
1

mjb – April 12, 2024
Computer Graphics

1

Nvidia's Compute Unified Device Architecture (CUDA)

Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons 
Attribution-NonCommercial-NoDerivatives 4.0 
International License

cuda.pptx mjb – April 12, 2024
Computer Graphics

2
The CUDA Paradigm C/C++ Program with both 

host and CUDA code in it

CUDA Compiler 
and Linker

CPU binary on 
the Host

CUDA binary on 
the Device

CUDA is an NVIDIA-only product. It 
is very popular, and got the whole 
GPU-as-CPU ball rolling, which 
has resulted in other packages like 
OpenCL.

CUDA also comes with several 
libraries that are highly optimized 
for applications such as linear 
algebra and deep learning.

C/C++ Compiler 
and Linker

Host code CUDA code

2. Send data to GPU
3. Run GPU kernel

1. Run CPU code

5. Run CPU code

9. Run CPU code

6. Send data to GPU
7. Run GPU kernel

4. Get data back from GPU

8. Get data back from GPU

mjb – April 12, 2024
Computer Graphics

3

void
ArrayMult( int n, float *a, float *b, float *c)
{

for ( int i = 0;  i < n;  i++ )
c[ i ] = a[ i ] * b[ i ];

}

__global__ 
void
ArrayMult( float *dA, float *dB, float *dC )
{

int gid = blockIdx.x*blockDim.x + threadIdx.x;
dC[gid] = dA[gid] * dB[gid];

}

CUDA wants you to break the problem up into Pieces

If you were writing 
in C/C++, you 
would say:

If you were writing in 
CUDA, you would say:

Think of this as having an implied for-loop around it, 
looping through all possible values of gid

mjb – April 12, 2024
Computer Graphics

4
Organization: Blocks are Arranged in Grids

• The GPU’s workload is divided into a Grid of Blocks
• Each Block’s workload is divided into a Grid of Threads

Grid of Blocks

Grid of Threads



2

mjb – April 12, 2024
Computer Graphics

5

• The threads in a block each have Thread ID numbers
within the Block

• Your CUDA program will use these Thread IDs to select
work to do and pull the right data from memory

• Threads share data and synchronize while doing their share of the work

• Every 32 threads constitute a “Warp”.  Each thread in a Warp simultaneously 
executes the same instruction on different pieces of data.

• But, it is likely that a Warp’s execution will need to stop at some point, waiting for a 
memory access.  This would make the execution go idle – bad!  So, it is worthwhile 
to have multiple Warps worth of threads available so that when one Warp blocks, 
another Warp can be swapped in.

• The threads in a Thread Block can cooperate with each other by:
– Synchronizing their execution
– Efficiently sharing data through a low latency shared memory

• Threads from different blocks cannot cooperate

A Block is made up of a Grid of Threads

mjb – April 12, 2024
Computer Graphics

6

• The hardware implements low-overhead Warp switching

– A Warp whose next instruction has operands 
ready for consumption is eligible to be executed.

– All threads in one Warp execute the same 
instruction at any given time, but on different data.

– Threads in different Warps will usually be 
executing different instructions at any given time 

warp 8 instruction 11

SM multithreaded
Warp scheduler

warp 1 instruction 42

warp 3 instruction 95

warp 8 instruction 12

...

time

warp 3 instruction 96

Scheduling

This tells you that there needs to be a bunch of 
Warps to work on so that something is always 
ready to run
If you can help it, these should be multiples of 32.

mjb – April 12, 2024
Computer Graphics

7
Threads Can Access Various Types of Storage

• Each thread has access to:

– Its own R/W per-thread registers

– Its own R/W per-thread private memory

• The CPU can read and write global and, 
constant memories

• Each thread has access to:

– Its block’s R/W per-block shared memory

• Each thread has access to:

– The entire R/W per-grid global memory

– The entire read-only per-grid constant 
memory

– The entire read-only per-grid texture 
memory

mjb – April 12, 2024
Computer Graphics

8

Memory Location Who Uses

Registers On-chip One thread

Private On-chip One thread

Shared On-chip All threads in that block

Global Off-chip All threads + Host

Constant Off-chip All threads + Host

Different Types of CUDA Memory



3

mjb – April 12, 2024
Computer Graphics

9
Thread Rules

• Each Thread has its own registers and private memory

• Each Block can use at most some maximum number of registers, divided 
equally among all Threads

• Threads can share local memory with the other Threads in the same Block

• Threads can synchronize with other Threads in the same Block

• Global and Constant memory is accessible by all Threads in all Blocks

• 192 or 256 are good numbers of Threads per Block (multiples of the Warp size)

mjb – April 12, 2024
Computer Graphics

10

• dim3 gridDim;

– Dimensions of the blocks in this grid

• dim3 blockIdx;

– This block’s indexes within this grid

• dim3 blockDim;

– Dimensions of the threads in this block

• dim3 threadIdx;

– This thread’s indexes within the block

A CUDA Thread can Query where it Fits in its “Community”
of Threads and Blocks

Note: It is as if dim3 is defined as:
typedef int[3]  dim3;

(it’s not really – it is actually defined within the CUDA compiler)

mjb – April 12, 2024
Computer Graphics

11A CUDA Thread needs to know where it Lives in its “Community”
of Threads and Blocks

For a 1D problem:
int blockThreads = blockIdx.x*blockDim.x;
int gid = blockThreads +  threadIdx.x;
C[gid] = A[gid]*B[gid];

For a 2D problem:
int blockNum = blockIdx.y*gridDim.x + blockIdx.x;
int blockThreads = blockNum*blockDim.x*blockDim.y;
int gid = blockThreads + threadIdx.y*blockDim.x + threadIdx.x;
C[gid] = A[gid]*B[gid];

gid
mjb – April 12, 2024

Computer Graphics

12

Executed 
on the:

Only callable 
from the:

__device__ float DeviceFunc() GPU GPU

__global__ void  KernelFunc() GPU Host

__host__ float HostFunc() Host Host

__global__ defines a kernel function – it must return void

Types of CUDA Functions

Note: “__” is 2 underscore characters



4

mjb – April 12, 2024
Computer Graphics

13
The C/C++ Program Calls a CUDA Kernel using a Special <<<…>>> Syntax

KernelFunction<<<  NumBlocks, NumThreadsPerBlock >>>( arg1, arg2, … ) ;

These are called “chevrons”dim3 dim3

Note that this is just like calling the C/C++ function:
KernelFunction( arg1, arg2, … ) ;

except that we have designated it to run on the GPU
with a particular block/thread configuration.

mjb – April 12, 2024
Computer Graphics

14

KernelFunction<<<  NumBlocks ,  NumThreadsPerBlock >>>( arg1, arg2, … ) ;

One of my own Experiments with Number of Threads Per Block

P
er

fo
rm

a
n

ce

Dataset Size

Number of 
Threads per Block

NumBlocks = DataSetSize / NumThreadsPerBlock

mjb – April 12, 2024
Computer Graphics

15

KernelFunction<<<  NumBlocks ,  NumThreadsPerBlock >>>( arg1, arg2, … ) ;

One of my own Experiments with Number of Threads Per Block

P
er

fo
rm

a
n

ce

Dataset Size

Number of Threads per Block

NumBlocks = DataSetSize / NumThreadsPerBlock
mjb – April 12, 2024

Computer Graphics

16

CUDA_PATH           =       /usr/local/apps/cuda/cuda-10.1
CUDA_BIN_PATH   =       $(CUDA_PATH)/bin
CUDA_NVCC          =       $(CUDA_BIN_PATH)/nvcc

arrayMul:       arrayMul.cu
$(CUDA_NVCC) -o arrayMul arrayMul.cu

This is the path where the CUDA tools are loaded on our Oregon 
State University systems.

Getting CUDA Programs to Run under Linux

/usr/local/apps/cuda/cuda-10.1/bin/nvcc -o   arrayMul arrayMul.cu

This is the Makefile we use:

Or, without the Makefile syntax:

We also have the CUDA-11 and CUDA-12 tools loaded for your 
use.  You can use them if you want.  Bur, given the wide breadth 
of different Nvidia cards around campus, CUDA-10 seems to be 
the one that will run everywhere!  I recommend you use it.



5

mjb – April 12, 2024
Computer Graphics

17

1. Install Visual Studio if you haven’t already.  If you are an OSU student, go to:

https://azureforeducation.microsoft.com/devtools

Click the blue Sign In button on the right.
Login using your ONID@oregonstate.edu username and password.
Install Visual Studio 2022 Enterprise

2. Install the CUDA toolkit for Windows.  It is available here:

https://developer.nvidia.com/cuda-
downloads?target_os=Windows&target_arch=x86_64&target_version=11&target_type=exe_local

Getting CUDA Programs to Run under Visual Studio

mjb – April 12, 2024
Computer Graphics

18Getting CUDA Programs to Run under Visual Studio

From the main screen, click  File → New → Project…

mjb – April 12, 2024
Computer Graphics

19

Then, in this templates box, type:   CUDA

Getting CUDA Programs to Run under Visual Studio

mjb – April 12, 2024
Computer Graphics

20

After a few seconds, you will then see this.                                        Click Next.

Getting CUDA Programs to Run under Visual Studio



6

mjb – April 12, 2024
Computer Graphics

21

1.   Navigate to the folder you want to contain this project folder.

2.   Give the name you want for the folder and project

3.   Leave this box checked.

Getting CUDA Programs to Run under Visual Studio

4.   Click Create

mjb – April 12, 2024
Computer Graphics

22

1. Visual Studio then “writes” a program for you.  It has both CUDA and C++ code in it.    
Its structure looks just like our notes’ examples.

2. You can click Build → Build to compile it, both the C++ and the CUDA code.
3. You can click Debug → Start Without Debugging to run it.
4. You can then either modify this file, or clear it and paste your own code in.

Getting CUDA Programs to Run under Visual Studio

mjb – April 12, 2024
Computer Graphics

23Getting CUDA Programs to Run under Visual Studio

mjb – April 12, 2024
Computer Graphics

24Using CUDA and OpenMP Together

CUDA_PATH           =       /usr/local/apps/cuda/cuda-10.1
CUDA_BIN_PATH   =       $(CUDA_PATH)/bin
CUDA_NVCC          =       $(CUDA_BIN_PATH)/nvcc

arrayMul:       arrayMul.cu
$(CUDA_NVCC) -o arrayMul arrayMul.cu -Xcompiler -fopenmp

/usr/local/apps/cuda/cuda-10.1/bin/nvcc -o   arrayMul arrayMul.cu  -Xcompiler -fopenmp

This is the Makefile we use on Linux:

Or, on Linux, but without the Makefile syntax:

1. Go to the Project menu → Project Properties

2. Change the setting Configuration Properties → C/C++ → Language →
OpenMP Support to "Yes (/openmp)"

Or, in Visual Studio:

We also have the CUDA-11 and CUDA-12 tools loaded for your 
use.  You can use them if you want.  Bur, given the wide breadth 
of different Nvidia cards around campus, CUDA-10 seems to be 
the one that will run everywhere!  I recommend you use it.



7

mjb – April 12, 2024
Computer Graphics

25
Using Multiple GPU Cards with CUDA

int deviceCount;
cudaGetDeviceCount(  &deviceCount );

. . .

int device; // 0  ≤  device  ≤  deviceCount - 1
cudaSetDevice( device );


