i = 0; i < SIZE; i++)

k
i i

j

An Example of Where Cache Coherence Really Matters:
Matrix Multiply

13 14

15 16

17 18

4

mjb – March 14, 2024

19

Computer Graphics

P
e

rf
o

rm
a

n
c

e
 v

s
.

M
a

tr
ix

 S
iz

e
 (

M
e

g
a

M
u

lt
ip

lie
s

/
S

e
c

)

mjb – March 14, 2024

20

Computer GraphicsP
e

rf
o

rm
a

n
c

e
 v

s
.

N
u

m
b

e
r

o
f

T
h

re
a

d
s

 (
M

e
g

a
M

u
lt

ip
lie

s
/ S

e
c

)

mjb – March 14, 2024

21

Computer Graphics

Cache Architectures

N-way Set Associative – a cache line from a particular block of
memory can appear in a limited number of places in cache.
Each “limited place” is called a set of cache lines. A set contains
N cache lines.

The memory block can appear in any cache line in its set.

Most Caches today are N-way Set Associative

N is typically 4 for L1 and 8 or 16 for L2

Set
0

Set
1

Set
2

Set
3

0

1

2

3

4

5

6

7

This would be called “2-way”

Cache line blocks in
memory (the numbers)
and what cache line set
they map to (the colors)

Sets of Cache Lines

64 bytes

Cache:

Memory:

mjb – March 14, 2024

22

Computer Graphics

Memory address
in bytes

Cache Line Block
in Memory

Offset in the Cache
Line

Cache Set #

Total #cache lines

÷ 64 modulo
#cache sets

÷ N-way #cache sets

Pick Least Recently
Used Cache Line in

that Cache Set

Cache Line #

8 2 4

% 4

Where to find a certain memory
address in the cache

Set
0

Set
1

Set
2

Set
3

0
1
2
3

4
5
6
7

How do you figure out where in cache a specific
memory address will live?

Cache:

Memory:

mjb – March 14, 2024

23

Computer Graphics

Memory address = 1234 bytes

Cache Line Block in Memory = 1234 / 64 =19

Cache Set # = 19 % 4 = 3

Offset in the Cache Line = 1234 – 19*64 = 18

Set
0

Set
1

Set
2

Set
3

It lives in one of
these 2 locations
in cache

16

17

18

19

20

21

22

23

A Specific Example with Numbers

Cache:
Memory:

Because there are 64 bytes in a cache line

Because there are 4 sets to rotate through

Because there are 18 bytes left after filling 19 complete cache lines

mjb – March 14, 2024

24

Computer Graphics

Each core has its own separate L2 cache, but a write by one can impact the
state of the others.

For example, if one core writes a value into one of its own cache lines, any
other core using a copy of that same cache line can no longer count on its
values being up-to-date. In order to regain that confidence, the core that
wrote must flush that cache line back to memory and the other core must
then reload its copy of that cache line.

To maintain this organization, each core’s L2 cache has 4 states (MESI):

1. Modified
2. Exclusive
3. Shared
4. Invalid

How Different Cores’ Cache Lines Keep Track of Each Other

19 20

21 22

23 24

5

mjb – March 14, 2024

25

Computer Graphics

A Simplified View of How MESI Works

1. Core A reads a value. Those values are
brought into its cache. That cache line is
now tagged Exclusive.

2. Core B reads a value from the same
area of memory. Those values are
brought into its cache, and now both
cache lines are re-tagged Shared.

3. If Core B writes into that value. Its cache
line is re-tagged Modified and Core A’s
cache line is re-tagged Invalid.

4. Core A tries to read a value from that same part of memory. But
its cache line is tagged Invalid. So, Core B’s cache line is
flushed back to memory and then Core A’s cache line is re-
loaded from memory. Both cache lines are now tagged Shared.

This is a huge performance hit, and is referred to as False Sharing

Cache Line BCache Line AStep

-----Exclusive1

SharedShared2

ModifiedInvalid3

SharedShared4

Note that False Sharing doesn’t create incorrect results – it just creates a performance hit.
If anything, False Sharing prevents getting incorrect results.

mjb – March 14, 2024

26

Computer Graphics

A:
SharedA:

Exclusive

A:
Modified

A:
Invalid

Core B
writes a
value into its
cache line

Start: Core A
reads a value
into its cache

Core B reads a value from this same area of
memory into its cache – the two cores’ cache
lines now point to the same area of memory

Core A then
writes a value
into its cache line

Core B writes a value into its
cache line that is the same
cache line as Core A is holding

Core A tries
reading a value
from its cache line
-- B’s cache line
now has to be
written back to
memory and A’s
cache line now has
to be reloaded

A Simplified View of How MESI Works – Core A’s State Diagram

Note: A’s cache line being labeled
Invalid doesn’t affect Core A at all
right now – not until Core A tries to
use that cache line the next time.

mjb – March 14, 2024

27

Computer Graphics

False Sharing – An Example Problem

struct s
{

float value;
} Array[4];

omp_set_num_threads(4);

#pragma omp parallel for
for(int i = 0; i < 4; i++)
{

for(int j = 0; j < SomeBigNumber; j++)
{

Array[i].value = Array[i].value + (float)rand();
}

}

Some unpredictable function so the compiler
doesn’t try to optimize the j-for-loop away.

One
cache
line

mjb – March 14, 2024

28

Computer Graphics

False Sharing – Fix #1
Adding some padding

#include <stdlib.h>
struct s
{

float value;
int pad[NUMPAD];

} Array[4];

const int SomeBigNumber = 100000000; // keep less than 2B

omp_set_num_threads(4);

#pragma omp parallel for
for(int i = 0; i < 4; i++)
{

for(int j = 0; j < SomeBigNumber; j++)
{

Array[i].value = Array[i].value + (float)rand();
}

}

This works because successive Array elements are forced onto
different cache lines, so less (or no) cache line conflicts exist

One
cache
line

} NUMPAD=3

mjb – March 14, 2024

29

Computer Graphics

False Sharing – Fix #1

NUMPAD

S
p

e
e

d
u

p

of
threads

Why do these curves look this way?
mjb – March 14, 2024

30

Computer Graphics

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

NUMPAD = 0

25 26

27 28

29 30

6

mjb – March 14, 2024

31

Computer Graphics

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

NUMPAD = 1

mjb – March 14, 2024

32

Computer Graphics

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

NUMPAD = 2

mjb – March 14, 2024

33

Computer Graphics

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

NUMPAD = 3

mjb – March 14, 2024

34

Computer Graphics

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

NUMPAD = 4

mjb – March 14, 2024

35

Computer Graphics

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

NUMPAD = 5

mjb – March 14, 2024

36

Computer Graphics

False Sharing – Fix #1

31 32

33 34

35 36

7

mjb – March 14, 2024

37

Computer Graphics

NUMPAD = 6

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

mjb – March 14, 2024

38

Computer Graphics

NUMPAD = 7

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

mjb – March 14, 2024

39

Computer Graphics

False Sharing – Fix #1

mjb – March 14, 2024

40

Computer Graphics

NUMPAD = 8

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

mjb – March 14, 2024

41

Computer Graphics

NUMPAD = 9

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

mjb – March 14, 2024

42

Computer Graphics

NUMPAD = 10

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

37 38

39 40

41 42

8

mjb – March 14, 2024

43

Computer Graphics

False Sharing – Fix #1

mjb – March 14, 2024

44

Computer Graphics

NUMPAD = 11

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

mjb – March 14, 2024

45

Computer Graphics

NUMPAD = 12

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

mjb – March 14, 2024

46

Computer Graphics

NUMPAD = 13

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

mjb – March 14, 2024

47

Computer Graphics

NUMPAD = 14

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

mjb – March 14, 2024

48

Computer Graphics

NUMPAD = 15

False Sharing – the Effect of Spreading Your Data to Multiple Cache Lines

43 44

45 46

47 48

9

mjb – March 14, 2024

49

Computer Graphics

False Sharing – Fix #1

mjb – March 14, 2024

50

Computer Graphics

Stack

Stack

Common
Program

Executable

Common
Globals

Common
Heap

False Sharing – Fix #2:
Using local (private) variables

OK, wasting memory to put your data
on different cache lines seems a little
silly (even though it works well). Can
we do something else?

Remember our discussion in the
OpenMP section about how stack
space is allocated for different threads?

If we use local variables, instead of
contiguous array locations, that will
spread our writes out in memory, and
to different cache lines.

mjb – March 14, 2024

51

Computer Graphics

Stack

Stack

Common
Program

Executable

Common
Globals

Common
Heap

False Sharing – Fix #2

#include <stdlib.h>
struct s
{

float value;
} Array[4];

omp_set_num_threads(4);

const int SomeBigNumber = 100000000;

#pragma omp parallel for
for(int i = 0; i < 4; i++)
{

float tmp = Array[i].value;
for(int j = 0; j < SomeBigNumber; j++)
{

tmp = tmp + (float)rand();
}
Array[i].value = tmp;

}

This works because a localized temporary variable is
created in each core’s stack area, so little or no cache
line conflict exists

Makes this a private
variable that lives in each
thread’s individual stack

mjb – March 14, 2024

52

Computer Graphics

False Sharing – Fix #2 vs. Fix #1

NUMPAD

S
p

e
e

d
u

p

of
threads

Fix #2 -- 4 Threads

Fix #2 -- 2 Threads

Fix #2 -- 1 Thread

Note that Fix #2 with {1, 2, 4} threads gives the same
performance as NUMPAD= {0,7,15}

mjb – March 14, 2024

53

Computer Graphics

malloc’ing on a cache line

What if you are malloc’ing, and want to be sure your data structure starts
on a cache line boundary?

Knowing that cache lines start on fixed 64-byte boundaries lets you do
this. Consider a memory address. The top N-6 bits tell you what cache
line number this address is a part of. The bottom 6 bits tell you what
offset that address has within that cache line. So, for example, on a 32-
bit memory system:

6 bits: 0-6332 - 6 = 26 bits

Cache line number Offset in that cache line

So, if you see a memory address whose bottom 6 bits are 000000, then you know
that that memory location begins on a cache line boundary.

For example 101010b = 42

mjb – March 14, 2024

54

Computer Graphics

malloc’ing on a cache line

struct xyzw *p = (struct xyzw *) malloc((ARRAYSIZE)*sizeof(struct xyzw));
struct xyzw *Array = &p[0];
. . .
Array[i].x = 10. ;

If you wanted to make sure that array of structures started on a cache line boundary, you would do this:

Let’s say that you have a structure and you want to malloc an ARRAYSIZE array of
them. Normally, you would do this:

unsigned char *p = (unsigned char *) malloc(64 + (ARRAYSIZE)*sizeof(struct xyzw));
unsigned int offset = (unsigned int)p & 0x3f; // 0x3f = bottom 6 bits are all 1’s
struct xyzw *Array;
If(offset == 0)

Array = p;
Else

Array = (struct xyzw *) &p[64-offset];
. . .
Array[i].x = 10. ;

Remember that when you want to free this malloc’ed space, be sure to say:

free(p);
not:

free(Array);

49 50

51 52

53 54

