
mjb – March 14, 2024

1

Computer Graphics

Functional (Task) Decomposition

functional_decomposition.pptx

Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

mjb – March 14, 2024

2

Computer Graphics

The Functional (or Task) Decomposition Design Pattern

Overall Problem

Thread 0
Thread 2 Thread 3Thread 1

A good example of this is the computer game SimPark.

mjb – March 14, 2024

3

Computer Graphics

Climate
Plants MoneyAnimals

Credit: Maxis (Sim Park)

The Functional (or Task) Decomposition Design Pattern

mjb – March 14, 2024

4

Computer Graphics

How is this is different from Data Decomposition
(such as the OpenMP for-loops)

• This is done less for performance and more for programming convenience.

• This is often done in simulations, where each quantity in the simulation needs to make
decisions about what it does next based on what it and all the other global quantities
are doing right now.

• Each quantity takes all of the “Now” state data and computes its own “Next” state.

• The biggest trick is to synchronize the different quantities so that each of them is
seeing only what the others’ data values are right now. Nobody is allowed to switch
their data states until they are all done consuming the current data and thus are ready
to switch together.

• The synchronization is accomplished with barriers.

Global Now State

Compute

Individual Next State

Quantity #1:

Global Now State

Compute

Individual Next State

Quantity #2:

Global Now State

Compute

Individual Next State

Quantity #3:

mjb – March 14, 2024

5

Computer Graphics

Setup the Now global variables

Watcher

Calculate the current Environmental Parameters

Spawn Threads using OpenMP Sections

A B

Using the entire Now state,
compute A’s Next variables

Print results and increment time

Calculate new Environmental Parameters

DonePrinting barrier

DoneComputing barrier

DoneAssigning barrier

Copy A’s Next state into the
Now state

Using the entire Now state,
compute B’s Next variables

Copy B’s Next state into the
Now state

mjb – March 14, 2024

6

Computer Graphics

int
main(int argc, char *argv[])
{

. . .
omp_set_num_threads(3);
InitBarrier(3); // don’t worry about this for now, we will get to this later

#pragma omp parallel sections
{

#pragma omp section
{

Watcher();
}

#pragma omp section
{

Animals();
}

#pragma omp section
{

Plants();
}

} // implied barrier -- all functions must return to get past here
}

The Functional Decomposition Design Pattern

mjb – March 14, 2024

7

Computer Graphics

void
Watcher()
{

while(<< You decide how to know when it's all finished? >>)
{

// do nothing
WaitBarrier(); // 1.

// do nothing
WaitBarrier(); // 2.

<< write out the “Now” state of data >>

<< advance time and re-compute all environmental variables >>

WaitBarrier(); // 3.
}

}

The Functional Decomposition Design Pattern

mjb – March 14, 2024

8

Computer Graphics

void
Animals()
{

while(<< You decide how to know when it's all finished? >>)
{

int nextXXX= << function of what all states are right Now >>
. . .
WaitBarrier(); // 1.

NowXXX = nextXXX; // copy the computed next state to the Now state

WaitBarrier(); // 2.

// do nothing
WaitBarrier(); // 3.

}
}

The Functional Decomposition Design Pattern

mjb – March 14, 2024

9

Computer Graphics

Simulation Output

Time

Animals

Temperature

Rainfall

Plants

mjb – March 14, 2024

10

Computer Graphics

We Have to Make Our Own Barrier Function

Why can’t we just use #pragma omp barrier ?

There are two ways to think about how to allow a program to implement a barrier:
1. Make a thread wait at a specific address in the code. Keep waiting until all threads are

waiting there.
2. Make a thread wait when it specifically asks to "Wait". Keep waiting until all threads have

asked to "Wait".

Both of these sound legitimate, but:
• The OpenMP specification only allows for #1.
• The Functional Decomposition described here wants to use #2, because the

waiting needs to happen at different addresses in different functions

Functional Decomposition is a good example of when you can’t.

mjb – March 14, 2024

11

Computer Graphics

omp_lock_t Lock;
volatile int NumInThreadTeam;
volatile int NumAtBarrier;
volatile int NumGone;

void
InitBarrier(int n)
{

NumInThreadTeam = n; // number of threads you want to block at the barrier
NumAtBarrier = 0;
omp_init_lock(&Lock);

}

void
WaitBarrier()
{

omp_set_lock(&Lock);
{

NumAtBarrier++;
if(NumAtBarrier == NumInThreadTeam) // release the waiting threads
{

NumGone = 0;
NumAtBarrier = 0;
// let all other threads return before this one unlocks:
while(NumGone != NumInThreadTeam - 1);
omp_unset_lock(&Lock);
return;

}
}
omp_unset_lock(&Lock);

while(NumAtBarrier != 0); // all threads wait here until the last one arrives …

#pragma omp atomic // … and sets NumAtBarrier to 0
NumGone++;

}

We Have to Make Our Own Barrier Function

mjb – March 14, 2024

12

Computer Graphics

The WaitAtBarrier() Logic

