
1

mjb – March 21, 2025

1

Computer Graphics

GPU 101

gpu101.pptx

Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

mjb – March 21, 2025

2

Computer Graphics

How Have You Been Able to Gain Access
to GPU Power?

1. Write a graphics display
program (≥ 1985)

2. Write an application that looks
like a graphics display
program, but uses the fragment
shader to do some per-node
computation (≥ 2002)

3. Write in OpenCL or CUDA,
which looks like C++ (≥ 2006)

There have been three ways:

2

mjb – March 21, 2025

3

Computer Graphics

Why do we care about GPU Programming?
A History of GPU vs. CPU Performance

NVIDIA

mjb – March 21, 2025

4

Computer Graphics

NVIDIA

Why do we care about GPU Programming?
A History of GPU vs. CPU Performance

Note that the top of the graph
on the previous page fits here

3

mjb – March 21, 2025

5

Computer Graphics

Or, in AI Inference Performance

NVIDIA

mjb – March 21, 2025

6

Computer Graphics

The “Core-Score”. How can this be?

16 5396
NVIDIA Intel

4

mjb – March 21, 2025

7

Computer Graphics

Due to the nature of graphics computations, GPU chips are customized to stream regular
data. General CPU chips must be able to handle irregular data.

Why have GPUs Been Outpacing CPUs in Performance?

Another reason is that GPU chips do not need the significant amount of cache space that
occupies much of the real estate on general-purpose CPU chips. The GPU die real estate
can then be re-targeted to hold more cores and thus to produce more processing power.

NVIDIA

mjb – March 21, 2025

8

Computer Graphics

Why have GPUs Been Outpacing CPUs in Performance?

Another reason is that general CPU chips contain on-chip logic to do branch prediction
and out-of-order execution. This, too, takes up chip die space.

So, which is better, a CPU or a GPU?

It depends on what you are trying to do!

But CPU chips can handle more general-purpose computing tasks.

5

mjb – March 21, 2025

9

Computer Graphics

Originally, Parts of GPU Chips were very Task-specific

mjb – March 21, 2025

10

Computer Graphics

Today’s GPU Devices are not Task-specific –
They Can Be Dynamically Re-purposed for any GPU Function

6

mjb – March 21, 2025

11

Computer Graphics

Consider the architecture of the NVIDIA 4090

128 Streaming Multiprocessors (SMs) / chip

128 cores / SM

Wow! 16,384 cores / chip? Really?

mjb – March 21, 2025

12

Computer Graphics

What is a “Core” in the GPU Sense?

Look closely, and you’ll see that NVIDIA really calls these “CUDA Cores”

Look even more closely and you’ll see that these CUDA Cores have no control logic –
they are pure compute units, i.e. ALUs. (The surrounding SM has all the control logic.)

Other vendors refer to these as “Lanes”. You can also think of them as 128-way SIMD.

7

mjb – March 21, 2025

13

Computer Graphics

NVIDIA’s Ampere Chip

NVIDIA

mjb – March 21, 2025

14

Computer Graphics http://news.cision.com

“Streaming Multiprocessor”

“CUDA Cores”

“Data”

A Mechanical Equivalent…

8

mjb – March 21, 2025

15

Computer Graphics

Tom’s Hardware

mjb – March 21, 2025

16

Computer Graphics

So, let’s use the information about the architecture as a way to consider what CPUs
should be good at and what GPUs should be good at

CPU GPU

It is difficult to directly compare a CPU with a GPU. They are optimized to do different things.

The Bottom Line is This

BTW,
The general term in the OpenCL world for an SM is a Compute Unit.
The general term in the OpenCL world for a CUDA Core is a Processing Element.

General purpose programming
Multi-core under user control
Irregular data structures
Irregular flow control

Data parallel programming
Little user control
Regular data structures
Regular Flow Control

9

mjb – March 21, 2025

17

Computer Graphics

Device

CU CU CU

CU CU CU

Compute Unit

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

Compute Units and Processing Elements are Arranged in Grids

A GPU Platform can have one or more Devices (a Device is a
GPU chip).

Each GPU Device is organized as a grid of Compute Units.

Each Compute Unit is organized as a grid of Processing
Elements.

So, in NVIDIA terms, their 5090 GPU has 170 Compute Units,
each of which has 128 Processing Elements, for a grand total
of 21,760 Processing Elements.

• • •

• • •

mjb – March 21, 2025

18

Computer Graphics

Thinking ahead to CUDA and OpenCL…

How can GPUs execute General C Code Efficiently?

• Ask them to do what they do best. Unless you have a very intense Data Parallel
application, don’t even think about using GPUs for computing.

• GPU programs expect you to not just have a few threads, but to have thousands of
them!

• Each thread executes the same program (called the kernel), but operates on a different
small piece of the overall data

• Thus, you have many, many threads, all waking up at about the same time, all executing
the same kernel program, all expecting to work on a small piece of the overall problem.

• CUDA and OpenCL have built-in functions so that each thread can figure out which thread
number it is, and thus can figure out what part of the overall job it’s supposed to work on.

• When a set of threads gets blocked somehow (a memory access, waiting for information
from another thread, etc.), the processor switches to executing another set of threads to
work on.

10

mjb – March 21, 2025

19

Computer Graphics

So, the Trick is to Break your Problem
into Many, Many Small Pieces

Particle Systems are a great example.

1. Have one thread per each particle.

2. Put all of the initial parameters into an array in
GPU memory.

3. Tell each thread what the current Time is.

4. Each thread then computes its particle’s position,
color, etc. and writes it into arrays in GPU memory.

5. The CPU program then initiates OpenGL drawing
of the information in those arrays.

Note: once setup, the data never leaves
GPU memory!

Ben Weiss

mjb – March 21, 2025

20

Computer Graphics

NVIDIA

Something New – Tensor Cores

11

mjb – March 21, 2025

21

Computer Graphics

Tensor Cores Accelerate Fused-Multiply-Add Arithmetic

mjb – March 21, 2025

22

Computer Graphics

What is Fused Multiply-Add?

Many scientific and engineering computations take the form:
D = A + (B*C);

A “normal” multiply-add would likely handle this as:
tmp = B*C;
D = A + tmp;

A “fused” multiply-add does it all at once, that is, when the low-order bits of B*C
are ready, they are immediately added into the low-order bits of A at the same
time the higher-order bits of B*C are being multiplied.

Consider a Base 10 example: 789 + (123*456)

123
x 456

738
615

492
+ 789

56,877
Can start adding the 9 the moment the 8 is produced!

Note: “Normal” A+(B*C) ≠ “FMA” A+(B*C)

12

mjb – March 21, 2025

23

Computer Graphics

NVIDIA

Something Even Newer – Ray-Trace Cores

https://www.youtube.com/watch?v=QL7sXc2iNJ8

mjb – March 21, 2025

24

Computer Graphics

There are Two Approaches to Combining Your CPU and GPU Programs

1. Combine both the CPU and GPU code in the same code file.
Somehow mark what part is CPU code and what part is GPU code.
The CPU compiler compiles just its part of that file. The GPU
compiler compiles just its part of that file.

2. Have two separate programs: a .cpp and a .somethingelse that get
compiled separately by a CPU compiler and a GPU compiler.

1. The CPU and GPU sections of the code know about each others’ intents.
Also, they can share common structs, #define’s, etc.

2. It’s potentially cleaner to look at each section by itself. Also, the GPU
code can be easily used in combination with other CPU programs.

Advantages of Each

1 = NVIDIA’s CUDA

2 = Khronos’s OpenCL

Who are we Talking About Here?

We will talk about each of these separately – stay tuned!

13

mjb – March 21, 2025

25

Computer Graphics

Looking ahead:
If threads all execute the same program, what happens on flow divergence?

if(a > b)
Do This;

else
Do That;

1. On a GPU, the line “if(a > b)” creates a vector of 0/1 Boolean values giving
the results of the if-statement for each thread. This becomes a “bitmask”.

2. Then, the GPU executes both parts of the divergence:
Do This;
Do That;

3. During that execution, anytime a value wants to be stored, the bitmask is
consulted, and the storage only happens if that thread’s location in the
bitmask is a 1.

mjb – March 21, 2025

26

Computer Graphics

• GPUs were originally designed for the streaming-ness of computer graphics.

• That same streaming-ness can also be applied to data-parallel computing.

• GPUs are better for some things. CPUs are better for others.

14

mjb – March 21, 2025

27

Computer Graphics

Dismantling a Graphics Card

This is an Nvidia 1080 ti card – one that died on us. It willed its body to education.

mjb – March 21, 2025

28

Computer Graphics

Dismantling a Graphics Card

Removing the covers:

15

mjb – March 21, 2025

29

Computer Graphics

Dismantling a Graphics Card

Removing the heat sink:

This transfers heat
from the GPU Chip
to the cooling fins

mjb – March 21, 2025

30

Computer Graphics

Dismantling a Graphics Card

Removing the fan assembly reveals the board:

GPU Chip
Memory

16

mjb – March 21, 2025

31

Computer Graphics

Dismantling a Graphics Card

Power half of the board:

Power
distribution

Memory

Power
input

mjb – March 21, 2025

32

Computer Graphics

Dismantling a Graphics Card

Graphics half of the board:

GPU Chip
This one contains 7.2 billion transistors!

The newer cards contain 70+ billion transistors.
(Thank you, Moore’s Law)

Video out

17

mjb – March 21, 2025

33

Computer Graphics

Dismantling a Graphics Card

Underside of the board:

mjb – March 21, 2025

34

Computer Graphics

Dismantling a Graphics Card

Underside of where the GPU chip attaches:

Here is a fun video of someone explaining the different parts of this same card:
https://www.youtube.com/watch?v=dSCNf9DIBGE

