
1

mjb – March 14, 2024

1

Computer Graphics

Data Decomposition

Data_decomposition.pptx

Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

2

2
()

T T
C k

t x

mjb – March 14, 2024

2

Computer Graphics

Multicore Block Data Decomposition:
1D Heat Transfer Example

2

2
()

T T
C k

t x

You have a steel bar. Each section of the bar starts out at a different temperature.
There are no incoming heat sources or outgoing heat sinks (i.e., ignore boundary
conditions). Ready, go! How do the temperatures change over time?

The fundamental differential equation here is:

where:
ρ is the density in kg/m3

C is the specific heat capacity measured in Joules / (kg ∙ °K)
k is the coefficient of thermal conductivity measured in Watts / (meter ∙ °K)

= units of Joules/(meter∙ sec ∙ °K)

In plain words, this all means that "temperatures, left to themselves, try to even out".
(Duh.) Hots get cooler. Cools get hotter. The greater the temperature differential,
the faster the evening-out process goes.

mjb – March 14, 2024

3

Computer Graphics

Numerical Methods:
Changing a Derivative into Discrete Arithmetic

𝜕𝑇

𝜕𝑡
=
𝑇௧ା௧ − 𝑇௧

Δ𝑡

𝜕ଶ𝑇

𝜕𝑥ଶ
=
𝑇ିଵ − 2𝑇 + 𝑇ାଵ

(∆𝑥)ଶ

i

Ti Ti+1Ti-1

How much the
temperature changes
over time

How fast the
temperature is
changing within the bar

mjb – March 14, 2024

4

Computer Graphics

2

2
()

T T
C k

t x

2

2
()

T k T

t C x

1 1
2

2i i i
i

T T Tk
T t

C x

i

As a side note: the quantity k/(ρC) has the unlikely units of m2/sec!

Multicore Block Data Decomposition:
1D Heat Transfer Example

Ti Ti+1Ti-1

How much the temperature
changes in the time step

Physical properties of the material How fast the temperature is
changing within the bar

1 2

3 4

2

mjb – March 14, 2024

5

Computer Graphics

1D Data Decomposition: Partitioning Strategies

Core #0 Core #1 Core #2 Core #3

Ti Ti+1Ti-1

On a shared memory multicore system, the obvious approach is to allocate the data
as one large global-memory block (i.e., shared).

You actually need two such arrays, one to hold the current temperature values that
you are reading from and one to hold the next temperature values that you are
writing to.

mjb – March 14, 2024

6

Computer Graphics

#include <stdio.h>
#include <math.h>
#include <omp.h>
#define NUM_TIME_STEPS 100

#ifndef NUMN
#define NUMN 1024 // total number of nodes
#endif

#ifndef NUMT
#define NUMT 4 // number of threads to use
#endif

#define NUM_NODES_PER_THREAD (NUMN / NUMT)

float Temps[2][NUMN];

int Now; // which array is the "current values“= 0 or 1
int Next; // which array is being filled = 1 or 0

void DoAllWork(int);

1D Data Decomposition: Partitioning

mjb – March 14, 2024

7

Computer Graphics

Core #0 Core #1 Core #2 Core #3

Ti Ti+1Ti-1

Allocate as One Large Continuous Global Array

omp_set_num_threads(NUMT);
Now = 0;
Next = 1;

for(int i = 0; i < NUMN; i++)
Temps[Now][i] = 0.;

Temps[Now][NUMN/2] = 100.;

double time0 = omp_get_wtime();

#pragma omp parallel default(none) shared(Temps,Now,Next)
{

int me = omp_get_thread_num();
DoAllWork(me); // each thread calls this

}

double time1 = omp_get_wtime();
double usecs = 1000000. * (time1 - time0);
double megaNodesPerSecond = (float)NUM_TIME_STEPS * (float)NUMN / usecs;

mjb – March 14, 2024

8

Computer Graphics

void
DoAllWork(int me)
{

// what range of the global Temps array this thread is responsible for:
int first = me * NUM_NODES_PER_THREAD;
int last = first + (NUM_NODES_PER_THREAD - 1);
for(int step = 0; step < NUM_TIME_STEPS; step++)
{

// first element on the left:
{

float left = 0.;
if(me != 0)

left = Temps[Now][first-1];

float dtemp = ((K / (RHO*C)) *
(left - 2.*Temps[Now][first] + Temps[Now][first+1]) / (DELTA*DELTA)) * DT;

Temps[Next][first] = Temps[Now][first] + dtemp;
}

// all the nodes in between:
for(int i = first+1; i <= last-1; i++)
{

float dtemp = ((K / (RHO*C)) *
(Temps[Now][i-1] - 2.*Temps[Now][i] + Temps[Now][i+1]) / (DELTA*DELTA)) * DT;

Temps[Next][i] = Temps[Now][i] + dtemp;
}

What happens if two cores are
writing to the same cache line?
False Sharing!

DoAllWork(), I

5 6

7 8

3

mjb – March 14, 2024

9

Computer Graphics

// last element on the right:
{

float right = 0.;
if(me != NUMT-1)

right = Temps[Now][last+1];
float dtemp = ((K / (RHO*C)) *

(Temps[Now][last-1] - 2.*Temps[Now][last] + right) / (DELTA*DELTA)) * DT;
Temps[Next][last] = Temps[Now][last] + dtemp;

}

// all threads need to wait here so that all Temps[Next][*] values are filled:
#pragma omp barrier

// want just one thread swapping the definitions of Now and Next:
#pragma omp single
{

Now = Next;
Next = 1 - Next;

} // implied barrier exists here:

} // for(int step = …
}

What happens if two
cores are writing to the
same cache line?
False Sharing!

Because each core is working from left to right across the data, I am
guessing that there is little cache line conflict.

DoAllWork(), II

mjb – March 14, 2024

10

Computer Graphics

Performance as a Function of Number of Nodes

M
eg

aN
od

es
C

om
pu

te
d

P
er

 S
ec

on
d

of Nodes to Compute # of Threads

Note that the optimal number of
threads is not 1, not 20, but 6.
Having an unexpected "sweet
spot" is not unusual.

mjb – March 14, 2024

11

Computer Graphics

Performance as a Function of Number of Threads

M
eg

aN
od

es
C

om
pu

te
d

P
er

 S
ec

on
d

of Threads
of Nodes

mjb – March 14, 2024

12

Computer Graphics

Wait! Why is Peak Performance Happening at 6 Threads, not 1 or 20?

This shows that, for this particular problem, there is a "sweet spot" at 6 threads.
The logic behind this goes something like this:

• If I am not utilizing enough cores, then I am not bringing enough compute
power to bear.

• If I am utilizing too many cores, then each core doesn't have enough to do
and too much time is being spent getting values from the memory that another
core is computing with.

This is known as Compute-to-Communicate Ratio issue.
This is coming up soon in another noteset.

9 10

11 12

4

mjb – March 14, 2024

13

Computer Graphics

2D Heat Transfer Equation

2 2

2 2
()

T T T
C k

t x y

2 2

2 2
()

T k T T

t C x y

1, , 1, , 1 , , 1

, 2 2

2 2i j i j i j i j i j i j
i j

T T T T T Tk
T t

C x y

i

j

mjb – March 14, 2024

14

Computer Graphics

3D Heat Transfer Equation

2 2 2

2 2 2
()

T T T T
C k

t x y z

2 2 2

2 2 2
()

T k T T T

t C x y z

1, , , , 1, , , 1, , , , 1, , , 1 , , , , 1

, , 2 2 2

2 2 2i j k i j k i j k i j k i j k i j k i j k i j k i j k
i j k

T T T T T T T T Tk
T t

C x y z

j

i

k

13 14

