The OSU College of Engineering DGX System for Advanced GPU Computing

Mike Bailey
mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
OSU’s College of Engineering has six Nvidia DGX-2 systems

Each DGX server:
• Has 16 NVidia Tesla V100 GPUs
• Has 28TB of disk, all SSD
• Has two 24-core Intel Xeon 8168 Platinum 2.7GHz CPUs
• Has 1.5TB of DDR4-2666 System Memory
• Runs the CentOS 7 Linux operating system

Overall compute power:
• Each V100 NVidia Tesla card has 5,120 CUDA Cores and 640 Tensor Cores
• This gives each 16-V100 DGX server a total of 81,920 CUDA cores and 10,240 Tensor cores
• This gives the entire 6-DGX package a total of 491,520 CUDA Cores and 61,440 Tensor Cores
BTW, you can also use the *rabbit* machine:

```
ssh rabbit.engr.oregonstate.edu
```

It is a good place to write your code and get it to compile. It is *not* a good place to do the final run of your code.
How to SSH to the DGX Systems

`flip3 151% ssh submit-c.hpc.engr.oregonstate.edu`

`submit-c 142% module load slurm`

`ssh` over to a DGX submission machine -- `submit-a` and `submit-b` will also work

Type this right away to set your path correctly
How to Check on the DGX Systems

Submit-C 143% Squeue

<table>
<thead>
<tr>
<th>JOBID</th>
<th>PARTITION</th>
<th>NAME</th>
<th>USER</th>
<th>ST</th>
<th>TIME</th>
<th>NODES</th>
<th>NODELIST (REASON)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3923</td>
<td>mime4</td>
<td>c_only</td>
<td>jayasurw</td>
<td>R</td>
<td>1-10:32:19</td>
<td>1</td>
<td>compute-e-1</td>
</tr>
<tr>
<td>3963</td>
<td>mime4</td>
<td>2Dex</td>
<td>jayasurw</td>
<td>R</td>
<td>16:21:03</td>
<td>1</td>
<td>compute-e-2</td>
</tr>
<tr>
<td>3876</td>
<td>share</td>
<td>CH3COOH_</td>
<td>chukwuk</td>
<td>R</td>
<td>1-23:36:45</td>
<td>1</td>
<td>compute-2-6</td>
</tr>
<tr>
<td>3971</td>
<td>nerhp</td>
<td>tcsh</td>
<td>dionnec</td>
<td>R</td>
<td>8:59:45</td>
<td>1</td>
<td>compute-h-8</td>
</tr>
<tr>
<td>3881</td>
<td>dgx2</td>
<td>bash</td>
<td>heli</td>
<td>R</td>
<td>1-22:50:44</td>
<td>1</td>
<td>compute-dgx2-1</td>
</tr>
<tr>
<td>3965</td>
<td>dgx2</td>
<td>bash</td>
<td>chenju3</td>
<td>R</td>
<td>13:47:36</td>
<td>1</td>
<td>compute-dgx2-4</td>
</tr>
<tr>
<td>3645</td>
<td>dgx2</td>
<td>bash</td>
<td>mishrash</td>
<td>R</td>
<td>5-16:48:09</td>
<td>1</td>
<td>compute-dgx2-5</td>
</tr>
<tr>
<td>3585</td>
<td>dgx2</td>
<td>bash</td>
<td>azieren</td>
<td>R</td>
<td>6-17:34:00</td>
<td>1</td>
<td>compute-dgx2-3</td>
</tr>
<tr>
<td>3583</td>
<td>dgx2</td>
<td>bash</td>
<td>azieren</td>
<td>R</td>
<td>6-18:26:44</td>
<td>1</td>
<td>compute-dgx2-3</td>
</tr>
</tbody>
</table>

Submit-C 144% Sinfo

<table>
<thead>
<tr>
<th>PARTITION</th>
<th>AVAIL</th>
<th>TIMELIMIT</th>
<th>NODES</th>
<th>STATE</th>
<th>Nodelist</th>
</tr>
</thead>
<tbody>
<tr>
<td>share*</td>
<td>up</td>
<td>7-00:00:00</td>
<td>2</td>
<td>drain</td>
<td>compute-4-[3-4]</td>
</tr>
<tr>
<td>share*</td>
<td>up</td>
<td>7-00:00:00</td>
<td>1</td>
<td>mix</td>
<td>compute-2-6</td>
</tr>
<tr>
<td>sharegpu</td>
<td>up</td>
<td>7-00:00:00</td>
<td>3</td>
<td>idle</td>
<td>compute-dgxs-[2-3],compute-gpu</td>
</tr>
<tr>
<td>dgx2</td>
<td>up</td>
<td>7-00:00:00</td>
<td>1</td>
<td>drain</td>
<td>compute-dgx2-2</td>
</tr>
<tr>
<td>dgx2</td>
<td>up</td>
<td>7-00:00:00</td>
<td>5</td>
<td>mix</td>
<td>compute-dgx2-[1,3-6]</td>
</tr>
<tr>
<td>gpu</td>
<td>up</td>
<td>7-00:00:00</td>
<td>2</td>
<td>mix</td>
<td>compute-gpu[3-4]</td>
</tr>
<tr>
<td>gpu</td>
<td>up</td>
<td>7-00:00:00</td>
<td>1</td>
<td>idle</td>
<td>compute-gpu2</td>
</tr>
<tr>
<td>gpu</td>
<td>up</td>
<td>7-00:00:00</td>
<td>1</td>
<td>down</td>
<td>compute-gpu1</td>
</tr>
<tr>
<td>dgx</td>
<td>up</td>
<td>7-00:00:00</td>
<td>3</td>
<td>mix</td>
<td>compute-dgx2-[4-6]</td>
</tr>
<tr>
<td>dgxs</td>
<td>up</td>
<td>7-00:00:00</td>
<td>1</td>
<td>mix</td>
<td>compute-dgxs-1</td>
</tr>
<tr>
<td>dgxs</td>
<td>up</td>
<td>7-00:00:00</td>
<td>2</td>
<td>idle</td>
<td>compute-dgxs-[2-3]</td>
</tr>
<tr>
<td>class</td>
<td>up</td>
<td>1:00:00</td>
<td>1</td>
<td>mix</td>
<td>compute-dgxs-1</td>
</tr>
<tr>
<td>class</td>
<td>up</td>
<td>1:00:00</td>
<td>2</td>
<td>idle</td>
<td>compute-dgxs-[2-3]</td>
</tr>
<tr>
<td>eecs</td>
<td>up</td>
<td>7-00:00:00</td>
<td>1</td>
<td>mix</td>
<td>compute-2-6</td>
</tr>
</tbody>
</table>

System Information

Check on the Queues

Your partitions

Oregon State University
Computer Graphics
Submitting a CUDA job to the DGX Systems using Slurm

submit.bash:

```bash
#!/bin/bash
#SBATCH  -J  ArrayMul
#SBATCH  -A  cs475-575
#SBATCH  -p  class
#SBATCH --constraint=v100
#SBATCH --gres=gpu:1
#SBATCH  -o  arraymul.out
#SBATCH  -e  arraymul.err
#SBATCH  --mail-type=BEGIN,END,FAIL
#SBATCH  --mail-user=joeparallel@oregonstate.edu
/usr/local/apps/cuda/cuda-10.1/bin/nvcc -o arrayMul arrayMul.cu
./arrayMul
```

Submit the job described in your shell file

Check the output
(I like sending my output to standard error, not standard output)
Auto-Notifications via Email

#SBATCH --mail-user=joeparallel@oregonstate.edu

You don’t have to do this, but if you do, please be sure you get your own email address right!

Our IT people are getting real tired of fielding the bounced emails when people spell their own email address wrong.
What Showed up in my Email (which I spelled correctly)

<table>
<thead>
<tr>
<th>From</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slurm workload manager</td>
<td>Slurm Job_id=3980 Name=MatrixMul Ended, Run time 00:00:12, COMPLETED, ExitCode 0</td>
</tr>
<tr>
<td>Slurm workload manager</td>
<td>Slurm Job_id=3980 Name=MatrixMul Began, Queued time 00:00:01</td>
</tr>
</tbody>
</table>
Submitting a Loop

submitloop.bash:

#!/bin/bash
#SBATCH -J ArrayMul
#SBATCH -A cs475-575
#SBATCH -p class
#SBATCH --constraint=v100
#SBATCH --gres=gpu:1
#SBATCH -o arraymul.out
#SBATCH -e arraymul.err
#SBATCH --mail-type=BEGIN,END,FAIL
#SBATCH --mail-user=joeparallel@oregonstate.edu

for t in 1 2 4 8 16 32
do
 /usr/local/apps/cuda/cuda-10.1/bin/nvcc -DNUMT=$t -o arrayMul arrayMul.cu
 ./arrayMul
done

submit-c 153% sbatch submitloop.bash
Submitted batch job 475

submit-c 154% tail -f arraymul.err

These 5 lines are actual bash code

Displays the latest output added to arraymul.err
Keeps doing it forever.

Control-c to get out of it.
Use slurm’s `scancel` if your Job Needs to Be Killed

```
submit-c 163% sbatch submitloop.bash
Submitted batch job 476

submit-c 164% scancel 476
```
Submitting an OpenCL job to the DGX System using Slurm

submit.bash:

#!/bin/bash
#SBATCH -J PrintInfo
#SBATCH -A cs475-575
#SBATCH -p class
#SBATCH --constraint=v100
#SBATCH --gres=gpu:1
#SBATCH -o printinfo.out
#SBATCH -e printinfo.err
#SBATCH --mail-type=BEGIN,END,FAIL
#SBATCH --mail-user=joeparallel@oregonstate.edu

{g++ -o printinfo printinfo.cpp /usr/local/apps/cuda/cuda-10.1/lib64/libOpenCL.so.1.1 -lm -fopenmp}

./printinfo
Here’s what printinfo got on one graphics card on the DGX System

Number of Platforms = 1
Platform #0:
 Name = 'NVIDIA CUDA'
 Vendor = 'NVIDIA Corporation'
 Version = OpenCL 1.2 CUDA 11.2.153'
 Profile = 'FULL_PROFILE'
 Number of Devices = 1
Device #0:
 Type = 0x0004 = CL_DEVICE_TYPE_GPU
 Device Vendor ID = 0x10de (NVIDIA)
 Device Maximum Compute Units = 80
 Device Maximum Work Item Dimensions = 3
 Device Maximum Work Item Sizes = 1024 x 1024 x 64
 Device Maximum Work Group Size = 1024
 Device Maximum Clock Frequency = 1530 MHz

Device Extensions:
 cl_khr_global_int32_base_atomics
 cl_khr_global_int32_extended_atomics
 cl_khr_local_int32_base_atomics
 cl_khr_local_int32_extended_atomics
 cl_khr_fp64
 cl_khr_byte_addressable_store
 cl_khr_icd
 cl_khr_gl_sharing
 cl_nv_compiler_options
 cl_nv_device_attribute_query
 cl_nv pragma unroll
 cl_nv_copy_opts
 cl_nv_create_buffer

For reference, rabbit’s graphics card has 15 Compute Units