Nvidia's Compute Unified Device Architecture (CUDA)

Oregon State
University
Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

Oregon State
University
Computer Graphics

cuda pptx mib — April 12, 2024
CIC++P ith both 2
H rogram wi o]
The CUDA Paradigm host and CUDA code in it

Fonioode |4® A oo

CUDA is an NVIDIA-only product. It . X

is very popular, and got the whole C/C++ Qompller CUDA Cpmpller
GPU-as-CPU ball rolling, which and Linker and Linker
has resulted in other packages like

OpenCL. CPU bi

CUDA also comes with several the Ei?{ on CUDA bma_ry ol
libraries that are highly optimized the Device

for applications such as linear

algebra and deep learning. 1. Run CPU code 2. Send data to|GPU

3. Run GPU kernel

4. Get data back from |GP!

(=

5. Run CPU cod
6. Send data to GPU
7. Run GPU kernel

8. Get data back from |GP

c

Oregon State
University D. Run CPU code
Computer Graphics

b — April 12, 2024

CUDA wants you to break the problem up into Pieces

void
ArrayMult(int n, float *a, float *b, float *c)
!f you were writing {
wﬂg;yyou for (inti=0; i<n; i++)
cl[i]=a[i]*b[il;
}
__global__
void
If you were writing in | ArrayMult(float *dA, float *dB, float *dC)
CUDA, you would say: {
int gid = blockldx.x*blockDim.x + threadldx.x;
dCl[gid] = dA[gid] * dBJ[gid];
} AN
gmg_ospm Think of this as having an implied for-loop around it,
University looping through all possible values of gid

Computer Graphics
mjb — April 12, 2024

Organization: Blocks are Arranged in Grids

* The GPU’s workload is divided into a Grid of Block
» Each Block’s workload is divided into a Grid of Threads

\
Grid \/

Block (0, 0) = Block (1,0) | Bloch (2,0)
Block (0, 1) kBIuck(1,1)’ %Im:k (E 1)

/ \\
/ i \ \
/ Block (1, 1) \ ¥

Grid of Threads

OregonState

University
Computer Graphics

mib - April 12, 2024

A Block is made up of a Grid of Threads
I / Block (1, 1) \

. The threads in a block each have Thread ID numbers
within the Block

. Your CUDA program will use these Thread IDs to select
work to do and pull the right data from memory

. Threads share data and synchronize while doing their share of the work

. Every 32 threads constitute a “Warp”. Each thread in a Warp simultaneously
executes the same instruction on different pieces of data.

. But, it is likely that a Warp’s execution will need to stop at some point, waiting for a
memory access. This would make the execution go idle — bad! So, it is worthwhile
to have multiple Warps worth of threads available so that when one Warp blocks,
another Warp can be swapped in.

. The threads in a Thread Block can cooperate with each other by:
— Synchronizing their execution
— Efficiently sharing data through a low latency shared memory

. Threads from different blocks cannot cooperate

UIIVET H.‘y
Computer Graphics
mjb — April 12, 2024

Scheduling

. The hardware implements low-overhead Warp switching

SM multithreaded — A Warp whose next instruction has operands

ready for consumption is eligible to be executed.

Warp scheduler

time — All threads in one Warp execute the same

warp 8 instruction 11 instruction at any given time, but on different data.

warp 1 instruction 42 - Thread_s in c_jlfferent_ Warps_wnl usually pe _
executing different instructions at any given time

warp 3 instruction 95

warp 8 instruction 12 This tells you that there needs to be a bunch of

Warps to work on so that something is always
warp 3 instruction 96 ready to run
v If you can help it, these should be multiples of 32.

Oregon State
University
Computer Graphics
mjb — April 12, 2024

. Each thread has access to:

Threads Can Access Various Types of Storage

— Its own R/W per-thread registers

— Its own R/W per-thread private memory

. Each thread has access to:
— The entire R/W per-grid global memory

Each thread has access to:
— lts block’s R/W per-block shared memory

— The entire read-only per-grid constant
memory
— The entire read-only per-grid texture
memory

. The CPU can read and write global and,
constant memories

Oregon State
University
Computer Graphics

Kernel

Global Memory

l Constant Memory |

| WorkGroup

| WorkGroup j

WorkGroup

| Shared Memory

Work- || Work- Work-
Item Iitem Item

Kiowal
Aeaug
“Kiowsiy
senud
Kiowapy
Aenud

]

mjb — April 12, 2024

il
Oregon State
University
Computer Graphics

Different Types of CUDA Memory

Memory Location Who Uses
Registers On-chip One thread
Private On-chip One thread
Shared On-chip All threads in that block
Global Off-chip All threads + Host
Constant Off-chip All threads + Host

mjb — April 12, 2024

Thread Rules

Each Thread has its own registers and private memory

Each Block can use at most some maximum number of registers, divided
equally among all Threads

» Threads can share local memory with the other Threads in the same Block
» Threads can synchronize with other Threads in the same Block
* Global and Constant memory is accessible by all Threads in all Blocks

* 192 or 256 are good numbers of Threads per Block (multiples of the Warp size)

\g-, .‘,i;’
OregonState
Universil
Computer Graphics

mib - April 12, 2024

A CUDA Thread can Query where it Fits in its “Community” 10
of Threads and Blocks

. dim3 gridDim;
— Dimensions of the blocks in this grid

+ dim3 blockIdx; =
— This block’s indexes within this grid — | 8lock(0,0) | Bloc(1,0) | Block (2, 0)

TR T

. dim3 blockDim; Block (0, 1)”7 Block (1,1) NBlock (2, 1)

— Dimensions of the threads in this block W W W

s, 7\
+ dim3 threadIdx; / \ N\
1

pd
— This thread’s indexes within th% r 7 Biock (1, 1) B

Note: It is as if dim3 is defined as:
typedef int[3] dim3;
(it's not really — it is actually defined within the CUDA compiler)

e
i

v

OregonState

University
Computer Graphics

mib - April 12, 2024

A CUDA Thread needs to know where it Lives in its “Community” 1

of Threads and Blocks

* dim3 gridDim;
— Dimensions of the blocks in this grid ‘

f 1

* dim3 blockIdx; Grid
— This block’s indexes within this grid Block (0.0) || Block(1,0) | Block (2,0)

S e

. dim3 blockDim; Block (0, 1/ Blosk (1, 1) Nlock (2. 1)
— Dimensions of the threads in this block !

+ dim3 threadIdx; Y,
— This thread’s indexes within the_block TRt 7

For a 1D problem:

int blockThreads = blockldx.x*blockDim .x;
int gid = blockThreads + threadldx.x;
Clgid] = Algid]"Blgid];

For a 2D problem:

int blockNum = blockldx.y*gridDim.x + blockldx.x; ———>

int blockThreads = blockNum*blockDim.x*blockDim.y; [TTTTETTTTTTTTTTTT]
int gid = blockThreads + threadldx.y*blockDim.x + threadldx.x;
Clgid] = Algid]*B[gid];

orTversIey g id
Computer Graphics
mjb — April 12, 2024

12
Types of CUDA Functions

Executed Only callable

on the: from the:
__device__ float DeviceFunc() GPU GPU
__global _ void KernelFunc() GPU Host
__host _ float HostFunc() Host Host

__global__ defines a kernel function — it must return void

e Note: “__ " is 2 underscore characters
;
OregonState

University
Computer Graphics

mib - April 12, 2024

13
The C/C++ Program Calls a CUDA Kernel using a Speciayntax

dim3 dim3 These are called “chevrons”

| |

KernelFunction<<< NumBiocks, NumThre;fisPerBlock >>>(arg1, arg2, ...) ;

Grid

Block (0, 0)

Block| (1,0 || Block (2, 0)
O
jetetereecte Sawsciaind
| Biock 0, 17 siock (1. 1) Naioek 2, 1)
S
|
L

/

host and CUDA code in it

ot |4# [comnee |

| CIC++ Program with both ‘

C/C++ Compiler CUDA Compiler
and Linker and Linker

Note that this is just like calling the C/C++ function:
KernelFunction(arg1, arg2, ...) ;

CPU binary on
the Host

fi. Run CPU code!

CUDA
the

2, Send data to GPU

binary on
Device

3. RunGPU kerpel

except that we have designated it to run on the GPU
with a particular block/thread configuration.

-

et data back from [GPU

it

6. Send data to GPU

5. RunCPU mug

aﬁ" 7. Run GPU kerhel
Oregon State b b 8. Got data back from (GPU
University 3

Computer Graphics
mjb — April 12, 2024

14
One of my own Experiments with Number of Threads Per Block

KernelFunction<<@@, @reads@k >>>(arg1, arg2, ...

);\

Performance

—8—128

—8— 256

Number of
Threads per Block

15000W ‘

0 2500000 5000000 7500000 10000000 12500000
T4 - Dataset Size
] NumBlocks = DataSetSize / NumThreadsPerBlock

Cohmprorer

mib - April 12, 2024

15
One of my own Experiments with Number of Threads Per Block

KernelFunction<@n@ ,@readsPerBloc >>>(arg1, arg2, ...) ; ‘

7000

—e— 1024
—8— 2048

*— 4096

5000 8192

—8— 16384
—8— 32768
—8— 065536

—8— 131072

Performance

—8— 262144

—8—524288

—8— 1048576
—8—2097152
—8— 4194304

8388608

& e Py 16777216
e
— a—1 °

64 96 128 ‘ 160 192 224 256

Number of Threads per Block
Oreg.n S}ale

7 ,/ Dataset Size
o| NurfiBlocks = DataSetSize /NumThruM

mjb — April 12, 2024

Getting CUDA Programs to Run under Linux 16
This is the Makefile we use:
CUDA_PATH = /usr/local/apps/cuda/cuda-10.1
CUDA_BIN_PATH = $(CUDA_PATH)/bin
CUDA_NVCC = $(CUDA_BIN_PATH)/nvcc
arrayMul: arrayMul.cu
$(CUDA_NVCC) -o arrayMul arrayMul.cu
This is the path where the CUDA tools are loaded on our Oregon
State University systems.
Or, without the Makefile syntax:
’ /usr/local/apps/cuda/cuda-10.1/bin/nvcc -0 arrayMul arrayMul.cu
(e We also have the CUDA-11 and CUDA-12 tools loaded for your
-&*.a: use. You can use them if you want. Bur, given the wide breadth
Oreg.nS!ale of different Nvidia cards around campus, CUDA-10 seems to be
c University the one that will run everywhere! | recommend you use it.
omputer Graphics

mjb — April 12, 2024

Getting CUDA Programs to Run under Visual Studio 17

1. Install Visual Studio if you haven’t already. If you are an OSU student, go to:

https://azureforeducation.microsoft.com/devtools

Click the blue Sign In button on the right.
Login using your ONID@oregonstate.edu username and password.
Install Visual Studio 2022 Enterprise

2. Install the CUDA toolkit for Windows. It is available here:

https://developer.nvidia.com/cuda-
downloads?target os=Windows&target arch=x86 648&target version=11&target type=exe local

GOy
T 4

OregonState
University
Computer Graphics
mjb — April 12, 2024

Getting CUDA Programs to Run under Visual Studio 18

From the main screen, click File — New — Project...

Kalura gl S
Capture Iit View Project Build__Debug Test Analyze Tools Extensions Win
q New Cul+ShiftsN fows Del
Open o cul+N
Connect to a codespace Project From Existing Code...
Clone Repository.

Bl B &

Start Window
Add to Source Control

Add

Close

]

Close Solution

Start Live Share Session

Join Live Share Session.

I save NotReal Ctrl+S
Save Selected Items As.

W Save Al Ctrl+Shift+S
Source Control >
Page Setup.

Print. Ctrl+P
Account Settings.

- Recent Files >

‘! Recent Projects and Solutions »
N l Exit Alt+F4
G

OregonState

0 rrors ||[4 0 Warnings || @ 0 Messages |[Xr]| Buid + intel

University
Computer Graphics
mjb — April 12, 2024

Getting CUDA Programs to Run under Visual Studio

Then, in this templates box, type: C{DA

19

Create a new project

Recent project templates

B Console App Cor

= [u}
All languages ~ Alllatforms ~ Al project types
(‘-j Empty Project
BN gtartfrom scratch with C-++ for Windows. Provides no starting fles
C++ Windows Console
.“ Console App
Run code in a Windows terminal. Prints *Hello World by default.
C++ Windows Console
m CMake Project
Build modern, cross-platform C++ apps that don't depend on .sin or .vexproj files.
Ces Windows Linux Console
2 Windows Desktop Wizard
Create your own Windows app using a wizard.
Cr+ Windows Desktop Console Library
&3 Windows Desktop Application
A project for an application with a graphical user interface that runs on Windows
Cr+ Windows Desktop
Back Next

Computer Graphics

mjb — April 12, 2024

Getting CUDA Programs to Run under Visual Studio

After a few seconds, you will then see this.

20

Click Next.

Create a new project

Recent project templates

B CuDA 11.3 Runtime Cos
B Console App Cor

Oreg
Uni

\ g

\ <B

Al platforms

Alllanguages All project types

8] CUDA 113 Runtime
A project that uses the CUDA 11.3 runtime

Cloud Console

C++ CUDA Windows Linux Datascience

Machine Learning

Desktop

Not finding what you're looking for?
Install more tools and features

Computer Gré’phics

mjb — April 12, 2024

10

Getting CUDA Programs to Run under Visual Studio 21

E‘ C-‘\ive the name you want for the folder and project

Qonfigure your new project

CUDR 11.3 Runtime Ce+ CUDA Windows Lmx Cloud Console DataScience Deskiop Machine Leaming

|
Location
C:\Users\Mike Bailey\source\repos \)

Solution name @

olu\on and project in the same directory
Click Create

ve this box checked.

Bach Create >

Universif
Computer Graphics
mib — April 12, 2024
Getting CUDA Programs to Run under Visual Studio 22
1. Visual Studio then “writes” a program for you. It has both CUDA and C++ code in it.

Its structure looks just like our notes’ examples.
You can click Build — Build to compile it, both the

@8 @ o-588 £

ion ‘NotReal (1 of 1 project)
'

+ adduithCuda(int *c,

% int %2, g€ int *b, unsigned int size);
const int *b)

.

12 c[i] = al[i] + b[i);

17 const int arr:
18 const 1int afa
const int b[

University
Computer Graphics
mjb — April 12, 2024

11

Getting CUDA Programs to Run under Visual Studio 23

Dq File Edit View Project CBuild>(Debu® Test Analyze Tools Extensions Window Help Search (Ctrl+Q)

b ‘ Bl i " Debug ~ x64 ~ P Local Windows Debugger ¥ | a ;
5
<)
2
<] %] NotReal = (Global Scope) =
i,
2 B#include "cuda_runtime.h"
3 #include "device_launch_parameters.h"
4
5 #include <stdio.h>
6
7 cudaError_t addWithCuda(int *c, const int *a, const int *b, unsigned int size);
8

9 =I__global__ void addKernel(int *c, const int @
10 {

1. int i = threadIdx.x;
12 c[i] = a[i] + b[i];
13 }
14
15
16
17 const int arraySize = 5;
18 const int a[arraySize] = { 1, 2, 3, 4, 5 };
19 const int b[arraySize] = { 10, 20, 30, 40, 50 };
20 int c[arraySize] = { 0 };
21
T mjb — April 12, 2024
Using CUDA and OpenMP Together 24

This is the Makefile we use on Linux:

CUDA_PATH = /usr/local/apps/cuda/cuda-10.1
CUDA_BIN_PATH = $(CUDA_PATH)/bin
CUDA_NVCC = $(CUDA_BIN_PATH)/nvcc

arrayMul: arrayMul.cu
$(CUDA_NVCC) -o arrayMul arrayMul.cu -Xcompiler -fopenmp

Or, on Linux, but without the Makefile syntax:

lusr/local/apps/cuda/cuda-10.1/bin/nvcc -0 arrayMul arrayMul.cu -Xcompiler -fopenmp

Or, in Visual Studio:

1. Go to the Project menu — Project Properties

2. Change the setting Configuration Properties — C/C++ — Language —
OpenMP Support to "Yes (/lopenmp)"

s We also have the CUDA-11 and CUDA-12 tools loaded for your
ke use. You can use them if you want. Bur, given the wide brea
I Y them if t. Bur, given the wide breadth
g.-egnsme of different Nvidia cards around campus, CUDA-10 seems to be
University the one that will run everywhere! | recommend you use it.
Computer Graphics

mjb — April 12, 2024

12

Using Multiple GPU Cards with CUDA

int deviceCount;
cudaGetDeviceCount(&deviceCount);

int device; /I 0 < device < deviceCount - 1
cudaSetDevice(device);

Oregon State
University
Computer Graphics

25

o

mjb — April 12, 2024

13

