
1

mjb – March 26, 2025

1

Computer Graphics

The Message Passing Interface (MPI):
Parallelism on Distributed CPUs

http://mpi-forum.org
https://www.open-mpi.org/

mpi.pptx

Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

mjb – March 26, 2025

2

Computer Graphics

http://mpi-forum.org
This is the definitive reference for the MPI standard. Go here if you
want to read the official specification, which, BTW, continues to evolve.

https://www.open-mpi.org/
This consortium formed later. This is the open source version of MPI.
If you want to start using MPI, I recommend you look here.
This is the MPI that the COE systems use

Why Two URLs?

https://www.open-mpi.org/doc/v4.0/
This URL is also really good – it is a link to all of the MPI man pages

mjb – March 26, 2025

3

Computer Graphics

The Open MPI Consortium

mjb – March 26, 2025

4

Computer Graphics

MPI: The Basic Idea

Network

• • •CPU

Memory

CPU

Memory

Programs on different CPUs coordinate computations by
passing messages between each other

Note: Each CPU in the MPI “cluster” must be prepared ahead of time by
having the MPI server code installed on it. It must then have that server code
running and listening on its socket connection.

Each MPI CPU must also have an integer ID assigned to it (called its rank).

2

mjb – March 26, 2025

5

Computer Graphics

This is how modern supercomputers work!

The Texas Advanced Computing Center’s Frontera supercomputer

mjb – March 26, 2025

6

Computer Graphics

The Oakridge National Lab Frontier supercomputer

• 50,000 processors
• 38,000 GPUs
• >1 exaflop (1018)
• 27 MW

This is how modern supercomputers work!

mjb – March 26, 2025

7

Computer Graphics

This paradigm is how modern supercomputers work!

mjb – March 26, 2025

8

Computer Graphics

How to SSH to the COE MPI Cluster

flip3 151% ssh submit-c.hpc.engr.oregonstate.edu

submit-c 142% module load slurm
submit-c 143% module load openmpi

ssh over to an MPI submission machine --
submit-a and submit-b will also work

BTW, you can find out more about the COE cluster here:
https://it.engineering.oregonstate.edu/hpc

The College of Engineering HPC cluster is a heterogeneous mix of over 130 servers
providing 4,800 CPU cores, over 230 GPUs, and over 50 TB of total RAM. The systems
are connected via gigabit ethernet and Infiniband. Most of the latest servers utilize Mellanox
EDR or HDR InfiniBand network connection. The cluster also has access to 500TB global
scratch space. The CoE HPC Cluster is rated at over 2,200 peak TFLOPS (double-
precision).

Type these right away to set your path correctly

3

mjb – March 26, 2025

9

Computer Graphics

Compiling and Running

mpiexec -mca btl self,tcp -np 4 program

mpicc -o program program.c . . .

mpic++ -o program program.cpp . . .

of CPUs (processors) to use

or

C

C++

All distributed CPUs execute the
same program at the same time

Warning – use mpic++ and mpiexec !

Don’t use g++.
Don’t run by just typing the name of the executable!

mjb – March 26, 2025

10

Computer Graphics

Running with a bash Batch Script

submit-c 143% sbatch submit.bash
Submitted batch job 258759

submit.bash:

#!/bin/bash
#SBATCH -J Fourier
#SBATCH -A cs475-575
#SBATCH -p classmpitest
#SBATCH -N 8 # number of nodes
#SBATCH -n 8 # number of tasks
#SBATCH -o mpiproject.out
#SBATCH -e mpiproject.err
#SBATCH --mail-type=END,FAIL
#SBATCH --mail-user=joeparallel@oregonstate.edu
module load openmpi
mpic++ mpiproject.cpp -o mpiproject -lm
mpiexec -mca btl self,tcp -np 4 ./mpiproject

This is the partition name that we use for our class when
debugging and testing your program. Use classmpifinal
for taking your final performance numbers.

Your Job Name

These 3 lines are bash code

mjb – March 26, 2025

11

Computer Graphics

What is the Difference Between the Partitions
classmpitest and classmpifinal?

classmpitest lets your program get into the system sooner, but it
might be running alongside other jobs, so its performance might suffer.
But, you don't care because you are just compiling and debugging, not
taking performance numbers for your report.

classmpifinal makes your program wait in line until it can get
dedicated resources so that you get performance results that are much
more representative of what the machines can do, and thus are worthy
to be listed in your report.

mjb – March 26, 2025

12

Computer Graphics

Auto-Notifications via Email

#SBATCH --mail-user=joeparallel@oregonstate.edu

You don’t have to ask the system to email information to you, but if you do,
please be sure you spell your own email address correctly!

Our IT people are getting really tired of fielding the bounced emails when
people misspell their own email address.

4

mjb – March 26, 2025

13

Computer Graphics

submit-c 143% sbatch submit.bash
Submitted batch job 258759

submit-c 144% scancel 258759

Use slurm’s scancel if your Job Needs to Be Killed

mjb – March 26, 2025

14

Computer Graphics

#include <mpi.h>

int
main(int argc, char *argv[])
{
• • •

MPI_Init(&argc, &argv);

• • •

MPI_Finalize();
return 0;

}

Setting Up and Finishing MPI

You don’t need to process command line arguments if you don’t want to.
You can just call MPI_Init() as:

MPI_Init(NULL, NULL);

mjb – March 26, 2025

15

Computer Graphics

int numCPUs; // total # of cpus involved
int me; // which one I am

MPI_Comm_size(MPI_COMM_WORLD, &numCPUs);

MPI_Comm_rank(MPI_COMM_WORLD, &me);

A communicator is a collection of CPUs that are capable of sending messages to each other

Getting information about our place in the communicator:

Rank, i.e., which one am I?

MPI Follows a Single-Program-Multiple-Data (SPMD) Model

This requires MPI server
code getting installed on
all those CPUs. That
code then needs to be
running and listening on
a socket connection.
Only an administrator
can do this.

Size, i.e., how many altogether?

Oh, look, a
communicator of

Corvallis deer!

Oh, look, a
communicator of
Corvallis turkeys!

It is then each CPU’s job to figure out
what piece of the overall problem it is
responsible for and then go do it.

mjb – March 26, 2025

16

Computer Graphics

#include <stdio.h>
#include <math.h>
#include <mpi.h>

#define THEBOSS 0

int
main(int argc, char *argv[])
{

MPI_Init(&argc, &argv);

int numCPUs; // total # of cpus involved
int me; // which one I am

MPI_Comm_size(MPI_COMM_WORLD, &numCPUs);
MPI_Comm_rank(MPI_COMM_WORLD, &me);

if(me == THEBOSS)
fprintf(stderr, "Rank %d says that we have a Communicator of size %d\n", THEBOSS, numCPUs);

else
fprintf(stderr, "Welcome from Rank %d\n", me);

MPI_Finalize();
return 0;

}

A First Test of MPI

5

mjb – March 26, 2025

17

Computer Graphics

submit-c 165% mpiexec -np 16 ./first
Welcome from Rank 13
Welcome from Rank 15
Welcome from Rank 3
Welcome from Rank 7
Welcome from Rank 5
Welcome from Rank 8
Welcome from Rank 9
Welcome from Rank 11
Rank 0 says that we have a Communicator of size 16
Welcome from Rank 1
Welcome from Rank 12
Welcome from Rank 14
Welcome from Rank 6
Welcome from Rank 2
Welcome from Rank 10
Welcome from Rank 4

submit-c 166% mpiexec -np 16 ./first
Welcome from Rank 1
Welcome from Rank 5
Welcome from Rank 7
Welcome from Rank 9
Welcome from Rank 11
Welcome from Rank 13
Welcome from Rank 15
Rank 0 says that we have a Communicator of size 16
Welcome from Rank 2
Welcome from Rank 3
Welcome from Rank 4
Welcome from Rank 6
Welcome from Rank 8
Welcome from Rank 12
Welcome from Rank 14
Welcome from Rank 10

submit-c 167% mpiexec -np 16 ./first
Welcome from Rank 9
Welcome from Rank 11
Welcome from Rank 13
Welcome from Rank 7
Welcome from Rank 1
Welcome from Rank 3
Welcome from Rank 10
Welcome from Rank 15
Welcome from Rank 4
Welcome from Rank 5
Rank 0 says that we have a Communicator of size 16
Welcome from Rank 2
Welcome from Rank 6
Welcome from Rank 8
Welcome from Rank 14
Welcome from Rank 12

submit-c 168% mpiexec -np 16 ./first
Welcome from Rank 13
Welcome from Rank 15
Welcome from Rank 7
Welcome from Rank 3
Welcome from Rank 5
Welcome from Rank 9
Welcome from Rank 11
Welcome from Rank 1
Welcome from Rank 12
Welcome from Rank 14
Welcome from Rank 4
Welcome from Rank 2
Rank 0 says that we have a Communicator of size 16
Welcome from Rank 8
Welcome from Rank 10
Welcome from Rank 6

mjb – March 26, 2025

18

Computer Graphics

So, we have a group (a “communicator”) of distributed CPUs.
How do they communicate about what work they are supposed to do?

Who am I?
Where am I?

What am I supposed to be doing?
Hello? Is anyone listening out there?

Example: You could coordinate the units of our DGX system using MPI

mjb – March 26, 2025

19

Computer Graphics

MPI_Bcast(array, count, type, src, MPI_COMM_WORLD);

A Good Place to Start:
MPI Broadcasting

Both the sender and receivers need to execute MPI_Bcast –
there is no separate receive function

Address of the data
to send from if you
are the src node;

Address of the data
to receive into if you
are not

MPI_CHAR
MPI_INT
MPI_LONG
MPI_FLOAT
MPI_DOUBLE
• • •

rank of the CPU
doing the sending# elements

src node

≠ src nodes

MPI allows you to subset the
CPUs you want to get
involved in this operation.
MPI_COMM_WORLD says
"use them all, don't subset"

mjb – March 26, 2025

20

Computer Graphics

int numCPUs;
int me;
float k_over_rho_c; // the THEBOSS node will know this value, the others won’t (yet)

#define THEBOSS 0

MPI_Comm_size(MPI_COMM_WORLD, &numCPUs); // how many are in this communicator
MPI_Comm_rank(MPI_COMM_WORLD, &me); // which one am I?
. . .
if(me == THEBOSS)
{

<< read k_over_rho_c from the data file >>
}

MPI_Bcast(&k_over_rho_c, 1, MPI_FLOAT, THEBOSS, MPI_COMM_WORLD);// send if I am THEBOSS, and receive if not

MPI Broadcast Example

1 1

2

2i i i
i

T T Tk
T t

C x

This is our heat transfer equation
from before. Clearly, every CPU
will need to know this value.

src node

≠ src nodes

I am the THEBOSS: this identifies this call as a send

6

mjb – March 26, 2025

21

Computer Graphics

How Does this Work?
Think Star Trek Wormholes!

mjb – March 26, 2025

22

Computer Graphics

MPI_Send(array, numToSend, type, dst, tag, MPI_COMM_WORLD);

MPI_CHAR
MPI_INT
MPI_LONG
MPI_FLOAT
MPI_DOUBLE
• • •

rank of the CPU
to send to

Rules:

• One message from a specific src to a specific dst cannot overtake a previous message from the
same src to the same dst.

• MPI_Send() blocks until the transfer is far enough along that array can be destroyed or re-used.

• There are no guarantees on order from different src’s .

Sending Data from One Source CPU to Just One Destination CPU

An integer or character to
differentiate this
transmission from any
other transmission.
I like to use chars.

address of data to send from

elements
(note: this is the number
of elements, not the
number of bytes!)

src node dst node

MPI allows you to
subset the CPUs you
want to get involved in
this operation.
MPI_COMM_WORLD
says "use them all,
don't subset"

mjb – March 26, 2025

23

Computer Graphics

MPI_Recv(array, maxCanReceive, type, src, tag, MPI_COMM_WORLD, &status);

Rules:

• The receiver blocks waiting for data that matches what it declares to be looking for

• One message from a specific src to a specific dst cannot overtake a previous message from
the same src to the same dst

• There are no guarantees on the order from different src’s

• The order from different src’s could be implied in the tag

• status is type MPI_Status – the “&status” can be replaced with MPI_STATUS_IGNORE

Receiving Data in a Destination CPU from a Source CPU

MPI_CHAR
MPI_INT
MPI_LONG
MPI_FLOAT
MPI_DOUBLE
• • •

Rank of the CPU
we are expecting
to get a
transmission from

An integer or character to
differentiate what transmission we
are looking for with this call (be
sure this matches what the sender
is sending!). I like to use chars.

address of data to receive into
Type = MPI_Status

elements we can
receive, at most

src node dst node
mjb – March 26, 2025

24

Computer Graphics

int numCPUs;
int me;
#define MYDATA_SIZE 128
char mydata[MYDATA_SIZE];
#define THEBOSS 0

MPI_Comm_size(MPI_COMM_WORLD, &numCPUs);
MPI_Comm_rank(MPI_COMM_WORLD, &me);

if(me == THEBOSS) // the primary
{

for(int dst = 0; dst < numCPUs; dst++)
{

if(dst != THEBOSS)
{

char *InputData = “Hello, Beavers!”;
MPI_Send(InputData, strlen(InputData)+1, MPI_CHAR, dst, ‘B’, MPI_COMM_WORLD);

}
}

}
else // a secondary
{

MPI_Recv(myData, MYDATA_SIZE, MPI_CHAR, THEBOSS, ‘B’, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
printf(“ ‘%s’ from rank # %d\n”, in, me);

}

Example

Remember, this identical code runs on all CPUs:

Be sure the receiving tag matches
the sending tag

You are highly discouraged from sending to yourself. Because both the send and receive
are capable of blocking, the result could be deadlock.

The tag to label this
transmission withThe tag to expect

7

mjb – March 26, 2025

25

Computer Graphics

MPI_Send()

MPI
Transmission

Buffer

MPI_Recv()

MPI
Transmission

Buffer

How does MPI let the Sender perform an MPI_Send() even if
the Receivers are not ready to MPI_Recv()?

MPI_Send() blocks until the transfer is far enough along that the array
can be destroyed or re-used.

Sender Receiver

mjb – March 26, 2025

26

Computer Graphics

#define NUMELEMENTS ?????
int numCPUs;
int me;
#define THEBOSS 0

MPI_Comm_size(MPI_COMM_WORLD, &numCPUs);
MPI_Comm_rank(MPI_COMM_WORLD, &me);

int PPSize = NUMELEMENTS / numCPUs; // per-processor data size -- assuming it comes out evenly
float *myData = new float [PPSize];

if(me == THEBOSS) // the sender
{

float *InputData = new float [NUMELEMENTS];
<< read the full input data into InputData from disk >>
for(int dst = 0; dst < numCPUs; dst++)
{

if(dst != THEBOSS)
{

MPI_Send(&InputData[dst*PPSize], PPSize, MPI_FLOAT, dst, 0, MPI_COMM_WORLD);
}

}
}
else // a receiver
{

MPI_Recv(myData, PPSize, MPI_FLOAT, THEBOSS, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);
// do something with this subset of the data

}

Another Example

You typically don’t send the entire workload to each dst – you just send part of it, like this:

The address of node dst's share of the data to send

Each dst node will store its data in this array

mjb – March 26, 2025

27

Computer Graphics

In Distributed Computing, You Often Hear About These Design Patterns

Gather

Broadcast

Scatter

This sends the same data to each CPU

This sends pieces of the data to
each CPU

This brings back pieces of the results from
each CPU

mjb – March 26, 2025

28

Computer Graphics

Scatter and Gather Usually Go Together

Gather

Scatter

Note surprisingly, this is referred to by the combined
term Scatter/Gather

This sends pieces of the data to each CPU

This brings back pieces of the results from each CPU

8

mjb – March 26, 2025

29

Computer Graphics

MPI_Scatter(snd_array, snd_count, snd_type, rcv_array, rcv_count, rcv_type, src, MPI_COMM_WORLD);

MPI Scatter

Scatter

MPI_CHAR
MPI_INT
MPI_LONG
MPI_FLOAT
MPI_DOUBLE
• • •

MPI_CHAR
MPI_INT
MPI_LONG
MPI_FLOAT
MPI_DOUBLE
• • •

elements to send
per-processor

elements to receive
per-processor

Take a data array, break it into ~equal portions, and send it to each CPU

Both the sender and receivers need to execute MPI_Scatter.
There is no separate receive function

The total large array
to split up

Local array to store
this CPU's piece in This is who is doing

the sending –
everyone else is

receiving

mjb – March 26, 2025

30

Computer Graphics

MPI_Gather(snd_array, snd_count, snd_type, rcv_array, rcv_count, rcv_type, dst, MPI_COMM_WORLD);

MPI Gather

Gather

MPI_CHAR
MPI_INT
MPI_LONG
MPI_FLOAT
MPI_DOUBLE
• • •

MPI_CHAR
MPI_INT
MPI_LONG
MPI_FLOAT
MPI_DOUBLE
• • •

elements to send
back per-processor

The total large array
to put the pieces

back into

elements to return
per-processor

This is who is doing
the receiving –

everyone else is
sending

Local array that this
CPU is sending back

Both the sender and receivers need to execute MPI_Gather.
There is no separate transmit function

mjb – March 26, 2025

31

Computer Graphics

Remember This? It’s Baaaaaack as a complete
Scatter/Gather Example

CPU #0 CPU #1 CPU #2 CPU #3

The Compute : Communicate Ratio still applies, except that it is even more important now
because there is much more overhead in the Communicate portion.

This pattern of breaking a big problem up into pieces, sending them to different CPUs,
computing on the pieces, and getting the results back is very common. That’s why MPI has
its own scatter and gather functions.

mjb – March 26, 2025

32

Computer Graphics

heat.cpp, I

#include <stdio.h>
#include <math.h>
#include <mpi.h>

const float RHO = 8050.;
const float C = 0.466;
const float K = 20.;
float k_over_rho_c = K / (RHO*C); // units of m^2/sec NOTE: this cannot be a const!
// K / (RHO*C) = 5.33x10^-6 m^2/sec

const float DX = 1.0;
const float DT = 1.0;

#define THEBOSS 0

#define NUMELEMENTS (8*1024*1024)
#define NUM_TIME_STEPS 4
#define DEBUG false

float * NextTemps; // per-processor array to hold computer next-values
int NumCpus; // total # of cpus involved
int PPSize; // per-processor local array size
float * PPTemps; // per-processor local array temperature data
float * TempData; // the overall NUMELEMENTS-big temperature data

void DoOneTimeStep(int);

9

mjb – March 26, 2025

33

Computer Graphics

int
main(int argc, char *argv[])
{

MPI_Init(&argc, &argv);

int me; // which one I am

MPI_Comm_size(MPI_COMM_WORLD, &NumCpus);
MPI_Comm_rank(MPI_COMM_WORLD, &me);

// decide how much data to send to each CPU:
PPSize = NUMELEMENTS / NumCpus; // assuming it comes out evenly
PPTemps = new float [PPSize]; // all CPUs now have this uninitialized Local array
NextTemps = new float [PPSize]; // all CPUs now have this uninitialized local array too

// broadcast the constant:
MPI_Bcast((void *)&k_over_rho_c, 1, MPI_FLOAT, THEBOSS, MPI_COMM_WORLD);

heat.cpp, II

mjb – March 26, 2025

34

Computer Graphics

if(me == THEBOSS) // this is the data-creator
{

TempData = new float [NUMELEMENTS];
for(int i = 0; i < NUMELEMENTS; i++)

TempData[i] = 0.;
TempData[NUMELEMENTS/2] = 100.;

}

MPI_Scatter(TempData, PPSize, MPI_FLOAT, PPTemps, PPSize, MPI_FLOAT,
THEBOSS, MPI_COMM_WORLD);

heat.cpp, III

mjb – March 26, 2025

35

Computer Graphics

// all the PPTemps arrays have now been filled
// do the time steps:

double time0 = MPI_Wtime();

for(int steps = 0; steps < NUM_TIME_STEPS; steps++)
{

// do the computation for one time step:
DoOneTimeStep(me);

// ask for all the data:
#ifdef WANT_EACH_TIME_STEPS_DATA_BACK

MPI_Gather(PPTemps, PPSize, MPI_FLOAT, TempData, PPSize, MPI_FLOAT,
THEBOSS, MPI_COMM_WORLD);

#endif
}

#ifndef WANT_EACH_TIME_STEPS_DATA_BACK
MPI_Gather(PPTemps, PPSize, MPI_FLOAT, TempData, PPSize, MPI_FLOAT,

THEBOSS, MPI_COMM_WORLD);
#endif

double time1 = MPI_Wtime();

heat.cpp, IV

mjb – March 26, 2025

36

Computer Graphics

if(me == THEBOSS)
{

double seconds = time1 - time0;
double performance =

(double)NUM_TIME_STEPS * (double)NUMELEMENTS / seconds / 1000000.;
// mega-elements computed per second

fprintf(stderr, "%3d, %10d, %8.2lf\n", NumCpus, NUMELEMENTS, performance);
}

MPI_Finalize();
return 0;

}

heat.cpp, V

10

mjb – March 26, 2025

37

Computer Graphics

// read from PerProcessorData[], write into NextTemps[]
void
DoOneTimeStep(int me)
{

MPI_Status status;

// send out the left and right end values:
// (the tag is from the point of view of the sender)
if(me != 0) // i.e., if i'm not the first group on the left
{

// send my PPTemps[0] to me-1 using tag 'L'
MPI_Send(&PPTemps[0], 1, MPI_FLOAT, me-1, 'L', MPI_COMM_WORLD);
if(DEBUG) fprintf(stderr, "%3d sent 'L' to %3d\n", me, me-1);

}

if(me != NumCpus-1) // i.e., not the last group on the right
{

// send my PPTemps[PPSize-1] to me+1 using tag 'R'
MPI_Send(&PPTemps[PPSize-1], 1, MPI_FLOAT, me+1, 'R', MPI_COMM_WORLD);
if(DEBUG) fprintf(stderr, "%3d sent 'R' to %3d\n", me, me+1);

}

DoOneTimeStep, I

mjb – March 26, 2025

38

Computer Graphics

float left = 0.;
float right = 0.;

if(me != 0) // i.e., if i'm not the first group on the left
{

// receive my "left" from me-1 using tag 'R'
MPI_Recv(&left, 1, MPI_FLOAT, me-1, 'R', MPI_COMM_WORLD, &status);
if(DEBUG) fprintf(stderr, "%3d received 'R' from %3d\n", me, me-1);

}

if(me != NumCpus-1) // i.e., not the last group on the right
{

// receive my "right" from me+1 using tag 'L'
MPI_Recv(&right, 1, MPI_FLOAT, me+1, 'L', MPI_COMM_WORLD, &status);
if(DEBUG) fprintf(stderr, "%3d received 'L' from %3d\n", me, me+1);

}

DoOneTimeStep, II

mjb – March 26, 2025

39

Computer Graphics

1 sent 'L' to 0
1 sent 'R' to 2
2 sent 'L' to 1
2 sent 'R' to 3
2 received 'R' from 1
0 sent 'R' to 1
0 received 'L' from 1
1 received 'R' from 0
1 received 'L' from 2
3 sent 'L' to 2
3 received 'R' from 2
2 received 'L' from 3

Sharing Values Across the Boundaries

mjb – March 26, 2025

40

Computer Graphics

// first element on the left (0):
{

float dtemp = (k_over_rho_c *
(left - 2.*PPTemps[0] + PPTemps[1]) / (DX*DX)) * DT;

NextTemps[0] = PPTemps[0] + dtemp;
}

// all the nodes in the middle:
for(int i = 1; i < PPSize-1; i++)
{

float dtemp = (k_over_rho_c *
(PPTemps[i-1] - 2.*PPTemps[i] + PPTemps[i+1]) / (DX*DX)) * DT;

NextTemps[i] = PPTemps[i] + dtemp;
}

// last element on the right (PPSize-1):
{

float dtemp = (k_over_rho_c *
(PPTemps[PPSize-2] - 2.*PPTemps[PPSize-1] + right) / (DX*DX)) * DT;

NextTemps[PPSize-1] = PPTemps[PPSize-1] + dtemp;
}

DoOneTimeStep, III

11

mjb – March 26, 2025

41

Computer Graphics

// update the local dataset:

for(int i = 0; i < PPSize; i++)
{

PPTemps[i] = NextTemps[i];
}

}

DoOneTimeStep, IV

mjb – March 26, 2025

42

Computer Graphics

M
e

g
a-

E
le

m
e

n
ts

 C
o

m
p

u
te

d
 P

e
r

S
e

co
n

d

Number of Elements

Number of
CPUs

MPI Performance

mjb – March 26, 2025

43

Computer Graphics

M
e

g
a-

E
le

m
e

n
ts

 C
o

m
p

u
te

d
 P

e
r

S
e

co
n

d

Number of CPUs
Number of
Elements

MPI Performance

mjb – March 26, 2025

44

Computer Graphics

From: Peter Johnsen, Mark Straka, Melvyn Shapiro, Alan Norton, Thomas Galarneau,
Petascale WRF Simulation of Hurricane Sandy.

Using MPI and OpenMP on 13,680 nodes (437,760 cores) of the
Cray XE6 at NCSA at the University of Illinois

12

mjb – March 26, 2025

45

Computer Graphics

MPI_Reduce(partialResult, globalResult, count, type, operator, dst, MPI_COMM_WORLD);

MPI_MIN
MPI_MAX
MPI_SUM
MPI_PROD
MPI_MINLOC
MPI_MAXLOC
MPI_LAND
MPI_BAND
MPI_LOR
MPI_BOR
MPI_LXOR
MPI_BXOR

MPI Reduction

MPI_CHAR
MPI_INT
MPI_LONG
MPI_FLOAT
MPI_DOUBLE
• • •

Who is given the
final answer

Both the sender and receivers need to execute MPI_Reduce.
There is no separate receive function

Place to store the full
result on the dst CPU

Where the partial
result is stored on
each CPU

Number of
elements in the
partial result

+ + +

Reduction

This really should be called
Scatter/Gather/Reduction

mjb – March 26, 2025

46

Computer Graphics

MPI Reduction Example

+ + +

Reduction

// gratuitous use of a reduce -- average all the temperatures:

float partialSum = 0.;
for(int i = 0; i < PPSize; i++)

partialSum += PPTemps[i];

float globalSum = 0.;
MPI_Reduce(&partialSum, &globalSum, 1, MPI_FLOAT, MPI_SUM, THEBOSS, MPI_COMM_WORLD);

if(me == THEBOSS)
fprintf(stderr, "Average temperature = %f\n", globalSum/(float)NUMELEMENTS);

mjb – March 26, 2025

47

Computer Graphics

MPI Barriers

MPI_Barrier(MPI_COMM_WORLD);

Barrier

w
a

it w
a

it w
a

it

w
a

it

w
a

it

0 1 2 3 4 5

All CPUs must execute the call to MPI_Barrier() before any of the CPUs can move past it.
That is, each CPU’s MPI_Barrier() blocks until all CPUs execute a call to MPI_Barrier().

Distributed CPUs:

Time

mjb – March 26, 2025

48

Computer Graphics

MPI Derived Types

Idea: In addition to types MPI_INT, MPI_FLOAT, etc., allow the creation of new MPI types so that you can
transmit an “array of structures”.

Reason: There is significant overhead with each transmission. Better to send one entire array of
structures instead of sending several arrays separately.

MPI_Type_create_struct(count, blocklengths, displacements, types, datatype);

struct point
{

int pointSize;
float x, y, z;

};

MPI_Datatype MPI_POINT;
int blocklengths[] = { 1, 1, 1, 1 };
int displacements[] = { 0, 4, 8, 12 };
MPI_type types[] = { MPI_INT, MPI_FLOAT, MPI_FLOAT, MPI_FLOAT);

MPI_Type_create_struct(4, blocklengths, displacements, types, &MPI_POINT);

You can now use MPI_POINT everywhere you could have used MPI_INT, MPI_FLOAT,etc.

13

mjb – March 26, 2025

49

Computer Graphics

MPI Timing

Returns the resolution of the clock, in seconds.

double MPI_Wtick();

Warning: the clocks on the different CPUs are not guaranteed to be synchronized!

Returns the time, in seconds, since “some time in the past”.

double MPI_Wtime();

mjb – March 26, 2025

50

Computer Graphics

MPI Status-Checking

• MPI_SOURCE is the rank of the node who sent this

• MPI_TAG is the tag used during the send

• MPI_ERROR is the error number that occurred

Some MPI calls have a &status in their argument list.

The status argument is declared to be of type MPI_Status, which is actually a struct:

typedef struct _MPI_Status
{

int MPI_SOURCE;
int MPI_TAG;
int MPI_ERROR;

} MPI_Status;

Example:

MPI_Status status;
MPI_Recv(myData, MYDATA_SIZE, MPI_CHAR, THEBOSS, MPI_ANY_TAG, MPI_COMM_WORLD,
&status);

fprintf(stderr, "Rank = %d, Tag = %d, Error Code = %d\n",
status.MPI_SOURCE, status.MPI_TAG, status.MPI_ERROR);

mjb – March 26, 2025

51

Computer Graphics

MPI Error Codes

