
1

mjb – March 26, 2025

1

Computer Graphics

The Open Computing Language (OpenCL)

opencl.pptx

Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

mjb – March 26, 2025

2

Computer Graphics

OpenCL

• OpenCL consists of two parts: a C/C++-callable API and a C-ish programming language.

• The OpenCL programming language can run on NVIDIA GPUs, AMD GPUs, Intel CPUs,
Intel GPUs, mobile devices, and (supposedly) FPGAs (Field-Programmable Gate Arrays).

• But, OpenCL is at its best on compute devices with large amounts of data parallelism, which
usually implies GPU usage.

• You break your computational problem up into lots and lots of small pieces. Each piece gets
farmed out to threads on the GPU.

• Each thread wakes up and is able to ask questions about where it lives in the entire collection
of (thousands of) threads. From that, it can tell what it is supposed to be working on.

• OpenCL can share data, and interoperate, with OpenGL

• There is a JavaScript implementation of OpenCL, called WebCL

• There is a JavaScript implementation of OpenGL, called WebGL

• WebCL can share data, and interoperate, with WebGL

• GPUs do not have a stack, and so the OpenCL C-ish programming language cannot do
recursion and cannot make function calls. It also can’t use pointers.

mjb – March 26, 2025

3

Computer Graphics

What Standardization Efforts Does the Khronos Group Sponsor?

mjb – March 26, 2025

4

Computer Graphics

The Khronos Group

http://www.khronos.org/opencl/
http://en.wikipedia.org/wiki/OpenCL

Who is Part of the Khronos Group?

2

mjb – March 26, 2025

5

Computer Graphics

Active OpenCL Members

mjb – March 26, 2025

6

Computer Graphics

An example of using OpenCL in a System-on-a-Chip:
Qualcomm Snapdragon – Full Linux and OpenCL

I used this as part of a project a few years ago. When
I needed to take it from place-to-place, I put it in a very
large Ziploc bag so I wouldn’t accidentally lose it! 

mjb – March 26, 2025

7

Computer Graphics

The OpenCL Paradigm

OpenCL Compiler
and Linker

CPU binary on
the Host

OpenCL binary
on the Device

C/C++ Compiler
and Linker

Your .cpp code Your .cl code

2. Send data to GPU
3. Run GPU kernel

1. Run CPU code

5. Run CPU code

9. Run CPU code

6. Send data to GPU
7. Run GPU kernel

4. Get data back from GPU

8. Get data back from GPU

mjb – March 26, 2025

8

Computer Graphics

void
ArrayMult(int n, float *a, float *b, float *c)
{

for (int i = 0; i < n; i++)
c[i] = a[i] * b[i];

}

kernel
void
ArrayMult(global float *dA, global float *dB, global float *dC)
{

int gid = get_global_id (0);
dC[gid] = dA[gid] * dB[gid];

}

OpenCL wants you to break the problem up into Pieces

If you were
writing in C/C++,
you would say:

If you were writing
in OpenCL, you
would say:

Think of this as having an implied for-loop around it,
looping through all possible values of gid

3

mjb – March 26, 2025

9

Computer Graphics

The OpenCL Language also supports Vector Parallelism

OpenCL code can be vector-oriented, meaning that it can perform a single instruction on
multiple data values at the same time (SIMD).

Vector data types are: charn, intn, floatn, where n = 2, 4, 8, or 16.

float4 f, g;
f = (float4)(1.f, 2.f, 3.f, 4.f);

float16 a16, x16, y16, z16;

f.x = 0.;
f.xy = g.zw;
x16.s89ab = f;

float16 a16 = x16 * y16 + z16;

(Note: just because the language supports it, doesn’t mean the hardware does.)

mjb – March 26, 2025

10

Computer Graphics

Device

CU CU CU

CU CU CU

Compute Unit

PE PE PE PE PE

PE PE PE PE PE

PE PE PE PE PE

Compute Units and Processing Elements are Arranged in Grids

A GPU Device is organized as a grid of
Compute Units.

Each Compute Unit is organized as a grid of
Processing Elements.

So in NVIDIA terms, their Blackwell 5090 has
170 Compute Units, each of which has 128
Processing Elements, for a grand total of 21,760
Processing Elements.

• • •

mjb – March 26, 2025

11

Computer Graphics

Work-Groups are Arranged in Grids

• The GPU’s workload is divided into a Grid of Work-Groups
• Each Block’s workload is divided into a Grid of Work-Items

Grid of Work-Groups

Grid of Work-Items

mjb – March 26, 2025

12

Computer Graphics

Grid

Work-Group
0

Work-Group
1

Work-Group
2

Work-Group
3

Work-Group
4

Work-Group
5

Work-Group 4

Work-Item
5

Work-Item
6

Work-Item
7

Work-Item
8

Work-Item
9

Work-Item
10

Work-Item
11

Work-Item
12

Work-Item
13

Work-Item
14

Work-Item
0

Work-Item
1

Work-Item
2

Work-Item
3

Work-Item
4

OpenCL Software Terminology:
Work-Groups and Work-Items are Arranged in Grids

An OpenCL program is organized as a grid of Work-Groups.

Each Work-Group is organized as a grid of Work-Items.

In terms of hardware, a Work-Group runs on a Compute Unit
and a Work-Item runs on a Processing Element (PE).

One thread is assigned to each Work-Item.

Threads are swapped on and off the PEs.

• • •

• • •http://news.cision.com

4

mjb – March 26, 2025

13

Computer Graphics

Kernel

Global Memory

Constant Memory

WorkGroup

Local Memory

Work-
Item

Work-
Item

Work-
Item

WorkGroup

Local Memory

Work-
Item

Work-
Item

Work-
Item

WorkGroup

Local Memory

Work-
Item

Work-
Item

Work-
Item

OpenCL Memory Model

WorkGroup

Shared Memory

Work-
Item

Work-
Item

Work-
Item

P
rivate

M
em

ory

P
rivate

M
em

ory

P
rivate

M
em

ory

mjb – March 26, 2025

14

Computer Graphics

Rules

• Threads can share memory with the other Threads in the same Work-Group

• Threads can synchronize with other Threads in the same Work-Group

• Global and Constant memory is accessible by all Threads in all Work-Groups

• Global and Constant memory is often cached inside a Work-Group

• Each Thread has registers and private memory

• Each Work-Group has a maximum number of registers it can use. These are
divided equally among all its Threads

mjb – March 26, 2025

15

Computer Graphics

cl_uint numPlatforms;
status = clGetPlatformIDs(0, NULL, &numPlatforms);
if(status != CL_SUCCESS)

fprintf(stderr, "clGetPlatformIDs failed (1)\n");

fprintf(stderr, "Number of Platforms = %d\n", numPlatforms);

cl_platform_id * platforms = new cl_platform_id[numPlatforms];
status = clGetPlatformIDs(numPlatforms, platforms, NULL);
if(status != CL_SUCCESS)

fprintf(stderr, "clGetPlatformIDs failed (2)\n");

status = clGetPlatformIDs(0, NULL, &numPlatforms);

status = clGetPlatformIDs(numPlatforms, platforms, NULL);

How many
to get

Where to
put them

How many total
there are

Querying the Number of Platforms (usually one)

This way of querying information is a recurring OpenCL pattern (get used to it):

mjb – March 26, 2025

16

Computer Graphics

CL_SUCCESS
CL_DEVICE_NOT_FOUND
CL_DEVICE_NOT_AVAILABLE
CL_COMPILER_NOT_AVAILABLE
CL_MEM_OBJECT_ALLOCATION_FAILURE
CL_OUT_OF_RESOURCES
CL_OUT_OF_HOST_MEMORY
CL_PROFILING_INFO_NOT_AVAILABLE
CL_MEM_COPY_OVERLAP
CL_IMAGE_FORMAT_MISMATCH
CL_IMAGE_FORMAT_NOT_SUPPORTED
CL_BUILD_PROGRAM_FAILURE
CL_MAP_FAILURE
CL_INVALID_VALUE
CL_INVALID_DEVICE_TYPE
CL_INVALID_PLATFORM
CL_INVALID_DEVICE
CL_INVALID_CONTEXT

CL_INVALID_QUEUE_PROPERTIES
CL_INVALID_COMMAND_QUEUE
CL_INVALID_HOST_PTR
CL_INVALID_MEM_OBJECT
CL_INVALID_IMAGE_FORMAT_DESCRIPTOR
CL_INVALID_IMAGE_SIZE
CL_INVALID_SAMPLER
CL_INVALID_BINARY
CL_INVALID_BUILD_OPTIONS
CL_INVALID_PROGRAM
CL_INVALID_PROGRAM_EXECUTABLE
CL_INVALID_KERNEL_NAME
CL_INVALID_KERNEL_DEFINITION
CL_INVALID_KERNEL
CL_INVALID_ARG_INDEX
CL_INVALID_ARG_VALUE
CL_INVALID_ARG_SIZE
CL_INVALID_KERNEL_ARGS
CL_INVALID_WORK_DIMENSION

OpenCL Error Codes

This one is #define’d as zero.
All the others are negative.

5

mjb – March 26, 2025

17

Computer Graphics

struct errorcode
{

cl_int statusCode;
char * meaning;

}
ErrorCodes[] =
{

{ CL_SUCCESS, “ " },
{ CL_DEVICE_NOT_FOUND, "Device Not Found" },
{ CL_DEVICE_NOT_AVAILABLE, "Device Not Available" },

. . .
{ CL_INVALID_MIP_LEVEL, "Invalid MIP Level" },
{ CL_INVALID_GLOBAL_WORK_SIZE, "Invalid Global Work Size" },

};

void
PrintCLError(cl_int errorCode, char * prefix, FILE *fp)
{

if(errorCode == CL_SUCCESS)
return;

const int numErrorCodes = sizeof(ErrorCodes) / sizeof(struct errorcode);
char * meaning = “ ";
for(int i = 0; i < numErrorCodes; i++)
{

if(errorCode == ErrorCodes[i].statusCode)
{

meaning = ErrorCodes[i].meaning;
break;

}
}

fprintf(fp, "%s %s\n", prefix, meaning);
}

A Way to Print OpenCL Error Codes – get this from our Class Resources Page

mjb – March 26, 2025

18

Computer Graphics

// find out how many devices are attached to each platform and get their ids:

status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 0, NULL, &numDevices);

devices = new cl_device_id[numDevices];

status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, numDevices, devices, NULL);

Querying the Number of Devices on a Platform

cl_device_id device;

status = clGetDeviceIDs(platform, CL_DEVICE_TYPE_GPU, 1, &device, NULL);

Getting Just the GPU Device(s)

mjb – March 26, 2025

19

Computer Graphics

// find out how many platforms are attached here and get their ids:

cl_uint numPlatforms;
status = clGetPlatformIDs(0, NULL, &numPlatforms);
if(status != CL_SUCCESS)

fprintf(stderr, "clGetPlatformIDs failed (1)\n");

fprintf(OUTPUT, "Number of Platforms = %d\n", numPlatforms);

cl_platform_id *platforms = new cl_platform_id[numPlatforms];
status = clGetPlatformIDs(numPlatforms, platforms, NULL);
if(status != CL_SUCCESS)

fprintf(stderr, "clGetPlatformIDs failed (2)\n");

cl_uint numDevices;
cl_device_id *devices;

for(int i = 0; i < (int)numPlatforms; i++)
{

fprintf(OUTPUT, "Platform #%d:\n", i);
size_t size;
char *str;

clGetPlatformInfo(platforms[i], CL_PLATFORM_NAME, 0, NULL, &size);
str = new char [size];
clGetPlatformInfo(platforms[i], CL_PLATFORM_NAME, size, str, NULL);
fprintf(OUTPUT, "\tName = '%s'\n", str);
delete[] str;

clGetPlatformInfo(platforms[i], CL_PLATFORM_VENDOR, 0, NULL, &size);
str = new char [size];
clGetPlatformInfo(platforms[i], CL_PLATFORM_VENDOR, size, str, NULL);
fprintf(OUTPUT, "\tVendor = '%s'\n", str);
delete[] str;

Querying the Device (this is really useful!), I

mjb – March 26, 2025

20

Computer Graphics

clGetPlatformInfo(platforms[i], CL_PLATFORM_VERSION, 0, NULL, &size);
str = new char [size];
clGetPlatformInfo(platforms[i], CL_PLATFORM_VERSION, size, str, NULL);
fprintf(OUTPUT, "\tVersion = '%s'\n", str);
delete[] str;

clGetPlatformInfo(platforms[i], CL_PLATFORM_PROFILE, 0, NULL, &size);
str = new char [size];
clGetPlatformInfo(platforms[i], CL_PLATFORM_PROFILE, size, str, NULL);
fprintf(OUTPUT, "\tProfile = '%s'\n", str);
delete[] str;

// find out how many devices are attached to each platform and get their ids:

status = clGetDeviceIDs(platforms[i], CL_DEVICE_TYPE_ALL, 0, NULL, &numDevices);
if(status != CL_SUCCESS)

fprintf(stderr, "clGetDeviceIDs failed (2)\n");

devices = new cl_device_id[numDevices];
status = clGetDeviceIDs(platforms[i], CL_DEVICE_TYPE_ALL, numDevices, devices, NULL);
if(status != CL_SUCCESS)

fprintf(stderr, "clGetDeviceIDs failed (2)\n");

for(int j = 0; j < (int)numDevices; j++)
{

fprintf(OUTPUT, "\tDevice #%d:\n", j);
size_t size;
cl_device_type type;
cl_uint ui;
size_t sizes[3] = { 0, 0, 0 };

clGetDeviceInfo(devices[j], CL_DEVICE_TYPE, sizeof(type), &type, NULL);
fprintf(OUTPUT, "\t\tType = 0x%04x = ", type);

Querying the Device, II

6

mjb – March 26, 2025

21

Computer Graphics

switch(type)
{

case CL_DEVICE_TYPE_CPU:
fprintf(OUTPUT, "CL_DEVICE_TYPE_CPU\n");
break;

case CL_DEVICE_TYPE_GPU:
fprintf(OUTPUT, "CL_DEVICE_TYPE_GPU\n");
break;

case CL_DEVICE_TYPE_ACCELERATOR:
fprintf(OUTPUT, "CL_DEVICE_TYPE_ACCELERATOR\n");
break;

default:
fprintf(OUTPUT, "Other...\n");
break;

}
clGetDeviceInfo(devices[j], CL_DEVICE_VENDOR_ID, sizeof(ui), &ui, NULL);
fprintf(OUTPUT, "\t\tDevice Vendor ID = 0x%04x\n", ui);

clGetDeviceInfo(devices[j], CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(ui), &ui, NULL);
fprintf(OUTPUT, "\t\tDevice Maximum Compute Units = %d\n", ui);

clGetDeviceInfo(devices[j], CL_DEVICE_MAX_WORK_ITEM_DIMENSIONS, sizeof(ui), &ui, NULL);
fprintf(OUTPUT, "\t\tDevice Maximum Work Item Dimensions = %d\n", ui);

clGetDeviceInfo(devices[j], CL_DEVICE_MAX_WORK_ITEM_SIZES, sizeof(sizes), sizes, NULL);
fprintf(OUTPUT, "\t\tDevice Maximum Work Item Sizes = %d x %d x %d\n", sizes[0], sizes[1], sizes[2]);

clGetDeviceInfo(devices[j], CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(size), &size, NULL);
fprintf(OUTPUT, "\t\tDevice Maximum Work Group Size = %d\n", size);

clGetDeviceInfo(devices[j], CL_DEVICE_MAX_CLOCK_FREQUENCY, sizeof(ui), &ui, NULL);
fprintf(OUTPUT, "\t\tDevice Maximum Clock Frequency = %d MHz\n", ui);

}
}

Querying the Device, III

mjb – March 26, 2025

22

Computer Graphics

Number of Platforms = 1
Platform #0:

Name = 'NVIDIA CUDA'
Vendor = 'NVIDIA Corporation'
Version = 'OpenCL 1.1 CUDA 4.1.1'
Profile = 'FULL_PROFILE'
Device #0:

Type = 0x0004 = CL_DEVICE_TYPE_GPU
Device Vendor ID = 0x10de
Device Maximum Compute Units = 15
Device Maximum Work Item Dimensions = 3
Device Maximum Work Item Sizes = 1024 x 1024 x 64
Device Maximum Work Group Size = 1024
Device Maximum Clock Frequency = 1401 MHz
Kernel Maximum Work Group Size = 1024
Kernel Compile Work Group Size = 0 x 0 x 0
Kernel Local Memory Size = 0

Typical Values from Querying the Device

This is the GPU on rabbit

mjb – March 26, 2025

23

Computer Graphics

size_t extensionSize;

clGetDeviceInfo(device, CL_DEVICE_EXTENSIONS, 0, NULL, &extensionSize);
char *extensions = new char [extensionSize];
clGetDeviceInfo(devices, CL_DEVICE_EXTENSIONS, extensionSize, extensions, NULL);

fprintf(stderr, "\nDevice Extensions:\n");
for(int i = 0; i < (int)strlen(extensions); i++)
{

if(extensions[i] == ' ')
extensions[i] = '\n';

}
fprintf(stderr, "%s\n", extensions);
delete [] extensions;

Querying to see what extensions are supported on this device

mjb – March 26, 2025

24

Computer Graphics

Device Extensions:
cl_khr_byte_addressable_store
cl_khr_icd
cl_khr_gl_sharing
cl_nv_d3d9_sharing
cl_nv_d3d10_sharing
cl_khr_d3d10_sharing
cl_nv_d3d11_sharing
cl_nv_compiler_options
cl_nv_device_attribute_query
cl_nv_pragma_unroll

cl_khr_global_int32_base_atomics
cl_khr_global_int32_extended_atomics
cl_khr_local_int32_base_atomics
cl_khr_local_int32_extended_atomics
cl_khr_fp64

This is important. It
shows that this OpenCL
system can interoperate
with OpenGL.

This one is handy too. It
shows that this OpenCL
system can support 64-bit
floating point (i.e., double
precision). This is important
in simulation.

Querying to see what extensions are supported on this device

7

mjb – March 26, 2025

25

Computer Graphics

1. Program header
2. Create the host memory buffers
3. Create an OpenCL context
4. Create an OpenCL command queue
5. Allocate the device memory buffers
6. Write the data from the host buffers to the device buffers
7. Read the kernel code from a file
8. Compile and link the kernel code
9. Create the kernel object
10.Setup the arguments to the kernel object
11.Enqueue the kernel object for execution
12.Read the results buffer back from the device to the host
13.Clean everything up

Steps in Creating and Running an OpenCL program

mjb – March 26, 2025

26

Computer Graphics

#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <omp.h> // for timing

#include "cl.h"

1. .cpp Program Header

mjb – March 26, 2025

27

Computer Graphics

// global variables:

float hA[NUM_ELEMENTS];
float hB[NUM_ELEMENTS];
float hC[NUM_ELEMENTS];

• • •

// in the main program, fill the host memory buffers:

for(int i = 0; i < NUM_ELEMENTS; i++)
{

hA[i] = hB[i] = sqrtf((float) i);
}

// array size in bytes (will need this later):

size_t dataSize = NUM_ELEMENTS * sizeof(float);

// opencl function return status:

cl_int status; // test against CL_SUCCESS

2. Create the Host Memory Buffers

Global memory and the heap typically have lots more
memory available than the stack does. So, typically, you do
not want to allocate large arrays like this as local variables.

mjb – March 26, 2025

28

Computer Graphics

cl_context context = clCreateContext(NULL, 1, &device, NULL, NULL, &status);

// create a context:

cl_context context = clCreateContext(NULL, 1, &device, NULL, NULL, &status);

3. Create an OpenCL Context

properties

one device

Pass in
user data

returned
status

the
device

Callback

8

mjb – March 26, 2025

29

Computer Graphics

// create a command queue:

cl_command_queue cmdQueue = clCreateCommandQueue(context, device, 0, &status);

4. Create an OpenCL Command Queue

properties

returned
status

the
context

the
device

cl_command_queue cmdQueue = clCreateCommandQueue(context, device, 0, &status);

mjb – March 26, 2025

30

Computer Graphics

// allocate memory buffers on the device:

cl_mem dA = clCreateBuffer(context, CL_MEM_READ_ONLY, dataSize, NULL, &status);
cl_mem dB = clCreateBuffer(context, CL_MEM_READ_ONLY, dataSize, NULL, &status);
cl_mem dC = clCreateBuffer(context, CL_MEM_WRITE_ONLY, dataSize, NULL, &status);

5. Allocate the Device Memory Buffers

cl_mem dA = clCreateBuffer(context, CL_MEM_READ_ONLY, dataSize, NULL, &status);

how this buffer is
restricted

bytes

buffer data already
allocated

returned
status

The read and write terminology is with respect to the OpenCL device.
So, CL_MEM_READ_ONLY means that the OpenCL device can only get this data – it
can’t send it back to the host CPU. Other options are CL_MEM_WRITE_ONLY and
CL_MEM_READ_WRITE.

mjb – March 26, 2025

31

Computer Graphics

// enqueue the 2 commands to write data into the device buffers:

status = clEnqueueWriteBuffer(cmdQueue, dA, CL_FALSE, 0, dataSize, hA, 0, NULL, NULL);
status = clEnqueueWriteBuffer(cmdQueue, dB, CL_FALSE, 0, dataSize, hB, 0, NULL, NULL);

6. Write the Data from the Host Buffers to the Device Buffers

status = clEnqueueWriteBuffer(cmdQueue, dA, CL_FALSE, 0, dataSize, hA, 0, NULL, NULL);

command
queue

device buffer host
buffer

event wait
list

want to block
until done?

bytes # events event object

offset

mjb – March 26, 2025

32

Computer Graphics

Enqueuing Works Like a Conveyer Belt

Write
Buffer dA

Write
Buffer dB

Execute
Kernel

Read
Buffer dC

Whopp-a, whopp-a

9

mjb – March 26, 2025

33

Computer Graphics

kernel
void
ArrayMult(global const float *dA, global const float *dB, global float *dC)
{

int gid = get_global_id(0);

dC[gid] = dA[gid] * dB[gid];
}

The .cl File

Which dimension’s index are we fetching?

0 = X, 1 = Y, 2 = Z

Since this is a 1D problem, X is the only index we need to get.

gid = which element we
are dealing with right now.

mjb – March 26, 2025

34

Computer Graphics

Application
Program

GPU

OpenCL code in
a separate file

OpenCL Driver
does the

Compile and Link

kernel void
ArrayMult(global float *A, global float *B, global float *C)
{

int gid = get_global_id (0);

C[gid] = A[gid] * B[gid];
}

OpenCL code is compiled in the Driver . . .

mjb – March 26, 2025

35

Computer Graphics

void main()
{

vec3 newcolor = texture(uTexUnit, vST)).rgb;
newcolor = mix(newcolor, uColor.rgb, uBlend);
gl_FragColor = vec4(vLightIntensity*newcolor, 1.);

}

Application
Program

GPU

GLSL shader code in
a separate file

GLSL Driver
does the

Compile and Link

(. . . just like OpenGL’s GLSL Shader code is compiled in the driver)

mjb – March 26, 2025

36

Computer Graphics

const char *CL_FILE_NAME = { “arraymult.cl" };
. . .

FILE *fp = fopen(CL_FILE_NAME, "r");
if(fp == NULL)
{

fprintf(stderr, "Cannot open OpenCL source file '%s'\n", CL_FILE_NAME);
return 1;

}

// read the characters from the opencl kernel program:

fseek(fp, 0, SEEK_END);
size_t fileSize = ftell(fp);
fseek(fp, 0, SEEK_SET);
char *clProgramText = new char[fileSize+1];
size_t n = fread(clProgramText, 1, fileSize, fp);
clProgramText[fileSize] = '\0';
fclose(fp);

7. Read the Kernel Code from a File into a Character Array

“r” should work, since the .cl file is pure
ASCII text, but some people report that it
doesn’t work unless you use “rb”

Watch out for the ‘\r’ + ‘\n’ problem!
(See the next slide.)

10

mjb – March 26, 2025

37

Computer Graphics

Some of you will end up having strange, unexplainable problems with your csh scripts, .cpp
prograns, or .cl programs. This could be because you are typing your code in on Windows
(using Notepad or Wordpad or Word) and then running it on Linux. Windows likes to insert an
extra carriage return ('\r') at the end of each line, which Linux interprets as a garbage character.

You can test this by typing the Linux command:

od -c loop.csh
which will show you all the characters, even the '\r' (which you don't want) and the '\n'
(newlines, which you do want).

To get rid of the carriage returns, enter the Linux command:

tr -d '\r' < loop.csh > loop1.csh
Then run loop1.csh

Or, on some systems, there is a utility called dos2unix which does this for you:

dos2unix < loop.csh > loop1.csh

Sorry about this. Unfortunately, this is a fact of life when you mix Windows and Linux.

A Warning about Editing on Windows and Running on Linux

mjb – March 26, 2025

38

Computer Graphics

Something new: Intermediate Compilation

• You pre-compile your OpenCL code with an external compiler

• Your OpenCL code gets turned into an intermediate form known as SPIR-V

• SPIR-V gets turned into fully-compiled code at runtime

External
OpenCL
Compiler

OpenCL Source SPIR-V
Vendor-specific

code

Compiler in
driver

1. Software vendors don’t need to ship their OpenCL source
2. Syntax errors appear during the SPIR-V step, not during runtime
3. Software can launch faster because half of the compilation has already taken place
4. This guarantees a common front-end syntax
5. This allows for other language front-ends

Advantages:

You do: Driver does:

mjb – March 26, 2025

39

Computer Graphics

// create the kernel program on the device:

char * strings [1]; // an array of strings
strings[0] = clProgramText;
cl_program program = clCreateProgramWithSource(context, 1, (const char **)strings, NULL, &status);
delete [] clProgramText;

// build the kernel program on the device:

char *options = { "" };
status = clBuildProgram(program, 1, &device, options, NULL, NULL);
if(status != CL_SUCCESS)
{ // retrieve and print the error messages:

size_t size;
clGetProgramBuildInfo(program, devices[0], CL_PROGRAM_BUILD_LOG, 0, NULL, &size);
cl_char *log = new cl_char[size];
clGetProgramBuildInfo(program, devices[0], CL_PROGRAM_BUILD_LOG, size, log, NULL);
fprintf(stderr, "clBuildProgram failed:\n%s\n", log);
delete [] log;

}

8. Compile and Link the Kernel Code

mjb – March 26, 2025

40

Computer Graphics

How does that array-of-strings thing actually work?

char *ArrayOfStrings[3];
ArrayOfStrings[0] = …one commonly-used function…”;
ArrayOfStrings[1] = “ . . . another commonly-used function. . . “;
ArrayOfStrings[2] = “ . . . the real OpenCL code . .. “;
cl_program program = clCreateProgramWithSource(context, 1, (const char **) ArrayOfStrings, NULL, &status);

char *buffer = “ . . . the entire OpenCL code . . . “;
cl_program program = clCreateProgramWithSource(context, 1, (const char **) &buffer, NULL, &status);

char *buffer[1];
buffer[0] = “ . . . the entire OpenCL code . . . “;
cl_program program = clCreateProgramWithSource(context, 1, (const char **) buffer, NULL, &status);

These are two ways to provide a single character buffer:

11

mjb – March 26, 2025

41

Computer Graphics

Why use an array of strings to hold the OpenCL program,
instead of just a single string?

1. You can use the same OpenCL source and insert the appropriate
“#defines” at the beginning

2. You can insert a common header file (≈ a .h file)

3. You can simulate a “#include” to re-use common pieces of code

mjb – March 26, 2025

42

Computer Graphics

cl_kernel kernel = clCreateKernel(program, “ArrayMult", &status);

9. Create the Kernel Object

mjb – March 26, 2025

43

Computer Graphics

status = clSetKernelArg(kernel, 0, sizeof(cl_mem), &dA);
status = clSetKernelArg(kernel, 1, sizeof(cl_mem), &dB);
status = clSetKernelArg(kernel, 2, sizeof(cl_mem), &dC);

10. Setup the Arguments to the Kernel Object

kernel
void
ArrayMult(global const float *dA, global const float *dB, global float *dC)

mjb – March 26, 2025

44

Computer Graphics

size_t globalWorkSize[3] = { NUM_ELEMENT, 1, 1 };
size_t localWorkSize[3] = { LOCAL_SIZE, 1, 1 } ;

Wait(cmdQueue); // will be covered in the OpenCL event notes

double time0 = omp_get_wtime();

status = clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL, globalWorkSize, localWorkSize, 0, NULL, NULL);

Wait(cmdQueue); // will be covered in the OpenCL event notes

double time1 = omp_get_wtime();

11. Enqueue the Kernel Object for Execution

dimensions

status = clEnqueueNDRangeKernel(cmdQueue, kernel, 1, NULL, globalWorkSize, localWorkSize, 0, NULL, NULL);

global work
offset

(always NULL)

event wait
list

events event object

12

mjb – March 26, 2025

45

Computer Graphics

Gx = 20

Lx = 4

Wx = 5

Work-Groups, Local IDs, and Global IDs

“NDRange Index Space” can be
1D, 2D, or 3D. This one is 1D.

#
GlobalIndexSpaceSize

WorkGroups
WorkGroupSize



5 =
20

4

mjb – March 26, 2025

46

Computer Graphics

Gx = 20

G
y

=
 1

2

Lx = 4

L y
=

 3

Wx = 5

W
y

=
 4

Work-Groups, Local IDs, and Global IDs

“NDRange Index Space” can be
1D, 2D, or 3D. This one is 2D.

#
GlobalIndexSpaceSize

WorkGroups
WorkGroupSize



5𝑥4 =
20𝑥12

4𝑥3

mjb – March 26, 2025

47

Computer Graphics

Work-Groups, Local IDs, and Global IDs

“NDRange Index Space” can be
1D, 2D, or 3D. This one is 3D.

mjb – March 26, 2025

48

Computer Graphics

uint get_work_dim() ;

size_t get_global_size(uint dimindx) ;

size_t get_global_id(uint dimindx) ;

size_t get_local_size(uint dimindx) ;

size_t get_local_id(uint dimindx) ;

size_t get_num_groups(uint dimindx) ;

size_t get_group_id(uint dimindx) ;

size_t get_global_offset(uint dimindx) ;

0 ≤ dimindx ≤ 2

Figuring Out What Thread You Are and What Your
Thread Environment is Like

13

mjb – March 26, 2025

49

Computer Graphics

status = clEnqueueReadBuffer(cmdQueue, dC, CL_TRUE, 0, dataSize, hC, 0, NULL, NULL);

12. Read the Results Buffer Back from the Device to the Host

status = clEnqueueReadBuffer(cmdQueue, dC, CL_TRUE, 0, dataSize, hC, 0, NULL, NULL);

command
queue

device buffer host
buffer

event wait
list

want to block
until done?

bytes # events event object

offset

mjb – March 26, 2025

50

Computer Graphics

// clean everything up:

clReleaseKernel(kernel);
clReleaseProgram(program);
clReleaseCommandQueue(cmdQueue);
clReleaseMemObject(dA);
clReleaseMemObject(dB);
clReleaseMemObject(dC);

13. Clean Everything Up

mjb – March 26, 2025

51

Computer Graphics

Array Multiplication Performance:
What is a Good Work-Group Size?

Array Size (K)

G
ig

aM
ul

tip
lic

at
io

ns
/S

ec
on

d

Work-Group Size

mjb – March 26, 2025

52

Computer Graphics

Array Multiplication Performance:
What is a Good Work-Group Size?

G
ig

aM
ul

tip
lic

at
io

ns
/S

ec
on

d

Array Size (K)
Work-Group Size

14

mjb – March 26, 2025

53

Computer Graphics

Writing out the .cl Program’s Binary Code

size_t binary_sizes;
status = clGetProgramInfo(Program, CL_PROGRAM_BINARY_SIZES, 0, NULL, &binary_sizes);

size_t size;
status = clGetProgramInfo(Program, CL_PROGRAM_BINARY_SIZES, sizeof(size_t), &size, NULL);

unsigned char *binary = new unsigned char [size];
status = clGetProgramInfo(Program, CL_PROGRAM_BINARIES, size, &binary, NULL);

FILE *fpbin = fopen("particles.nv", "wb");
if(fpbin == NULL)
{

fprintf(stderr, "Cannot create 'particles.bin'\n");
}
else
{

fwrite(binary, 1, size, fpbin);
fclose(fpbin);

}
delete [] binary;

mjb – March 26, 2025

54

Computer Graphics

char *options = { "" };
status = clBuildProgram(program, 1, &device, options, NULL, NULL);
if(status != CL_SUCCESS)
{

size_t size;
clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, 0, NULL, &size);
cl_char *log = new cl_char[size];
clGetProgramBuildInfo(program, device, CL_PROGRAM_BUILD_LOG, size, log, NULL);
fprintf(stderr, "clBuildProgram failed:\n%s\n", log);
delete [] log;

}

char * strings [1];
strings[0] = clProgramText;
cl_program program = clCreateProgramWithSource(context, 1, (const char **)strings, NULL, &status);
delete [] clProgramText;

Importing that Binary Code back In:
8. Compile and Link the Kernel Code

unsigned char byteArray[numBytes];
cl_program program = clCreateProgramWithBinary(context, 1, &device, &numBytes, &byteArray, &binaryStatus, &status);
delete [] byteArray;

Instead of doing this:

You would do this:

And you still have to do this:

