Looking at OpenCL Assembly Code

Oregon State
University
Mike Bailey

mjb@cs.oregonstate.edu
et

This work is licensed under a Creative Commons
Attribution-NonCt ial-NoDerivatives 4.0
International License

250, W1t

Oregon State

University
Computer Graphics

15, omDsB:
N1, CB0000000

a0z NG N .

2 s
SO N A N

openclassembly.pptx

mjb — March 27, 2021

How to Extract the OpenCL Assembly Language 2

size_t size;
status = clGetPrograminfo(Program, CL_PROGRAM_BINARY_SIZES, sizeof(size_t), &size, NULL);
PrintCLError(status, "clGetPrograminfo (1):");

unsigned char * binary = new unsigned char [size];
status = clGetPrograminfo(Program, CL_PROGRAM_BINARIES, size, &binary, NULL);
PrintCLError(status, "clGetPrograminfo (2):");

FILE * fpbin = fopen(CL_BINARY_NAME, "wb");

if(fobin == NULL)
fprintf(stderr, "Cannot create '%s'\n", CL_BINARY_NAME);

else

{
fwrite(binary, 1, size, fpbin);
fclose(fpbin);

}
delete [] binary;

5 This binary can then be used in a call to c/CreateProgramWithBinary() ‘
regon §

University
Computer Graphics

mjb — March 27, 2021

2

particles.cl, |

typedef float4 point;
typedef float4 vector;
typedef float4 color;
typedef float4 sphere;

constant float4 G
constant float DT

= (float4) (0.,-9.8, 0., 0.);
=0.1;

constant sphere Sphere1 = (sphere)(-100., -800., 0., 600.);

9

Oregon State
University
Computer Graphics

mjb — March 27, 2021

3

particles.cl, Il 4

kernel

void

Particle(global point * dPobj, global vector * dVel, global color * dCobj)
{

int gid = get_global_id(0); /I particle #
point p = dPobj[gid];

vector v = dVel[gid];

pointpp =p+Vv*DT + .5*"DT*DT*G; e

vector vp = v + G*DT; /A

dPobj[gid] = pp;
dVel[gid] = vp;

Oregon State
University
Computer Graphics
mjb — March 27, 2021

4

3/13/2022

3/13/2022

particles.cl, Il 5 NVIDIA OpenCL Assembly Language Sample 6
FMA = “Fused Multiply-Add”
vector Id.global4.f32 {%f188, %f189, %f190, %f191}, [%r1]; Il load dPobj[gid]
. Id.globafv4.f32 {%f156, %f157, %f158, %f159}, [%r2]; Il load dVel[gid]

Bounce(vectorin, vectorn)
{ mov.fp2 %f17, 0f3DCCCCCD; /I put DT (a constant) — register f17

nw=0.;

n = normalize(n); %f248, %f156, %f17, %f188; Il (p + v*DT).x — f248

vector out=in - 2. * n*dot(in.xyz, n.xyz); E “reflect” function fmaimnf32 %f249, %f157, %17, %f189; Il (p + v*DT).y — f249

outw = 0.: fma.m.f32 %f250, %f158, %f17, %f190; Il (p + v*DT).z — 250

return out; movf32 %f18, 0fBD48B43B; /I 5% G.y * DT * DT (a constant) — 18
} mov.f32 %f19, 0f00000000; I10., for .x and .z (a constant) — f19

add.f32 %f256, %f248, %f19; Il (p + v*DT).x + 0. — 256

vector add.f32 %f257, %1249, %f18; I (p + v*DT).y + .5 * Gy * DT * DT — 257
BounceSphere(point p, vector v, sphere s) add.f32 %f258, %f250, %f19; Il (p + v*DT).z + 0. — 258
{ vector n: mov.f32 %f20, 0fBF7AE148; Il G.y * DT (a constant) — 20

n.xyz = fast_normalize(p.xyz - s.xyz) addf32 %f264, %f156, %f19; llvx+0. - 264

nw=0; . add.f32 %265, %f157, %f20; II'vy + Gy * DT — f265

%‘ﬁ return Bounce(in, n); add.f32 %266, %158, %f19; Il v.z +0. — £266
} -
Oregon State Oregon$
University Universi
Computer Graphics Computer Graphics
mjb — March 27, 2021 mjb — March 27, 2021
5 6
Fused Multiply-Add 7 Things Learned from Examining OpenCL Assembly Language 8

Many scientific and engineering computations take the form: Something like:
D =A + (B*C); Sum = Sum + (B*C);

would also be suitable to be
implemented as an FMA.

A “normal” multiply-add compilation would handle this as:
tmp = B*C;
D =A + tmp;

A “fused” multiply-add does it all at once, that is, when the low-order bits of B*C
are ready, they are immediately added into the low-order bits of A at the same
time that the higher-order bits of B*C are being multiplied.

b
Oregon State

University Note: In the lower bits of the result, “Normal” A+(B*C) # “FMA” A+(B*C)

Computer Graphics

mjb — March 27, 2021

« The points, vectors, and colors were typedef'ed as float4’s, but the compiler realized that they
were being used only as float3's and so didn’t bother with the 4t element.

* The floatn’s were not SIMD’ed. (We actually knew this already, since NVIDIA doesn’t support
SIMD operations in their GPUs.) There is still an advantage in coding this way, even if just for
readability.

* The function calls were all in-lined. (This makes sense — the OpenCL spec says “no recursion”,
which implies “no stack”, which would make function calls difficult.)

» Me defining G, DT, and Sphere1 as constant memory types was a mistake. It got the correct
results, but the compiler didn’t take advantage of them being constants. Changing them to type

. X - const threw compiler errors because of their global scope. Changing them to const and moving
Consider a Base 10 example: 789 + (1237456) them into the body of the kernel function Particle did result in good compiler optimizations.
123 « The sqrt(x2+y2+z2) assembly code is amazingly convoluted. | suspect it is an issue of
x 456 maintaining highest precision. Use fast_sqrt(), fast_normalize(), and fast_length() when you
738 can. Usually computer graphics doesn’t need the full precision of sqrt().
615
492 » The compiler did not do a good job with expressions-in-common. | had really hoped it would
+ 789 _Can start adding the 9 the moment the 8 is produced! figure o_ut that detecting if a poinlt was in_a s_ph’ere and determining the unitized surface normal at
W that point were the same operation, but it didn't.

* There is a 4-argument Fused-Multiply-Add instruction in hardware to perform D = A + (B*C) in
one instruction in hardware. The compiler took great advantage of it. V.‘ '
mjo NI AN

