The Message Passing Interface (MPI): Parallelism on Distributed CPUs

http://mpi-forum.org
https://www.open-mpi.org/

Mike Bailey
mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Why Two URLs?

http://mpi-forum.org
This is the definitive reference for the MPI standard. Go here if you want to read the official specification, which, BTW, continues to evolve.

https://www.open-mpi.org/
This consortium formed later. This is the open source version of MPI. If you want to start using MPI, I recommend you look here. This is the MPI that the COE systems use

https://www.open-mpi.org/doc/v4.0/
This URL is also really good – it is a link to all of the MPI man pages
The Open MPI Consortium

[Logos of various companies and institutions]
Programs on different CPUs coordinate computations by passing messages between each other.

Note: Each CPU in the MPI “cluster” must be prepared ahead of time by having the MPI server code installed on it. Each MPI CPU must also have an integer ID assigned to it (called its rank).
This paradigm is how modern supercomputers work!

The Texas Advanced Computing Center’s *Frontera* supercomputer
How to SSH to the COE MPI Cluster

```
flip3  151%  ssh  submit-c@hpc.engr.oregonstate.edu
```

```
submit-c  142%  module load slurm
submit-c  143%  module load openmpi
```

Type these two lines right away to set your paths correctly.

BTW, you can find out more about the COE cluster here:

https://it.engineering.oregonstate.edu/hpc

“The College of Engineering HPC cluster is a heterogeneous mix of 202 servers providing over 3600 CPU cores, over 130 GPUs, and over 31 TB total RAM. The systems are connected via gigabit ethernet, and most of the latest servers also utilize a Mellanox EDR InfiniBand network connection. The cluster also has access to 100TB global scratch from the College of Engineering's Dell/EMC Isilon enterprise storage.”
Compiling and Running

- **mpicc** -o program program.c . . .
- or
- **mpic++** -o program program.cpp . . .

mpiexec -mca btl self,tcp -np 4 program

All distributed processors execute the same program at the same time

of processors to use

Warning – use **mpic++** and **mpiexec**!

Don’t use g++ and don’t run by just typing the name of the executable!
Running with a *bash* Batch Script

```bash
#!/bin/bash
#SBATCH  -J  AutoCorr
#SBATCH  -A  cs475-575
#SBATCH  -p  class
#SBATCH  -N 4    # number of nodes
#SBATCH  -n 4    # number of tasks
#SBATCH --constraint=ib
#SBATCH  -o  autocorr.out
#SBATCH  -e  autocorr.err
#SBATCH  --mail-type=END,FAIL
#SBATCH  --mail-user=joeeparallel@cs.oregonstate.edu
module load openmpi
mpic++ autocorr.cpp -o autocorr -lm
mpiexec -mca btl self,tcp -np 4 ./autocorr
```

```bash
submit-c 143% sbatch  submit.bash
Submitted batch job 258759
```
Auto-Notifications via Email

#SBATCH --mail-user=joeparallel@oregonstate.edu

You don’t have to ask for email notification, but if you do, please, please, please be sure you get your email address right!

The IT people are getting real tired of fielding the bounced emails when people spell their own email address wrong.
Use slurms’s `scancel` if your Job Needs to Be Killed

```bash
submit-c 143% sbatch submit.bash
Submitted batch job 258759

submit-c 144% scancel 258759
```
#include <mpi.h>

int main(int argc, char *argv[])
{

 MPI_Init(&argc, &argv);

 MPI_Finalize();
 return 0;
}

You don’t need to process command line arguments if you don’t need to. You can also call it as:

MPI_Init(NULL, NULL);
A **communicator** is a collection of CPUs that are capable of sending messages to each other.

Getting information about our place in the **communicator**:

```c
int numCPUs; // total # of cpus involved
int me; // which one I am

MPI_Comm_size( MPI_COMM_WORLD, &numCPUs );

MPI_Comm_rank( MPI_COMM_WORLD, &me );
```

Size, i.e., how many altogether?

Rank, i.e., which one am I?

It is then each CPU’s job to figure out what piece of the overall problem it is responsible for and then go do it.

This requires MPI server code getting installed on all those CPUs. Only an administrator can do this.
A First Test of MPI

```c
#include <stdio.h>
#include <math.h>
#include <mpi.h>

#define BOSS 0

int main( int argc, char *argv[ ] )
{
    MPI_Init( &argc, &argv );
    int numCPUs;       // total # of cpus involved
    int me;            // which one I am

    MPI_Comm_size( MPI_COMM_WORLD, &numCPUs );
    MPI_Comm_rank( MPI_COMM_WORLD, &me );

    if( me == BOSS )
        fprintf( stderr, "Rank %d says that we have a Communicator of size %d\n", BOSS, numCPUs );
    else
        fprintf( stderr, "Welcome from Rank %d\n", me );

    MPI_Finalize( );
    return 0;
}
```
submit-c 165% mpiexec -np 16 ./first
Welcome from Rank 13
Welcome from Rank 15
Welcome from Rank 3
Welcome from Rank 7
Welcome from Rank 5
Welcome from Rank 8
Welcome from Rank 9
Welcome from Rank 11
Rank 0 says that we have a Communicator of size 16
Welcome from Rank 1
Welcome from Rank 12
Welcome from Rank 14
Welcome from Rank 6
Welcome from Rank 2
Welcome from Rank 10
Welcome from Rank 4

submit-c 166% mpiexec -np 16 ./first
Welcome from Rank 1
Welcome from Rank 5
Welcome from Rank 7
Welcome from Rank 9
Welcome from Rank 11
Welcome from Rank 13
Welcome from Rank 15
Rank 0 says that we have a Communicator of size 16
Welcome from Rank 2
Welcome from Rank 3
Welcome from Rank 4
Welcome from Rank 6
Welcome from Rank 8
Welcome from Rank 12
Welcome from Rank 14
Welcome from Rank 10

submit-c 167% mpiexec -np 16 ./first
Welcome from Rank 9
Welcome from Rank 11
Welcome from Rank 13
Welcome from Rank 7
Welcome from Rank 1
Welcome from Rank 3
Welcome from Rank 10
Welcome from Rank 15
Welcome from Rank 4
Welcome from Rank 5
Welcome from Rank 14
Welcome from Rank 2
Welcome from Rank 6
Welcome from Rank 8

submit-c 168% mpiexec -np 16 ./first
Welcome from Rank 13
Welcome from Rank 15
Welcome from Rank 7
Welcome from Rank 3
Welcome from Rank 5
Welcome from Rank 9
Welcome from Rank 11
Welcome from Rank 1
Welcome from Rank 12
Welcome from Rank 14
Welcome from Rank 4
Welcome from Rank 2
Rank 0 says that we have a Communicator of size 16
Welcome from Rank 8
Welcome from Rank 10
Welcome from Rank 6
So, we have a group (a “communicator”) of distributed processors. How do they communicate about what work they are supposed to do?

Who am I? Where am I? What am I supposed to be doing? Hello? Is anyone listening?

Example: You could coordinate the units of our DGX system using MPI
Both the sender and receivers need to execute **MPI_Bcast** – there is no separate receive function
This is our heat transfer equation from before. Clearly, every CPU will need to know this value.

\[
\Delta T_i = \left(\frac{k}{\rho C} \right) \left(\frac{T_{i-1} - 2T_i + T_{i+1}}{(\Delta x)^2} \right) \Delta t
\]

```c
int numCPUs;
int me;
float k_over_rho_c; // the BOSS node will know this value, the others won't (yet)
#define BOSS 0

MPI_Comm_size( MPI_COMM_WORLD, &numCPUs ); // how many are in this communicator
MPI_Comm_rank( MPI_COMM_WORLD, &me ); // which one am I?
.
if( me == BOSS )
{
    << read k_over_rho_c from the data file >>
}

MPI_Bcast( &k_overrho_c, 1, MPI_FLOAT, BOSS, MPI_COMM_WORLD ); // send if BOSS, and receive if not
```
Both the sender and receivers need to execute **MPI_Bcast** – there is no separate receive function.

Node #BOSS:

```c
MPI_Bcast( &k_over_rho_c, 1, MPI_FLOAT, BOSS, MPI_COMM_WORLD );  // send if BOSS, and receive if not
```

All Nodes that are not #BOSS:

- Executable code: `k_over_rho_c` (being set)
How Does this Work?
Think Star Trek Wormholes!
MPI_Send(array, numToSend, type, dst, tag, MPI_COMM_WORLD);

- **# elements**
 - (note: this is the number of *elements*, not the number of *bytes*)
 - MPI_CHAR
 - MPI_INT
 - MPI_LONG
 - MPI_FLOAT
 - MPI_DOUBLE
 - • • •

- rank of the CPU to send to
- An integer to differentiate this transmission from any other transmission (be sure this is unique!)

Rules:

- One message from a specific *src* to a specific *dst* cannot overtake a previous message from the same *src* to the same *dst*.

- MPI_Send() blocks until the transfer is far enough along that *array* can be destroyed or re-used.

- There are no guarantees on order from different *src*’s.
MPI_Recv(array, maxCanReceive, type, src, tag, MPI_COMM_WORLD, &status);

Rules:

• The receiver blocks waiting for data that matches what it declares to be looking for

• One message from a specific src to a specific dst cannot overtake a previous message from the same src to the same dst

• There are no guarantees on the order from different src’s

• The order from different src’s could be implied in the tag

• status is type MPI_Status – the “&status” can be replaced with MPI_STATUS_IGNORE

⋅⋅⋅

src node dst node
Remember, this *identical code* runs on all CPUs:

```c
int numCPUs;
int me;
#define MYDATA_SIZE 128
char mydata[MYDATA_SIZE];
#define BOSS 0

MPI_Comm_size( MPI_COMM_WORLD, &numCPUs );
MPI_Comm_rank( MPI_COMM_WORLD, &me );

if( me == BOSS ) // the primary
{
    for( int dst = 0; dst < numCPUs; dst++ )
    {
        if( dst != BOSS )
        {
            char *InputData = "Hello, Beavers!";
            MPI_Send( InputData, strlen(InputData)+1, MPI_CHAR, dst, 'B', MPI_COMM_WORLD );
        }
    }
}
else // a secondary
{
    MPI_Recv( myData, MYDATA_SIZE, MPI_CHAR, BOSS, 'B', MPI_COMM_WORLD, MPI_STATUS_IGNORE );
    printf( " '%s' from rank # %d
", in, me );
}
```

You are highly discouraged from sending to yourself. Because both the send and receive are capable of blocking, the result could be deadlock.
Look at this Diagram

```c
if ( dst != BOSS )
{
    char *InputData = "Hello, Beavers!";
    MPI_Send( InputData, strlen(InputData)+1, MPI_CHAR, dst, 0, MPI_COMM_WORLD );
}
else
{
    // a secondary
    MPI_Recv( myData, MYDATA_SIZE, MPI_CHAR, BOSS, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE );
    printf( " %s from rank %d\n" in, me );
}
```
How does MPI let the Sender perform an MPI_Send() even if the Receivers are not ready to MPI_Recv()?

MPI_Send() blocks until the transfer is far enough along that the array can be destroyed or re-used.
Another Example

You typically don’t send the entire workload to each dst – you just send part of it, like this:

```c
#define NUMELEMENTS ????
int numCPUs;
int me;
#define BOSS 0

MPI_Comm_size( MPI_COMM_WORLD, &numCPUs );
MPI_Comm_rank( MPI_COMM_WORLD, &me );

int localSize = NUMELEMENTS / numCPUs; // assuming it comes out evenly
float *myData = new float [ localSize ];

if( me == BOSS ) // the sender
{
    float *InputData = new float [ NUMELEMENTS ];
    //<< read the full input data into InputData from disk >>
    for( int dst = 0; dst < numCPUs; dst++ )
    {
        if( dst != BOSS )
        {
            MPI_Send( &InputData[dst*localSize], localSize, MPI_FLOAT, dst, 0, MPI_COMM_WORLD );
        }
    }
}
elense // a receiver
{
    MPI_Recv( myData, localSize, MPI_FLOAT, BOSS, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE );
    // do something with this subset of the data
```
You typically don’t send the entire workload to each dst – you just send part of it, like this:

```c
if( dst != BOSS )
{
    MPI_Send( &InputData[dst*localSize], localSize, MPI_FLOAT, dst, 0, MPI_COMM_WORLD );
}
else
// a secondary
{
    MPI_Recv( myData, localSize, MPI_FLOAT, BOSS, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE );
    // do something with this subset of the data
}
```
In Distributed Computing, You Often Hear About These Design Patterns

- **Broadcast**
- **Gather**
- **Scatter**
Scatter and Gather Usually Go Together

Note surprisingly, this is referred to as Scatter/Gather
MPI Scatter

Take a data array, break it into ~equal portions, and send it to each CPU

```c
MPI_Scatter( snd_array, snd_count, snd_type, rcv_array, rcv_count, rcv_type, src, MPI_COMM_WORLD );
```

- The total large array to split up
- # elements to send per-processor
- Local array to store this processor’s piece in
- # elements to receive per-processor
- This is who is doing the sending – everyone else is receiving

Both the sender and receivers need to execute **MPI_Scatter**. There is no separate receive function
MPI Gather

Both the sender and receivers need to execute MPI_Gather.
There is no separate receive function.
The Compute : Communicate Ratio still applies, except that it is even more important now because there is much more overhead in the Communicate portion.

This pattern of breaking a big problem up into pieces, sending them to different CPUs, computing on the pieces, and getting the results back is very common. That’s why MPI has its own scatter and gather functions.
#include <stdio.h>
#include <math.h>
#include <mpi.h>

const float RHO = 8050.;
const float C = 0.466;
const float K = 20.;
float k_over_rho_c = K / (RHO*C); // units of m^2/sec NOTE: this cannot be a const!
// K / (RHO*C) = 5.33x10^-6 m^2/sec

const float DX = 1.0;
const float DT = 1.0;

#define BOSS 0
#define NUMELEMENTS (8*1024*1024)
#define NUM_TIME_STEPS 4
#define DEBUG false

float * NextTemps; // per-processor array to hold computer next-values
int NumCpus; // total # of cpus involved
int PPSize; // per-processor local array size
float * PPTemps; // per-processor local array temperature data
float * TempData; // the overall NUMELEMENTS-big temperature data

void DoOneTimeStep(int);
int main(int argc, char *argv[])
{
 MPI_Init(&argc, &argv);

 int me; // which one I am

 MPI_Comm_size(MPI_COMM_WORLD, &NumCpus);
 MPI_Comm_rank(MPI_COMM_WORLD, &me);

 // decide how much data to send to each processor:
 PPSize = NUMELEMENTS / NumCpus; // assuming it comes out evenly
 PPTemps = new float [PPSize]; // all processors now have this uninitialized Local array
 NextTemps = new float [PPSize]; // all processors now have this uninitialized local array too

 // broadcast the constant:
 MPI_Bcast((void *)&k_over_rho_c, 1, MPI_FLOAT, BOSS, MPI_COMM_WORLD);
if(me == BOSS) // this is the data-creator
{
 TempData = new float [NUMELEMENTS];
 for(int i = 0; i < NUMELEMENTS; i++)
 TempData[i] = 0.;
 TempData[NUMELEMENTS/2] = 100.;
}

MPI_Scatter(TempData, PPSize, MPI_FLOAT, PPTemps, PPSize, MPI_FLOAT,
 BOSS, MPI_COMM_WORLD);
// all the PPTemps arrays have now been filled
// do the time steps:

double time0 = MPI_Wtime();

for(int steps = 0; steps < NUM_TIME_STEPS; steps++)
{
 // do the computation for one time step:
 DoOneTimeStep(me);

 // ask for all the data:
 #ifdef WANT_EACH_TIME_STEPS_DATA
 MPI_Gather(PPTemps, PPSize, MPI_FLOAT, TempData, PPSize, MPI_FLOAT, BOSS, MPI_COMM_WORLD);
 #endif

 #ifndef WANT_EACH_TIME_STEPS_DATA
 MPI_Gather(PPTemps, PPSize, MPI_FLOAT, TempData, PPSize, MPI_FLOAT, BOSS, MPI_COMM_WORLD);
 #endif

 double time1 = MPI_Wtime();
if(me == BOSS)
{
 double seconds = time1 - time0;
 double performance =
 (double)NUM_TIME_STEPS * (double)NUMELEMENTS / seconds / 1000000.;
 // mega-elements computed per second
 fprintf(stderr, "%d, %10d, %8.2lf\n", NumCpus, NUMELEMENTS, performance);
}

MPI_Finalize();
return 0;
void DoOneTimeStep(int me)
{
 MPI_Status status;

 // send out the left and right end values:
 // (the tag is from the point of view of the sender)
 if(me != 0) // i.e., if i'm not the first group on the left
 {
 // send my PPTemps[0] to me-1 using tag 'L'
 MPI_Send(&PPTemps[0], 1, MPI_FLOAT, me-1, 'L', MPI_COMM_WORLD);
 if(DEBUG) fprintf(stderr, "%3d sent 'L' to %3d\n", me, me-1);
 }

 if(me != NumCpus-1) // i.e., not the last group on the right
 {
 // send my PPTemps[PPSize-1] to me+1 using tag 'R'
 MPI_Send(&PPTemps[PPSize-1], 1, MPI_FLOAT, me+1, 'R', MPI_COMM_WORLD);
 if(DEBUG) fprintf(stderr, "%3d sent 'R' to %3d\n", me, me+1);
 }
}
float left = 0.;
float right = 0.;

if(me != 0) // i.e., if i'm not the first group on the left
{
 // receive my "left" from me-1 using tag 'R'
 MPI_Recv(&left, 1, MPI_FLOAT, me-1, 'R', MPI_COMM_WORLD, &status);
 if(DEBUG) fprintf(stderr, "%3d received 'R' from %3d\n", me, me-1);
}

if(me != NumCpus-1) // i.e., not the last group on the right
{
 // receive my "right" from me+1 using tag 'L'
 MPI_Recv(&right, 1, MPI_FLOAT, me+1, 'L', MPI_COMM_WORLD, &status);
 if(DEBUG) fprintf(stderr, "%3d received 'L' from %3d\n", me, me+1);
}
Sharing Values Across the Boundaries

1 sent 'L' to 0
1 sent 'R' to 2
2 sent 'L' to 1
2 sent 'R' to 3
2 received 'R' from 1
0 sent 'R' to 1
0 received 'L' from 1
1 received 'R' from 0
1 received 'L' from 2
3 sent 'L' to 2
3 received 'R' from 2
2 received 'L' from 3
1D Compute-to-Communicate Ratio

Compute : Communicate ratio = N : 2

where N is the number of compute cells per processor

In the above drawing, Compute : Communicate is 4 : 2
DoOneTimeStep, III

// first element on the left (0):
{
 float dtemp = (k_over_rho_c *
 (left - 2.*PPTemps[0] + PPTemps[1]) / (DX*DX)) * DT;
 NextTemps[0] = PPTemps[0] + dtemp;
}

// all the nodes in the middle:
for(int i = 1; i < PPSize-1; i++)
{
 float dtemp = (k_over_rho_c *
 (PPTemps[i-1] - 2.*PPTemps[i] + PPTemps[i+1]) / (DX*DX)) * DT;
 NextTemps[i] = PPTemps[i] + dtemp;
}

// last element on the right (PPSize-1):
{
 float dtemp = (k_over_rho_c *
 (PPTemps[PPSize-2] - 2.*PPTemps[PPSize-1] + right) / (DX*DX)) * DT;
 NextTemps[PPSize-1] = PPTemps[PPSize-1] + dtemp;
}
// update the local dataset:

for(int i = 0; i < PPSize; i++)
{
 PPTemps[i] = NextTemps[i];
}

Mega-Elements Computed Per Second vs. Number of Elements

- Number of Elements
- Mega-Elements Computed Per Second
- Number of Processors
Low Dataset-Size MPI Performance

Mega-Elements Computed Per Second vs. Number of Elements

Mega-Elements Computed Per Second vs. Number of Elements

Number of Elements

Number of Processors
The graph illustrates the number of mega-elements computed per second as a function of the number of processors. It shows performance for different numbers of elements:

- 1024
- 8192
- 65536
- 524288
- 4194304
- 16777216
- 33554432

As the number of processors increases, the number of elements computed per second also increases. The graph indicates that with more processors, the system can handle a larger number of elements, thereby improving performance.
Using MPI and OpenMP on 13,680 nodes (437,760 cores) of the Cray XE6 at NCSA at the University of Illinois

From: Peter Johnsen, Mark Straka, Melvyn Shapiro, Alan Norton, Thomas Galarneau, *Petascale WRF Simulation of Hurricane Sandy.*
MPI Reduction

`MPI_Reduce(partialResult, globalResult, count, type, operator, dst, MPI_COMM_WORLD);`

- Where the partial result is stored on each CPU
- Place to store the full result on the dst CPU
- Number of elements in the partial result
- MPI_MIN
- MPI_MAX
- MPI_SUM
- MPI_PROD
- MPI_MINLOC
- MPI_MAXLOC
- MPI_BAND
- MPI_BOR
- MPI_LAND
- MPI_LOR
- MPI_BXOR
- MPI_CHAR
- MPI_INT
- MPI_LONG
- MPI_FLOAT
- MPI_DOUBLE

This really should be called **Scatter/Gather/Reduction**

Both the sender and receivers need to execute **MPI_Reduce**. There is no separate receive function.
MPI Reduction Example

// gratuitous use of a reduce -- average all the temperatures:

float partialSum = 0.;
for(int i = 0; i < PPSize; i++)
 partialSum += PPTemps[i];

float globalSum = 0.;
MPI_Reduce(&partialSum, &globalSum, 1, MPI_FLOAT, MPI_SUM, BOSS, MPI_COMM_WORLD);

if(me == BOSS)
 fprintf(stderr, "Average temperature = %f\n", globalSum/(float)NUMELEMENTS);
MPI Barriers

MPI_BARRIER(MPI_COMM_WORLD);

Distributed Processors:

Time

0 1 2 3 4 5

All CPUs must execute the call to MPI_BARRIER() before any of the CPUs can move past it. That is, each CPU’s MPI_BARRIER() blocks until all CPUs execute a call to MPI_BARRIER().
MPI Derived Types

Idea: In addition to types MPI_INT, MPI_FLOAT, etc., allow the creation of new MPI types so that you can transmit an "array of structures".

Reason: There is significant overhead with each transmission. Better to send one entire array of structures instead of sending several arrays separately.

```c
MPI_Type_create_struct(count, blocklengths, displacements, types, datatype);
```

```c
struct point {
    int pointSize;
    float x, y, z;
};
```

```c
MPI_Datatype MPI_POINT;
int blocklengths[ ] = { 1, 1, 1, 1 };
int displacements[ ] = { 0, 4, 8, 12 };
MPI_type types[ ] = { MPI_INT, MPI_FLOAT, MPI_FLOAT, MPI_FLOAT };
MPI_Type_create_struct(4, blocklengths, displacements, types, &MPI_POINT);
```

You can now use MPI_POINT everywhere you could have used MPI_INT, MPI_FLOAT, etc.
MPI Timing

```c
double MPI_Wtick();
```

Returns the resolution of the clock, in seconds.

```c
double MPI_Wtime();
```

Returns the time, in seconds, since “some time in the past”.

Warning: the clocks on the different CPUs are not guaranteed to be synchronized!
MPI Status-Checking

Some MPI calls have a `&status` in their argument list.

The `status` argument is declared to be of type `MPI_Status`, which is defined like this:

```c
typedef struct _MPI_Status
{
    int MPI_SOURCE;
    int MPI_TAG;
    int MPI_ERROR;
} MPI_Status;
```

- **MPI_SOURCE** is the rank of the node who sent this
- **MPI_TAG** is the tag used during the send
- **MPI_ERROR** is the error number that occurred

Example:
```c
MPI_Status status;
MPI_Recv( myData, MYDATA_SIZE, MPI_CHAR, BOSS, MPI_ANY_TAG, MPI_COMM_WORLD, &status);
fprintf( stderr, "Tag = %d\n", status.MPI_TAG );
```
MPI Error Codes

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPI_SUCCESS</td>
<td>No error</td>
</tr>
<tr>
<td>MPI_ERR_BUFFER</td>
<td>Invalid buffer pointer</td>
</tr>
<tr>
<td>MPI_ERR_COUNT</td>
<td>Invalid count argument</td>
</tr>
<tr>
<td>MPI_ERR_TYPE</td>
<td>Invalid datatype argument</td>
</tr>
<tr>
<td>MPI_ERR_TAG</td>
<td>Invalid tag argument</td>
</tr>
<tr>
<td>MPI_ERR_COMM</td>
<td>Invalid communicator</td>
</tr>
<tr>
<td>MPI_ERR_RANK</td>
<td>Invalid rank</td>
</tr>
<tr>
<td>MPI_ERR_REQUEST</td>
<td>Invalid request (handle)</td>
</tr>
<tr>
<td>MPI_ERR_ROOT</td>
<td>Invalid root</td>
</tr>
<tr>
<td>MPI_ERR_GROUP</td>
<td>Invalid group</td>
</tr>
<tr>
<td>MPI_ERR_OP</td>
<td>Invalid operation</td>
</tr>
<tr>
<td>MPI_ERR_TOPOLOGY</td>
<td>Invalid topology</td>
</tr>
<tr>
<td>MPI_ERR_DIMS</td>
<td>Invalid dimension argument</td>
</tr>
<tr>
<td>MPI_ERR_ARG</td>
<td>Invalid argument of some other kind</td>
</tr>
<tr>
<td>MPI_ERR_UNKNOWN</td>
<td>Unknown error</td>
</tr>
<tr>
<td>MPI_ERR_TRUNCATE</td>
<td>Message truncated on receive</td>
</tr>
<tr>
<td>MPI_ERR_OTHER</td>
<td>Known error not in this list</td>
</tr>
<tr>
<td>MPI_ERR_INTERNAL</td>
<td>Internal MPI (implementation) error</td>
</tr>
<tr>
<td>MPI_ERR_IN_STATUS</td>
<td>Error code is in status</td>
</tr>
<tr>
<td>MPI_ERR_PENDING</td>
<td>Pending request</td>
</tr>
<tr>
<td>MPI_ERR_FILE</td>
<td>Invalid file handle</td>
</tr>
<tr>
<td>MPI_ERR_NOTSAME</td>
<td>Collective argument not identical on all processes, or collective routines called in a different order by different processes</td>
</tr>
<tr>
<td>MPI_ERR_AMODE</td>
<td>Error related to the amode passed to MPI_FILE_OPEN</td>
</tr>
<tr>
<td>MPI_ERR_UNSUPPORTED_DATAREP</td>
<td>Unsupported datarep passed to MPI_FILE_SET_VIEW</td>
</tr>
<tr>
<td>MPI_ERR_UNSUPPORTED_OPERATION</td>
<td>Unsupported operation, such as seeking on a file which supports sequential access only</td>
</tr>
<tr>
<td>MPI_ERR_NO_SUCH_FILE</td>
<td>File does not exist</td>
</tr>
<tr>
<td>MPI_ERR_FILE_EXISTS</td>
<td>File exists</td>
</tr>
<tr>
<td>MPI_ERR_BAD_FILE</td>
<td>Invalid file name (e.g., path name too long)</td>
</tr>
<tr>
<td>MPI_ERR_ACCESS</td>
<td>Permission denied</td>
</tr>
<tr>
<td>MPI_ERR_NO_SPACE</td>
<td>Not enough space</td>
</tr>
<tr>
<td>MPI_ERR_QUOTA</td>
<td>Quota exceeded</td>
</tr>
<tr>
<td>MPI_ERR_READONLY</td>
<td>Read-only file or file system</td>
</tr>
<tr>
<td>MPI_ERR_FILE_INUSE</td>
<td>File operation could not be completed, as the file is currently open by some process</td>
</tr>
<tr>
<td>MPI_ERR_CONV</td>
<td>Conversion functions could not be registered because a data representation identifier that was already defined was passed to MPI_REGISTER_DATAREP</td>
</tr>
<tr>
<td>MPI_ERR_IO</td>
<td>An error occurred in a user supplied data conversion function</td>
</tr>
<tr>
<td>MPI_ERR_convert</td>
<td>Other I/O error</td>
</tr>
<tr>
<td>MPI_ERR_LASTCODE</td>
<td>Last error code</td>
</tr>
</tbody>
</table>

Invalid file handle:

- Collective argument not identical on all processes, or collective routines called in a different order by different processes
- Error related to the amode passed to MPI_FILE_OPEN
- Unsupported datarep passed to MPI_FILE_SET_VIEW
- Unsupported operation, such as seeking on a file which supports sequential access only
- File does not exist
- File exists
- Invalid file name (e.g., path name too long)
- Permission denied
- Not enough space
- Quota exceeded
- Read-only file or file system
- File operation could not be completed, as the file is currently open by some process
- Conversion functions could not be registered because a data representation identifier that was already defined was passed to MPI_REGISTER_DATAREP
- An error occurred in a user supplied data conversion function
- Other I/O error
- Last error code
Example: Autocorrelation
Autocorrelation – More than Just a Scatter

NUMELEMENTS

Divide NUMELEMENTS into pieces for the NumCpus (this is what MPI_Scatter does)

NUMELEMENTS
NumCpus

NUMELEMENTS
NumCpus

NUMELEMENTS
NumCpus

NUMELEMENTS
NumCpus

NUMELEMENTS
NumCpus

NUMELEMENTS
NumCpus

But, in the Autocorrelation case, we need MAXSHIFTS more data values for each CPU

NUMELEMENTS
NumCpus
Autocorrelation – How the Shifting Works

Shift = 0
NUMELEMENTS
NumCpus
MAXSHIFTS

Shift = 1
NUMELEMENTS
NumCpus
MAXSHIFTS

Shift = 2
NUMELEMENTS
NumCpus
MAXSHIFTS

Shift = 3
NUMELEMENTS
NumCpus
MAXSHIFTS

Shift = MAXSHIFTS-1
NUMELEMENTS
NumCpus
MAXSHIFTS