The OSU College of Engineering DGX System
for Advanced GPU Computing

OSU College of Engineering has six Nvidia DGX-2 systems

Each DGX server:
- Has 16 NVidia Tesla V100 GPUs
- Has 28TB of disk, all SSD
- Has two 24-core Intel Xeon 8168 Platinum 2.7GHz CPUs
- Has 1.5TB of DDR4-2666 System Memory
- Runs the CentOS 7 Linux operating system

Overall compute power:
- Each V100 NVidia Tesla card has 5,120 CUDA Cores and 640 Tensor Cores
- This gives each 16-V100 DGX server a total of 81,920 CUDA cores and 10,240 Tensor cores
- This gives the entire 6-DGX package a total of 491,520 CUDA Cores and 61,440 Tensor Cores

Performance Comparison with one of our previous Systems

BTW, you can also use the rabbit machine:
ssh rabbit.engr.oregonstate.edu

It is a good place to write your code and get it to compile.

It is not a good place to do the final run of your code.

How to Check on the DGX Systems

submit-c 143% squeue

3923     mime4   c_only jayasurw R 1-10:32:19      1 compute-e-1
3963     mime4     2Dex jayasurw R   16:21:03      1 compute-e-2
3876     share CH3COOH_ chukwuk R 1-23:36:45      1 compute-2-6
3971     nerhp tcsh dionnec R    8:59:45      1 compute-h-8
3881      dgx2     bash     heli R 1-22:50:44      1 compute-dgx2-1
3965      dgx2     bash  chenju3  R   13:47:36      1 compute-dgx2-4
3645      dgx2     bash mishrash R 5-16:48:09      1 compute-dgx2-5
3585      dgx2     bash  azieren R 6-17:34:00      1 compute-dgx2-3
3583      dgx2     bash  azieren R 6-18:26:44      1 compute-dgx2-3

submit-c 144% sinfo

PARTITION AVAIL  TIMELIMIT  NODES  STATE NODELIST
share*       up 7-00:00:00      2  drain compute-4-[3-4]
share*       up 7-00:00:00      1    mix compute-2-6
sharegpu up 7-00:00:00      1    mix compute-dgxs-1
sharegpu up 7-00:00:00      3   idle compute-dgxs-[2-3],compute-gpu
sharegpu up 7-00:00:00      1   idle compute-gpu2
sharegpu up 7-00:00:00      1   down compute-gpu1
dgx2         up 7-00:00:00      1  drain compute-dgx2-2
dgx2         up 7-00:00:00      5    mix compute-dgx2-[1,3-6]
dgx2         up 7-00:00:00      1  drain compute-dgx2-3
dgx2         up 7-00:00:00      1  drain compute-dgx2-1
dgxs up 7-00:00:00      1    mix compute-dgx2-3
dgxs up 7-00:00:00      2   idle compute-dgxs-[2-3]

dgx2         up 7-00:00:00      1  drain compute-dgx2-3
dgx2         up 7-00:00:00      1  drain compute-dgx2-1
dgxs up 7-00:00:00      2   idle compute-dgxs-[2-3]
edecs up 7-00:00:00      1    mix compute-dgxs-1
eecs up 7-00:00:00      1    mix compute-2-6

class        up    1:00:00      2   idle compute-dgxs-[2-3]

class        up    1:00:00      1    mix compute-dgxs-1

How to SSH to the DGX Systems

ssh over to a DGX submission machine --
submit-a and submit-b will also work

Type this right away to set your path correctly

Submitting a CUDA job to the DGX Systems using Slurm

Create a bash shell file that looks like this

Your Job Name

Note: A single dash (-) is used for a single character flag
A double dash (-- is used for a word (more than a single character) flag

submit-c 143% sbatch submit-bash

Submitted batch job 474

Submit the job described in your shell file

Check the output
(I like sending my output to standard error, not standard output)
Auto-Notifications via Email

```bash
#SBATCH --mail-user=joeparallel@oregonstate.edu
```

You don't have to do this, but if you do, please be sure you get your own email address right! Our IT people are getting real tired of fielding the bounced emails when people spell their own email address wrong.

---

What Showed up in my Email (which I spelled correctly)

<table>
<thead>
<tr>
<th>From:</th>
<th>Subject:</th>
<th>Name:</th>
<th>Status:</th>
<th>Job ID:</th>
<th>Time:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slurm workload manager</td>
<td></td>
<td></td>
<td></td>
<td>3980</td>
<td></td>
</tr>
<tr>
<td>Slurm workload manager</td>
<td></td>
<td>Name=MatrixMul Ended, Run time 02:30:12, COMPLETED, Exit Code 0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

Submitting a Loop

```bash
submitloop.bash:
#SBATCH          
#SBATCH  -J  MatrixMul
#SBATCH  -A  cs475-575
#SBATCH  -p  class
#SBATCH  --gres=gpu:1
#SBATCH  -o  matrixmul.out
#SBATCH  -e  matrixmul.err
#SBATCH  --mail-type=BEGIN,END,FAIL
#SBATCH  --mail-user=joeparallel@oregonstate.edu

for t in 1 2 4 8 16 32
    do
        /usr/local/apps/cuda/cuda-10.1/bin/nvcc -DNUMT=$t  -o matrixMul matrixMul.cu
        ./matrixMul
    done
```

---

Results for Multiplying two 1024x1024 Matrices: Varying the CUDA Block Size

```
for t in 1 2 4 8 16 32
    do
        /usr/local/apps/cuda/cuda-10.1/bin/nvcc -DNUMT=$t  -o matrixMul matrixMul.cu
        ./matrixMul
    done
```

---

Use slurm's scancel if your Job Needs to Be Killed

```
submit-c 153% b<tab>ct
```

submitloop.bash: 

```
#SBATCH          
#SBATCH  -J  MatrixMul
#SBATCH  -A  cs475-575
#SBATCH  -p  class
#SBATCH  --gres=gpu:1
#SBATCH  -o  matrixmul.out
#SBATCH  -e  matrixmul.err
#SBATCH  --mail-type=BEGIN,END,FAIL
#SBATCH  --mail-user=joeparallel@oregonstate.edu

g++ -o printinfo printinfo.cpp /usr/local/apps/cuda/cuda-10.1/lib64/libOpenCL.so.1.1 -lm -fopenmp
./printinfo
```

---

Submitting an OpenCL job to the DGX System using Slurm

```
submit.bash:
#SBATCH          
#SBATCH  -J  MatrixMult
#SBATCH  -A  cs475-575
#SBATCH  -p  class
#SBATCH  --gres=gpu:1
#SBATCH  -o  printinfo.out
#SBATCH  -e  printinfo.err
#SBATCH  --mail-type=BEGIN,END,FAIL
#SBATCH  --mail-user=joeparallel@oregonstate.edu
```

---
Here's what printinfo got on one graphics card on the DGX System

Number of Platforms = 1
Platform #0:
   Name = NVIDIA CUDA
   Vendor = NVIDIA Corporation
   Version = OpenCL 1.2-CUDA 11.2.153
   Profile = FULL_PROFILE
   Number of Devices = 1
   Device #0:
      Type = 0x0004 = CL_DEVICE_TYPE_GPU
      Device Vendor ID = 0x10de (NVIDIA)
      Device Maximum Compute Units = 80
      Device Maximum Work Item Dimensions = 3
      Device Maximum Work Item Sizes = 1024 x 1024 x 64
      Device Maximum Work Group Size = 1024
      Device Maximum Clock Frequency = 1530 MHz
      Device Extensions:
         cl_khr_global_int32_base_atomics
         cl_khr_global_int32_extended_atomics
         cl_khr_local_int32_base_atomics
         cl_khr_local_int32_extended_atomics
         cl_khr_fp64
         cl_khr_byte_addressable_store
         cl_khr_icd
         cl_khr_gl_sharing
         cl_nv_compiler_options
         cl_nv_device_attribute_query
         cl_nv_pragma_unroll
         cl_nv_copy_opts
         cl_nv_create_buffer

For reference, rabbit's graphics card has 15 Compute Units.