The OSU College of Engineering DGX System for Advanced GPU Computing

OSU’s College of Engineering has six Nvidia DGX-2 systems

Each DGX server:
- Has 16 Nvidia Tesla V100 GPUs
- Has 28TB of disk, all SSD
- Has two 24-core Intel Xeon 8168 Platinum 2.7GHz CPUs
- Has 1.5TB of DDR4-2666 System Memory
- Runs the CentOS 7 Linux operating system

Overall compute power:
- Each V100 Nvidia Tesla card has 5,120 CUDA Cores and 640 Tensor Cores
- This gives each 16-V100 DGX server a total of 81,920 CUDA cores and 10,240 Tensor cores
- This gives the entire 6-DGX package a total of 491,520 CUDA Cores and 61,440 Tensor Cores

Performance Comparison with one of our other Systems

BTW, you can also use the rabbit machine:

```
ssh rabbit.engr.oregonstate.edu
```

It is a good place to write your code and get it to compile. It is not a good place to do the final run of your code.

How to SSH to the DGX Systems

```
flip3 151%  ssh submit-c.hpc.engr.oregonstate.edu
```

```
submit-c 142%  module load slurm
```

Type this right away to set your path correctly
How to Check on the DGX Systems

submit-c 143% squeue

submit-c 144% sinfo

System Information

What is the Difference Between the Partitions classgputest and classgpufinal?

classgputest lets your program get into the system sooner, but it might be running alongside other jobs, so its performance might suffer. But you don’t care because you are just debugging and testing, not taking performance numbers for your report.

classgpufinal makes your program wait in line until it can get dedicated resources so that you get performance results that are much more representative of what the machine can do, and thus are worthy to be listed in your report.

Submitting a Batch CUDA job to the DGX System

Create a bash shell file that looks like this

```
#!/bin/bash
#SBATCH  -J  MonteCarlo
#SBATCH  -A  cs475-575
#SBATCH  -p  classgputest
#SBATCH  --constraint=v100
#SBATCH  --gres=gpu:1
#SBATCH  -o  montecarlo.out
#SBATCH  -e  montecarlo.err
#SBATCH  --mail-type=BEGIN,END,FAIL
#SBATCH  --mail-user=joeparallel@oregonstate.edu

/usr/local/apps/cuda/11.7/bin/nvcc -o montecarlo montecarlo.cu
./montecarlo
```

Note: A single dash (-) is used for a single character flag
A double dash (--) is used for a word (more than a single character) flag

This is the partition name that we use for our class when debugging and testing.

Auto-Notifications via Email

```
#SBATCH  --email-user=joeparallel@oregonstate.edu
```

You don’t have to ask the system to email information to you, but if you do, please be sure you get your own email address right!

Our IT people are getting really tired of fielding the bounced emails when people misspell their own email address.
What Showed up in my Email (which I spelled correctly)

<table>
<thead>
<tr>
<th>From</th>
<th>Subject</th>
<th>Time: 00:00:12, Completed, Exit Code: 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slurm workload manager</td>
<td>Slurm_job_id=3980 Name=Matriku1</td>
<td>Queue: 00:00:01</td>
</tr>
</tbody>
</table>

Submitting a Loop

```
#!/bin/bash
#SBATCH -J MonteCarlo
#SBATCH --constraint=v100
#SBATCH --gres=gpu:1
#SBATCH -o montecarlo.out
#SBATCH -e montecarlo.err
#SBATCH --mail-type=BEGIN,END,FAIL
#SBATCH --mail-user=joeparallel@oregonstate.edu

for t in 2048 8192 131072 2097152
    do
        for b in 8 16 32 64 128 256
            do
                /usr/local/apps/cuda/11.7/bin/nvcc -DNUMTRIALS=$t -DBLOCKSIZE=$b -o montecarlo montecarlo.cu
            done
        done

submit-c 153%
```

These lines are bash code

```
submit-c 154%
```

Displays the latest output added to montecarlo.err

Control-c to get out of it.

Submitting an OpenCL job to the DGX System

```
#!/bin/bash
#SBATCH -J PrintInfo
#SBATCH --constraint=v100
#SBATCH --gres=gpu:1
#SBATCH --mail-user=joeparallel@oregonstate.edu

module load cuda/10.1

g++ -o printinfo printinfo.cpp /usr/local/apps/cuda/11.7/lib64/libOpenCL.so.1.1 -lm -fopenmp /printinfo
```

Use slurm’s `scancel` if your Job Needs to Be Killed

```
submit-c 163% sbatch submitloop.bash
Submitted batch job 476
```

```
submit-c 164% scancel 476
```
Here's what `printinfo` got on one graphics card on the DGX System

Number of Platforms = 1
Platform #0:
 Name = 'NVIDIA CUDA'
 Vendor = 'NVIDIA Corporation'
 Version = OpenCL 1.2 CUDA 11.2.153'
 Profile = 'FULL_PROFILE'
Number of Devices = 1
Device #0:
 Type = 0x0004 = CL_DEVICE_TYPE_GPU
 Device Vendor ID = 0x10de (NVIDIA)
 Device Maximum Compute Units = 80
 Device Maximum Work Item Dimensions = 3
 Device Maximum Work Item Sizes = 1024 x 1024 x 64
 Device Maximum Work Group Size = 1024
 Device Maximum Clock Frequency = 1530 MHz
Device Extensions:
 cl_khr_global_int32_base_atomics
 cl_khr_global_int32_extended_atomics
 cl_khr_local_int32_base_atomics
 cl_khr_local_int32_extended_atomics
 cl_khr_fp64
 cl_khr_byte_addressable_store
 cl_khr_icd
 cl_khr_gl_sharing
 cl_my_composer_options
 cl_my_device_attribute_query
 cl_my pragma unroll
 cl_my_copy_ocfa
 cl_my_create_buffer

For comparison, rabbit's graphics card has 15 Compute Units