The OSU College of Engineering DGX System
for Advanced GPU Computing

OSU’s College of Engineering has six Nvidia DGX-2 systems

Each DGX server:
- Has 16 Nvidia Tesla V100 GPUs
- Has 28TB of disk, all SSD
- Has two 24-core Intel Xeon 8168 Platinum 2.7GHz CPUs
- Has 1.5TB of DDR4-2666 System Memory
- Runs the CentOS 7 Linux operating system

Overall compute power:
- Each V100 Nvidia Tesla card has 5,120 CUDA Cores and 640 Tensor Cores
- This gives each 16-V100 DGX server a total of 81,920 CUDA cores and 10,240 Tensor cores
- This gives the entire 6-DGX package a total of 491,520 CUDA Cores and 61,440 Tensor Cores
Performance Comparison with one of our other Systems

DGX2 vs. Rabbit for Monte Carlo Calculations

BTW, you can also use the rabbit machine:

```
ssh rabbit.engr.oregonstate.edu
```

It is a good place to write your code and get it to compile. It is *not* a good place to do the final run of your code.

How to SSH to the DGX Systems

```
flip3 151%  ssh  submit-c.hpc.engr.oregonstate.edu
```

```
submit-c 142%  module  load  slurm
```

Type this right away to set your path correctly.
How to Check on the DGX Systems

submit-c 143% squeue

<table>
<thead>
<tr>
<th>JOBID</th>
<th>PARTITION</th>
<th>NAME</th>
<th>USER</th>
<th>ST</th>
<th>TIME</th>
<th>NODES</th>
<th>NODELIST (REASON)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3923</td>
<td>mime4</td>
<td>c_only</td>
<td>jayasurw</td>
<td>R</td>
<td>1-10:32:19</td>
<td>1</td>
<td>compute-e-1</td>
</tr>
<tr>
<td>3963</td>
<td>mime4</td>
<td>2Dex</td>
<td>jayasurw</td>
<td>R</td>
<td>16:21:03</td>
<td>1</td>
<td>compute-e-2</td>
</tr>
<tr>
<td>3876</td>
<td>share</td>
<td>CH3COOH_</td>
<td>chukwuk</td>
<td>R</td>
<td>1-23:36:45</td>
<td>1</td>
<td>compute-2-6</td>
</tr>
<tr>
<td>3971</td>
<td>sshp</td>
<td>tcah</td>
<td>dionne</td>
<td>R</td>
<td>8:59:45</td>
<td>1</td>
<td>compute-b-8</td>
</tr>
<tr>
<td>3881</td>
<td>dgx2</td>
<td>bash</td>
<td>heli</td>
<td>R</td>
<td>1-22:50:44</td>
<td>1</td>
<td>compute-dgx2-1</td>
</tr>
<tr>
<td>3965</td>
<td>dgx2</td>
<td>bash</td>
<td>chenju3</td>
<td>R</td>
<td>13:47:36</td>
<td>1</td>
<td>compute-dgx2-4</td>
</tr>
<tr>
<td>3645</td>
<td>dgx2</td>
<td>bash</td>
<td>mish rash</td>
<td>R</td>
<td>5-16:48:09</td>
<td>1</td>
<td>compute-dgx2-5</td>
</tr>
<tr>
<td>3585</td>
<td>dgx2</td>
<td>bash</td>
<td>azieren</td>
<td>R</td>
<td>6-17:34:00</td>
<td>1</td>
<td>compute-dgx2-3</td>
</tr>
<tr>
<td>3583</td>
<td>dgx2</td>
<td>bash</td>
<td>azieren</td>
<td>R</td>
<td>6-18:26:44</td>
<td>1</td>
<td>compute-dgx2-3</td>
</tr>
</tbody>
</table>

submit-c 144% sinfo

<table>
<thead>
<tr>
<th>PARTITION</th>
<th>AVAIL</th>
<th>TIMELIMIT</th>
<th>NODES</th>
<th>STATE</th>
<th>NODELIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>share*</td>
<td>up</td>
<td>7-00:00:00</td>
<td>2</td>
<td>drain</td>
<td>compute-4-[3-4]</td>
</tr>
<tr>
<td>share*</td>
<td>up</td>
<td>7-00:00:00</td>
<td>1</td>
<td>mix</td>
<td>compute-2-6</td>
</tr>
<tr>
<td>sharegpu</td>
<td>up</td>
<td>7-00:00:00</td>
<td>1</td>
<td>mix</td>
<td>compute-dgx2-1</td>
</tr>
<tr>
<td>sharegpu</td>
<td>up</td>
<td>7-00:00:00</td>
<td>3</td>
<td>idle</td>
<td>compute-dgx2-[2-3],compute-gpu</td>
</tr>
<tr>
<td>dpg2</td>
<td>up</td>
<td>7-00:00:00</td>
<td>1</td>
<td>drain</td>
<td>compute-dgx2-2</td>
</tr>
<tr>
<td>dpg2</td>
<td>up</td>
<td>7-00:00:00</td>
<td>5</td>
<td>mix</td>
<td>compute-dgx2-[1,3-6]</td>
</tr>
<tr>
<td>gpu</td>
<td>up</td>
<td>7-00:00:00</td>
<td>2</td>
<td>mix</td>
<td>compute-gpu[3-4]</td>
</tr>
<tr>
<td>gpu</td>
<td>up</td>
<td>7-00:00:00</td>
<td>1</td>
<td>idle</td>
<td>compute-gpu2</td>
</tr>
<tr>
<td>gpu</td>
<td>up</td>
<td>7-00:00:00</td>
<td>1</td>
<td>down</td>
<td>compute-gpu1</td>
</tr>
<tr>
<td>dpgx</td>
<td>up</td>
<td>7-00:00:00</td>
<td>3</td>
<td>mix</td>
<td>compute-dgx2-[4-6]</td>
</tr>
<tr>
<td>dpgx</td>
<td>up</td>
<td>7-00:00:00</td>
<td>1</td>
<td>mix</td>
<td>compute-dgx2-1</td>
</tr>
<tr>
<td>dpgx</td>
<td>up</td>
<td>7-00:00:00</td>
<td>2</td>
<td>idle</td>
<td>compute-dgx2-[2-3]</td>
</tr>
<tr>
<td>class</td>
<td>up</td>
<td>1:00:00</td>
<td>1</td>
<td>mix</td>
<td>compute-dgx2-1</td>
</tr>
<tr>
<td>class</td>
<td>up</td>
<td>1:00:00</td>
<td>2</td>
<td>idle</td>
<td>compute-dgx2-[2-3]</td>
</tr>
<tr>
<td>eecs</td>
<td>up</td>
<td>7-00:00:00</td>
<td>1</td>
<td>mix</td>
<td>compute-2-6</td>
</tr>
</tbody>
</table>

System Information

Create a bash shell file that looks like this

submit.bash:

```bash
#!/bin/bash
#SBATCH  -J  MonteCarlo
#SBATCH  -A  cs475-575
#SBATCH  -p  classgputest
#SBATCH  --constraint=v100
#SBATCH  --gres=gpu:1
#SBATCH  -o  montecarlo.out
#SBATCH  -e  montecarlo.err
#SBATCH  --mail-type=BEGIN,END,FAIL
#SBATCH  --mail-user=joeparallel@oregonstate.edu
/usr/local/apps/cuda/11.7/bin/nvcc -o montecarlo montecarlo.cu
./montecarlo
```

Submit the job described in your bash file

Submit a Batch CUDA job to the DGX System

Note: A single dash (-) is used for a single character flag
A double dash (--) is used for a word (more than a single character) flag

Your Job Name (makes it easier to find in the squeue)

Our class account

This is the partition name that we use for our class when debugging and testing.

Double dash

These 2 lines are bash code

Submit the job described in your bash file

Check the output (I like sending my output to standard error, not standard output)
What is the Difference Between the Partitions classgputest and classgpufinal?

classgputest lets your program get into the system sooner, but it might be running alongside other jobs, so its performance might suffer. But you don't care because you are just debugging and testing, not taking performance numbers for your report.

classgpufinal makes your program wait in line until it can get dedicated resources so that you get performance results that are much more representative of what the machine can do, and thus are worthy to be listed in your report.

Auto-Notifications via Email

#SBATCH --mail-user=joeparallel@oregonstate.edu

You don’t have to ask the system to email information to you, but if you do, please be sure you get your own email address right!

Our IT people are getting really tired of fielding the bounced emails when people misspell their own email address.
What Showed up in my Email (which I spelled correctly)

<table>
<thead>
<tr>
<th>From</th>
<th>Subject</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slurm workload manager</td>
<td>Slurm Job_id=3980 Name=MatrixMul Ended, Run time 00:00:12, COMPLETED, ExitCode 0</td>
</tr>
<tr>
<td>Slurm workload manager</td>
<td>Slurm Job_id=3980 Name=MatrixMul Began, Queued time 00:00:01</td>
</tr>
</tbody>
</table>

Submitting a Loop

submitloop.bash:

```bash
#!/bin/bash
#SBATCH  -J  MonteCarlo
#SBATCH  -A  cs475-575
#SBATCH  -p  classgpufinal
#SBATCH  --constraint=v100
#SBATCH  --gres=gpu:1
#SBATCH  -o  montecarlo.out
#SBATCH  -e  montecarlo.err
#SBATCH  --mail-type=BEGIN,END,FAIL
#SBATCH  --mail-user=joeparallel@oregonstate.edu

for t in 2048 8192 131072 2097152
do
  for b in 8 16 32 64 128 256
do
    /usr/local/apps/cuda/11.7/bin/nvcc -DNUMTRIALS=$t -DBLOCKSIZE=$b -o montecarlo montecarlo.cu
  ./montecarlo
  done
done
```

submit-c 153% sbatch submitloop.bash
Submitted batch job 475

submit-c 154% tail -f montecarlo.err
Displays the latest output added to montecarlo.err
Keeps doing it forever.
Control-c to get out of it.
Use slurms `scancel` if your Job Needs to Be Killed

```
submit-c 163% sbatch submitloop.bash
Submitted batch job 476
```

```
submit-c 164% scancel 476
```

Submitting an OpenCL job to the DGX System

```
submit.bash:
#!/bin/bash
#SBATCH -J PrintInfo
#SBATCH -A cs475-575
#SBATCH -p classgpufinal
#SBATCH --constraint=v100
#SBATCH --gres=gpu:1
#SBATCH -o printinfo.out
#SBATCH -e printinfo.err
#SBATCH --mail-type=BEGIN,END,FAIL
#SBATCH --mail-user=joeparallel@oregonstate.edu

module load cuda/10.1

```
```g++ -o printinfo printinfo.cpp /usr/local/apps/cuda/11.7/lib64/libOpenCL.so.1.1 -lm -fopenmp
/printinfo
```
Here's what `printinfo` got on one graphics card on the DGX System

<table>
<thead>
<tr>
<th>Number of Platforms</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Platform #0:</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>NVIDIA CUDA’</td>
</tr>
<tr>
<td>Vendor</td>
<td>NVIDIA Corporation’</td>
</tr>
<tr>
<td>Version</td>
<td>OpenCL 1.2, CUDA 11.2.153’</td>
</tr>
<tr>
<td>Profile</td>
<td>‘FULL_PROFILE’</td>
</tr>
<tr>
<td>Number of Devices</td>
<td>1</td>
</tr>
</tbody>
</table>

Device #0:
- Type = 0x0004 = CL_DEVICE_TYPE_GPU
- Device Vendor ID = 0x10de (NVIDIA)
- Device Maximum **Compute Units** = 80
- Device Maximum Work Item Dimensions = 3
- Device Maximum Work Item Sizes = 1024 x 1024 x 64
- Device Maximum Work Group Size = 1024
- Device Maximum **Clock Frequency** = 1530 MHz

Device Extensions:
- cl_khr_global_int32_base_atomics
- cl_khr_global_int32_extended_atomics
- cl_khr_local_int32_base_atomics
- cl_khr_local_int32_extended_atomics
- cl_khr_fp64
- cl_khr_byte_addressable_store
- cl_khr_icd
- cl_khr_gl_sharing
- cl_nv_compiler_options
- cl_nv_device_attribute_query
- cl_nv pragma unroll
- cl_nv copy opts
- cl_nv create buffer

For comparison, rabbit’s graphics card has 15 Compute Units.