OpenCL / OpenGL Vertex Buffer Interoperability:
A Particle System Case Study

Also, see the video at:
http://cs.oregonstate.edu/~mjb/cs575/Projects/particles.mp4

Oregon State
University
Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

Oregon State
University
Computer Graphics

opencl.opengl.vbo.pptx mjb — March 27, 2021

OpenCL / OpenGL Vertex Interoperability: The Basic Idea

2
Your C++ program writes initial <€
values into the buffer on the GPU v
‘ OpenCL acquires the buffer
N Each OpenCL kernel reads an
"I (x,y,z) value from the buffer
Each OpenCL kernel updates
(x,y,2) Vertex its (x,y,z) value
Data in an Vv
OpenGL Buffer | Each OpenCL kernel writes its
N (x,y,2) value back to the buffer
‘ OpenCL releases the buffer |
(s .| OpenGL draws using the (x,y,z)
a{i v| values in the buffer on the GPU
Dregon St I
University
Computer Graphics o veron 27, 2001

Some of the Inner Workings of OpenGL.: 3
Feel Free to Detour Right to Slide #24 if You Don’t Want to Know This

DETOUR

‘.EAE

Oregon State
University
Computer Graphics
mjb — March 27, 2021

In the Beginning of OpenGL ... 4

You listed the vertices with separate function calls:

glBegin(GL_TRIANGLES); 3 2
glVertex3f(x0, y0, z0
glVertex3f(x1, y1, z1

)

)

)
()
glVertex3f(x2, y2, z2);
glVertex3f(x0, y0, z0)
()

()

)

glVertex3f(x3, y3, z3
glVertex3f(x4, y4, z4

)

)

glEnd();

1
4 0

Then someone noticed how inefficient that was, for three reasons:

1. Sending large amounts of small pieces of information is less efficient than
sending small amounts of large pieces of information

2. The vertex coordinates were being listed in the CPU and were being transferred
to the GPU every drawing pass

e 3. Some vertices were listed twice
W
Oregon State
University
Computer Graphics
mjb — March 27, 2021

Here’s What OpenGL Has Been Moving To: Vertex Buffer Objects

2 3
6
0 1
GLfloat CubeColors[][3] =
{
{0,0,0.},
{1.,0,0.},
{0,1,0.},
{1.,1,0.},
{0,0,1.},
{1.,0,1.},
{0,1,1.},
e {1,1,1.},
ul };
Comptirnerorapme

GLfloat CubeVertices[][3] =

{

SIS
o 1, -1

o 1,

GLuint Cubelndices[][4] =
{

—ORrWON
OGN NN®

Lt Wt W W e W e
oNvNO -~ hrO
AN O

mjb — March 27, 2021

A Little Background -- the OpenGL Rendering Context

The OpenGL Rendering Context contains all the characteristic information
necessary to produce an image from geometry. This includes
transformations, colors, lighting, textures, where to send the display, etc.

E—*E
Oregon State
University
Computer Graphics

Array
Buffer

Element
Array Buffer

Texture0 Texturel
Context
r Lighting Transf

o

Displa
Dest.

7

If we were implementing the OpenGL state as a C++ structure
(which we’re not), we might do something like this:

struct context

{

float [4]
float [4][4]
struct Texture *

struct DataArrayBuffer *

} Context;

Color;
Transformation;
TextureO;
ArrayBuffer;

mjb — March 27, 2021

More Background — 7
How do you create a special OpenGL Array Buffer called a
Vertex Buffer Object?

In C++, objects are pointed to by their address.
In OpenGL, objects are pointed to by an unsigned integer handle. You can assign a

value for this handle yourself (not recommended), or have OpenGL generate one for
you that is guaranteed to be unique. For example:

GLuint buf;

glGenBuffers(1, &buf);

This doesn’t actually allocate memory for the buffer object yet, it just acquires a
unique handle. To allocate memory, you need to bind this handle to the Context.

E—*F
Oregon State
University
Computer Graphics

mjb — March 27, 2021

More Background — What is an OpenGL “Object”? 8

An OpenGL Object is pretty much the same as a C++ object: it encapsulates a
group of data items and allows you to treat them as a unified whole. For example, a
Data Array Buffer Object could be defined in C++ by:

struct DataArrayBuffer

{
enum dataType;
void * memStart;
int memsSize;

b

Then, you could create any number of Buffer Object instances, each with its own
characteristics encapsulated within it. When you want to make that combination
current, you just need to point the ArrayBuffer element of the Context to that entire
struct (“bind”). When you bind an object, all of its information comes with it.

‘.EAF

Oregon State
University
Computer Graphics
mjb — March 27, 2021

A Little Background -- the OpenGL Rendering Context 9

It's very fast to re-bind a different vertex buffer. It
amounts to just changing a pointer.

glBindBuffer(GL_ARRAY_BUFFER, buf);

struct DataArrayBuffer
struct DataArrayBuffer enum dataType;
void* memStart; struct DataArrayBuffer

enum dataType; int memSize;

void* memStart; i H enum dataType;

int memSize; void * memStart;
L ? int memsSize;

’ b

/

Array Element
Buffer Array Buffer 'I'Cextureo TeXture1Displa

ontext Dest.

aﬁ!' Mﬂg Transf{o%nalion
‘.EAE %
Oregon State
University
Computer Graphics

mjb — March 27, 2021

More Background -- “Binding” to the Context 10

The OpenGL term “binding” refers to “attaching” or “docking” (a metaphor which |
find to be more visually pleasing) an OpenGL object to the Context. You can then
assign characteristics, and they will “flow” through the Context into the object.

Vertex Buffer Object

Element
Array Buffer

Aray) Texture0 Texturel

Context

Color Lighting Transformation
A\

giBindBuffer(GL_ARRAY_BUFFER, buf);
glBufferData(GL_ARRAY_BUFFER, numBytes, data, usage);

aﬁl’ Think of it as happening this way:
o Context.ArrayBuffer.memStart = CopyToGpuMemory(data, numBytes);
O'L‘;ng;:;ilt;le Context.ArrayBuffer.memSize = numBytes;

Computer Graphics

mjb — March 27, 2021

10

More Background -- “Binding” to the Context

When you want to use that Vertex Buffer Object, just bind it again. All of the
characteristics will then be active, just as if you had specified them again.

Vertex Buffer Object

Transformation

Array Element
Buffer Array BufferTexlureo Texture1
Context

0 Transformation

A\

| glBindBuffer(GL_ARRAY_BUFFER, buf); |

11

o
‘E.l.i Think of it as happening this way:
=7
Oregon State ’ float *data = Context.ArrayBuffer.memStart;
University

Computer Graphics

mjb — March 27, 2021

11

Vertex Buffers: Putting Data in the Buffer Object

glBufferData(type, numBytes, data, usage); ‘

type is the type of buffer object this is:

numBytes is the number of bytes to store in all. Not the number of numbers,
but the number of bytes!

data is the memory address of (i.e., pointer to) the data to be transferred to the
graphics card. This can be NULL, and the data can be transferred later via
memory-mapping.

E—*F
Oregon State
University
Computer Graphics

12

GL_ARRAY_BUFFER to store floating point vertices, normals, colors, and texture coordinates

mjb — March 27, 2021

12

Preview: We are going to use a Particle System as a Case Study 13

Your C++ program writes initial

values into the buffer on the GPU i

&

1

\
| OpenCL acquires the buffer I

y

Each OpenCL kernel reads an

(x,y,z) Vertex
Datainan
OpenGL Buffer

-

(x,y,z) value from the buffer

Each OpenCL kernel updates
its (x,y,z) value

Each OpenCL kernel writes its

(x,y.z) value back to the buffer

| OpenCL releases the buffer]

y

OpenGL draws using the (x,y,2)

¥| values in the buffer on the GPU

1
OregnSlale
University
Computer Graphics o e 27. 2021
13
Vertex Buffers: Putting Data in the Buffer Object 14

glBufferData(type, numbytes, data, usage); ‘

where xxx can be:
STREAM
STATIC
DYNAMIC

and yyy can be:
DRAW
READ
COPY

Oregon State
University
Computer Graphics

usage is a hint as to how the data will be used: GL_xxx_yyy

this buffer will be written lots

this buffer will be written seldom and read often
this buffer will be written often and used often

this buffer will be used for drawing
this buffer will be copied into
not a real need for now, but someday...

GL_STATIC_DRAW is the most common usage

mjb — March 27, 2021

14

Vertex Buffers: Step #1 — Fill the Arrays 15

GLfloat Vertices[][3] =

b

int numVertices = sizeof(Vertices) / (3*sizeof(GLfloat));

‘E—*ﬁ‘
Oregon State
University
Computer Graphics

mjb — March 27, 2021

15

Vertex Buffers: Step #2 — Create the Buffers and Fill Them 16

glGenBuffers(1, &buf);

glBindBuffer(GL_ARRAY_BUFFER, buf);
glBufferData(GL_ARRAY_BUFFER, 3*sizeof(GLfloat)*numVertices, Vertices, GL_STATIC_DRAW);

‘E—*ﬁ‘
Oregon State
University
Computer Graphics

mjb — March 27, 2021

16

Vertex Buffers: Step #3 — Activate the Array Types That You Will Use 17

glEnableClientState(type)

where type can be any of:

GL_VERTEX_ARRAY
GL_COLOR_ARRAY
GL_NORMAL_ARRAY
GL_TEXTURE_COORD_ARRAY

« Call this as many times as you need to enable all the arrays that you will need.
* There are other types, too.
* To deactivate a type, call:

glDisableClientState(type)

E—*F
Oregon State
University
Computer Graphics

mjb — March 27, 2021

17
Vertex Buffers: Step #4 — To Draw, First Bind the Buffers 18
gIBindBuffer(GL_ARRAY_BUFFER, buf);
Vertex Buffer Object
;I:;'aeyr A::""Beu'}tferTextureo Texture1
ontext
Cfor Ligljting Transformation
A
(ea
‘.E.-*F
OregnSIale
University
Computer Graphics

mjb — March 27, 2021

18

Vertex Buffers: Step #5 — Specify the Data 19

glVertexPointer(size, type, stride, rel_address); Vertex Data

glColorPointer(size, type, stride, rel_address);

gINormalPointer(type, stride, rel_address); Color Data

glTexCoordPointer(size, type, stride, rel_address);

vs.
Vertex Data
size is the spatial dimension, and can be: 2, 3, or 4 Color Data
type can be: | gL_sHORT Vertex Data
GL_INT Color Data
GL_FLOAT
GL_DOUBLE Vertex Data
Color Data

stride is the byte offset between consecutive entries in the array (0 means tightly packed)

rel_address, the 4t argument, is the relative byte address from the start of the buffer where
the first element of this part of the data lives.

Oregon State
University
Computer Graphics

mjb — March 27, 2021

19

The Data Types in a vertex buffer object can be 20
stored either as “packed” or “interleaved”

’ gl*Pointer(size, type, stride, offset); ‘

rel_address, the 4t argument, is the relative byte address from the start of the buffer where
the first element of this part of the data lives.

Packed: /\ \

glVertexPointer(3, GL_FLOAT, A*sizeof(GLfloat), 4); Vertex Data

glColorPointer(3, GL_FLOAT, }*sizeof(GLfloat),/3*numVertices*sizeof(GLfloat));

Color Data

stride start
Interleaved: Vertex Data
glVertexPointer(3, GL_FLOAT, [6*sizeof(GLfloat)}/0); Color Data

> Vertex Data

glColorPointer(3, GL_FLOAT, 6%sizeof(GLfloat)/ 3%sizeof(GLfloat));

7 Color Data
__,s Vertex Data
Oregon State Color Data

University
Computer Graphics

mjb — March 27, 2021

20

10

Vertex Buffers: Step #6 — Specify the Connections 21

GLfloat Vertices[][3] =
{
{Xo Yo 20},
{x, y»» 24},
{x2 ¥2 2},
§X3a Y3 23 ;v
X4 Yar 24 35
{xs ¥s5 25} 0 ! ’)

%

int numVertices = sizeof(Vertices) / (3*sizeof(GLfloat));

glDrawArrays(GL_TRIANGLES, 0, numVertices);

E—*F
Oregon State
University
Computer Graphics

mjb — March 27, 2021

21

Vertex Buffers: Writing Data Directly into a Vertex Buffer 22

Map the buffer from GPU memory into the memory space of the application:

gIBindBuffer(buf, GL_ARRAY_BUFFER.);
glBufferData(GL_ARRAY_BUFFER(3*sizeof(float)*numVertices, NULL TATIC_DRAW);

float * vertexArray = giMapBuffer(GL_ARRAY_BUFFER, usage);

Allocates the bytes, but

usage is an indication how the data will be used: !)
doesn’t deliver any data

GL_READ_ONLY the vertex data will be read from, but not written to
GL_WRITE_ONLY the vertex data will be written to, but not read from
GL_READ_WRITE the vertex data will be read from and written to

You can now use vertexArray[] like any other floating-point array.

When you are done, be sure to call:

- | glunMapBuffer(GL_ARRAY_BUFFER); |
T

E—*F
Oregon State
University
Computer Graphics

mjb — March 27, 2021

22

11

Oregon State
University
Computer Graphics

We Now Pickup with the OpenCL Stuff

END
DETOUR

23

®

mjb — March 27, 2021

23

aﬁle ;

L
Oregon State
University
Computer Graphics

We Now Pickup with the OpenCL Stuff

END
DETOUR

24

mjb — March 27, 2021

24

12

All of this happens on the GPU

Your C++ program writes initial
values into the buffer on the GPU

4

<

Either OpenGL or OpenCL can use the Vertex Buffer at a time, but not both: 25

S

v
‘ OpenCL acquires the buffer

(x,y,z) Vertex
Data in an
OpenGL Buffer

A

Each OpenCL kernel reads an
(x,y,z) value from the buffer

Each OpenCL kernel updates
its (x,y,z) value

v

Each OpenCL kernel writes its
(x,y,z) value back to the buffer

‘ OpenCL releases the buffer |

(s OpenGL draws using the (x,y,z)
a{i values in the buffer on the GPU
Oregon St I
University
Computer Graphics
mjb — March 27, 2021
25
1. Program Header 26

#include <stdio.h>

#define _USE_MATH_DEFINES

#include <math.h>

#include <string.h>

#include <stdlib.h>

#include <ctype.h>

#include <omp.h>

#ifdef WIN32

#include <windows.h>

#endif

#ifdef WIN32

#include "glew.h"

#endif

#include <GL/gl.h>

#include <GL/glu.h>

#include "glut.h"

#include "glui.h"

#include “CL/cl.h"

#include “CL/cl_gl.h"

(e —
‘E..*i
Oregon State
University
Computer Graphics

mjb — March 27, 2021

26

13

Structures We Will Use to Fill the Vertex Buffers

struct xyzw

struct rgba

/I structs we will need later:

float x, y, z, w;

floatr, g, b, a;

E—*F
Oregon State
University
Computer Graphics

mjb — March 27, 2021

27

27

OpenCL Global Variables

size_t GlobalWorkSize[3]
size_t LocalWorkSize[3]

GLuint
GLuint
struct xyzw *
cl_mem
cl_mem
cl_mem

cl_command_queue
cl_device_id
cl_kernel
cl_platform_id
cl_program

{NUM_PARTICLES, 1, 1};
{LOCAL_SIZE, 1,1}

hPobj; /I host opengl object for Points
hCobj; // host opengl object for Colors

hVel; /I host C++ array for Velocities
dPobj; // device memory buffer for Points
dCobj; // device memory buffer for Colors
dVel; /I device memory buffer for Velocities

CmdQueue;
Device;
Kernel;
Platform;
Program;

E—*F
Oregon State
University
Computer Graphics

28

mjb — March 27, 2021

28

14

A Deceptively-Simple Main Program

int
main(int argc, char *argv[])

glutlnit(&argc, argv);
InitGraphics();
' H .

29

RESeT),
InitGlui();
glutMainLoop();
return 0;
}
(ea
‘.E..*i
OregnSIale
University
Computer Graphics
mjb — March 27, 2021
29
GLEW - the GL Extension Wrangler 30
#ifdef WIN32

GLenum err = glewlnit();
if(err != GLEW_OK)

fprintf(stderr, "glewlnit Error\n");

}
#endif

This must wait to be called until after a graphics window is open !

Why? Because creating the window is what builds the graphics context.

E—*F
Oregon State
University
Computer Graphics

mjb — March 27, 2021

30

15

Setting up OpenCL:
Querying the Existence of an OpenCL Extension

31

< Ini-tCL() D

PrintCLError(status, "clGetDevicelDs: ");
/I since this is an opengl interoperability program,

/I check if the opengl sharing extension is supported
/I (no point going on if it isn’t):

if(IsCLExtensionSupported("cl_khr_gl_sharing"))

{ fprintf(stderr, "cl_khr_gl_sharing is supported.\n");

z-)lse

{
fprintf(stderr, "cl_khr_gl_sharing is not supported -- sorry.\n");
return;

}

AR

status = clGetDevicelDs(Platform, CL_DEVICE_TYPE_GPU, 1, &Device, NULL);

Il (we need the Device in order to ask, so we can't do it any sooner than right here)

Oregon State
University
Computer Graphics

mjb — March 27, 2021

31

Querying the Existence of an OpenCL Extension

32

bool
IsCLExtensionSupported(const char *extension)

/I see if the extension is bogus:

if(extension == NULL || extension[0] =="0")
return false;

char * where = (char *) strchr(extension, ' ');
if(where !=NULL)
return false;

/I get the full list of extensions:

size_t extensionSize;

clGetDevicelnfo(Device, CL_DEVICE_EXTENSIONS, 0, NULL, &extensionSize);

char *extensions = new char [extensionSize J;

clGetDevicelnfo(Device, CL_DEVICE_EXTENSIONS, extensionSize, extensions, NULL);

for(char * start = extensions ; ;)

where = (char *) strstr((const char *) start, extension);
if(where ==0)

delete [] extensions;
return false;

}
char * terminator = where + strlen(extension); // points to what should be the separator
if(*terminator=="" || *terminator =="0' || *terminator=="r" || *terminator=="n")

delete [] extensions;
return true;

Ore|
Ut }
Comp)

start = terminator;

27, 2021

32

16

Setting up OpenCL: The Interoperability Context

void
InitCL()
{

/I get the platform id:

status = clGetPlatformIDs(1, &Platform, NULL);
PrintCLError(status, "clGetPlatformIDs: ");

/I get the device id:

status = clGetDevicelDs(Platform, CL_DEVICE_TYPE_GPU, 1, &Device, NULL);
PrintCLError(status, "clGetDevicelDs: ");

/I 3. create a special opencl context based on the opengl context:

cl_context_properties props|] =

{
CL_GL_CONTEXT_KHR, (cl_context_properties) wglGetCurrentContext(),
CL_WGL_HDC_KHR, (cl_context_properties) wglGetCurrentDC(),
CL_CONTEXT_PLATFORM, (cl_context_properties) Platform,
0

I3

cl_context Context = clCreateContext(props, 1, &Device, NULL, NULL, &status);
PrintCLError(status, "clCreateContext: ");

UIIveT lly
Computer Graphics

33

mjb — March 27, 2021

33

Setting up OpenCL:
The Interoperability Context is Different for each OS (oh, good...)

34

For Windows:
cl_context_properties props[| =

{
CL_GL_CONTEXT_KHR, (cl_context_properties) wglGetCurrentContext(),
CL_WGL_HDC_KHR, (cl_context_properties) wglGetCurrentDC(),
CL_CONTEXT_PLATFORM, (cl_context_properties) Platform,
0

13

cl_context Context = cICreateContext(props, 1, &Device, NULL, NULL, &status);

For Linux:

cl_context_properties props[] =

{
CL_GL_CONTEXT_KHR, (cl_context_properties) glXGetCurrentContext(),
CL_GLX_DISPLAY_KHR, (cl_context_properties) gIXGetCurrentDisplay(),
CL_CONTEXT_PLATFORM, (cl_context_properties) Platform,
0

I3
cl_context Context = cICreateContext(props, 1, &Device, NULL, NULL, &status);

For Apple:
cl_context_properties props[] =
{
CL_CONTEXT_PROPERTY_USE_CGL_SHAREGROUP_APPLE,
(cl_context_properties) kCGLShareGroup,
0
3

cl_context Context = clCreateContext(props, 0, 0, NULL, NULL, &status);

Computer Graphics

mjb — March 27, 2021

34

17

Setting up OpenCL

35

void "hVel” stands for “host Velocities”
InitCL() “hPobj” stands for “host Points object”
{ “hCobj” stands for “host Colors object”

/I create the velocity array and the opengl vertex array buffer and color array buffer:

delete [] hVel;
hVel = new struct xyzw [NUM_PARTICLES J;

glGenBuffers(1, &hPobj);
glBindBuffer(GL_ARRAY_BUFFER, hPobj);

glGenBuffers(1, &Cobj);
glBindBuffer(GL_ARRAY_BUFFER, hCobj);

glBindBuffer(GL_ARRAY_BUFFER, 0); /I unbind the buffer

/I fill those arrays and buffers:

ResetParticles();

glBufferData(GL_ARRAY_BUFFER, 4 * NUM_PARTICLES * sizeof(float), NULL, GL_STATIC_DRAW);

glBufferData(GL_ARRAY_BUFFER, 4 * NUM_PARTICLES * sizeof(float), NULL, GL_STATIC_DRAW);

5

Oregon State
University
Computer Graphics

mjb — March 27, 2021

35

Setting the Initial Particle Parameters, |

36

unsigned int Seed;
void
ResetParticles()

{
glBindBuffer(GL_ARRAY_BUFFER, hPobj);

for(inti=0; i < NUM_PARTICLES; i++)

{
points[i].x = Ranf(&Seed, XMIN, XMAX);
points[i].y = Ranf(&Seed, YMIN, YMAX);
points[i].z = Ranf(&Seed, ZMIN, ZMAX);
points[i]w =1

}

glUnmapBuffer(GL_ARRAY_BUFFER);

glBindBuffer(GL_ARRAY_BUFFER, hCobj);

for(inti=0;i < NUM_PARTICLES; i++)
{

colors[i].r = Ranf(&Seed, 0., 1.)
colors[i].g = Ranf(&Seed, 0., 1.);
colors[i].b = Ranf(&Seed, 0., 1.)
colors[ila=1.;

}
glUnmapBuffer(GL_ARRAY_BUFFER);

struct xyzw *points = (struct xyzw *) giMapBuffer(GL_ARRAY_BUFFER, GL_WRITE_ONLY);

struct rgba *colors = (struct rgba *) gIMapBuffer(GL_ARRAY_BUFFER, GL_WRITE_ONLY);

= WrareT 27, 2021

36

18

Setting the Initial Particle Parameters, Il 37

for(inti=0;i<NUM_PARTICLES; i++)
{
hVel[i].x = Ranf(&Seed, VMIN, VMAX);
hVel[i].y = Ranf(&Seed, 0. , VMAX);
hVel[i].z = Ranf(&Seed, VMIN, VMAX);
hVel[i]lw=0.
}
}
(ea
‘.EAF
Oregon State
University
Computer Graphics
mjb — March 27, 2021
37
Setting-up the Device-Side Buffers 38
void
InitCL()

/'5. create the opencl version of the velocity array:

dVel = cICreateBuffer(Context, CL_MEM_READ_WRITE, 4*sizeof(float)*NUM_PARTICLES, NULL, &status);
PrintCLError(status, "clCreateBuffer: ");

/1 6. write the data from the host buffers to the device buffers:

status = clEnqueueWriteBuffer(CmdQueue, dVel, CL_FALSE, 0, 4'sizeof(float)"NUM_PARTICLES, hVel,
PrintCLError(status, "clEneueueWriteBuffer: ");

NULL, NULL);

/'5. create the opencl

dPobj = clCreateFromGLBuffer(Context, CL_MEM_READ_WRITE, hPobj, &status);
rintCLError(status, "clCreateFromGLBuffer (1)");

dCobj = clCreateFromGLBuffer ,

] _READ_WRITE , hCobj, &status);
PrintCLError(status, "clCreateFromGLBuffer (2)");

. \

Note: you don’t need an OpenGL-accessible buffer for the velocities. Velocities aren’t needed for drawing. \
Velocities are only needed to update point positions. The velocity buffer can just be done internally to OpenCL.

UTIVETSITY

Computer Graphics
mjb — March 27, 2021

38

This is how OpenCL and OpenGL Share the Same Memory Buffer 39

dPobj = clCreateFromGLBuffer(Context, CL_MEM_READ_WRITE, hPobj, &status);
PrintCLError(status, "clCreateFromGLBuffer (1)");

Step #1: OpenGL creates the buffer on the GPU

Step #2: OpenCL is told about it and creates a device pointer to the already-filled
memory, just as if you had called clCreateBuffer() and clEnqueueWriteBuffer()

E—*E
Oregon State
University
Computer Graphics

mjb — March 27, 2021

39

Setup the Kernel Arguments... 40

void
InitCL()
{

/1 10. setup the arguments to the Kernel object:

status = clSetKernelArg(Kernel, 0, sizeof(cl_mem), &dPobj);
PrintCLError(status,"clSetKernelArg (1): ");

status = cISetKernelArg(Kernel, 1, sizeof(cl_mem), &dVel);
PrintCLError(status , "clSetKernelArg (2): ");

status = clSetKernelArg(Kernel, 2, sizeof(cl_mem), &dCobj);
PrintCLError(status, "clSetKernelArg (3):");

... to Match the Kernel’s Parameter List

kernel
void
T2 Particle(global point * dPobj, global vector * dVel, global color * dCobj)

e

OregonState | }
University
Computer Graphics

mjb — March 27, 2021

40

20

The OpenGL “Idle Function” Tells OpenCL to Do Its Computing

41

void
Animate()

1/ acquire the vertex buffers from opengl:

glutSetWindow(MainWindow);
glFinish();

et—1ht status;
status = clE AcquireGLObj CmdQueue, 1, &dPobi\0, NULL, NULL);
PrintCLError(status, “clEnqueueAcquireGLObjects (1) : “);

status = clE AcquireGLODbj CmdQueue, 1, &dCoby
P or(status, “clEnqueueAcquireGLObje

0, NULL, NULL);

Wait(); // note: only need to wait here because doing timing
double time0 = omp_get_wtime();

/I 11. enqueue the Kernel object for execution:
cl_event wait;

PrintCLError(status, "clEnqueueNDRangeKernel: ");

Wait(); // note: only need to wait here because doing timing 2uss e he pufferonthe 6FU
double time1 = omp_get_wtime();

status = clEnqueueNDRangeKernel(CmdQueue, Kernel, 1, NULL, GlobalWorkSize, LocalWorkSize, 0, NULL, &wait);

Ope

‘acquires the buffer

ElapsedTime = time1 - time0;

clEnqueueReleaseGLObjects(CmdQueue, 1, &dCobj, 0, , NULL J; "‘ﬁif’?"""”"
PrintCLError(status, “clIEnqueueReleaseGLObjects (1): “); OpenGL Buter

clEnqueueReleaseGLObjects(CmdQueue, 1, &dPobj, 0, NU
intCLError(status, “clEnqueueReleaseGLODbject (2): “):

Wait();
glutSetWindow(MainWindow);
glutPostRedisplay();

Each OpenCL kernel reads an
{x.y.z) value from the buffer

Each OpenCL kernel updates
s (.2} value

Each OpenCL kerel wriles its
(%) value back to the buffer

OpenGL draws using the (x.y.2)
values in the buffer on the GPU

41

This is how OpenCL Manages Exclusive Access to the Memory Buffer 42

status = clEnqueueAcquireGLObjects(CmdQueue, 1, &dPobj, 0, NULL, NULL);

status = clEnqueueReleaseGLObjects(CmdQueue, 1, &dCobj, 0, NULL, NULL);

status = clEnqueueReleaseGLObjects(CmdQueue, 1, &dPobj, 0, NULL, NULL);

status = clEnqueueAcquireGLObjects(CmdQueue, 1, &dCobj, 0, NULL, NULL);

—

OpenCL acquires the buffer
Each OpenCL kemel reads an
(x,y.2) value from the buffer

Each OpenCL kernel updates
its (x.y.2) value

Each OpenCL kemel writes ts
(%y.2) value back to the buffer

OpenGL draws using the (x,y.2)
values in the buffer on the GPU

Oregon State
University
Computer Graphics

mjb — March 27, 2021

42

21

Redrawing the Scene:
The Particles
void
Display()
{
glBindBuffer(GL_ARRAY_BUFFER, hPobj);
glVertexPointer(4, GL_FLOAT, 0, (void *)0);
glEnableClientState(GL_VERTEX_ARRAY);
glBindBuffer(GL_ARRAY_BUFFER, hCobj);
glColorPointer(4, GL_FLOAT, 0, (void *)0);
glEnableClientState(GL_COLOR_ARRAY);
glPointSize(2.);
glDrawArrays(GL_POINTS, 0, NUM_PARTICLES)
glPointSize(1.); Your G++ pragram wriles initial
values into the buffer on the GPU
glDisableClientState(GL_VERTEX_ARRAY);
glDisableClientState(GL_COLOR_ARRAY); e e
glBindBuffer(GL_ARRAY_BUFFER, 0);
(*Bwfi Vertex its (x,y2) value
glutSwapBuffers(); enG. Buler ot
gIFlush(); B il o
} \
o R T
Oregon State =>{ s Inthe Bt oy e
University |
Computer Graphics
mjb — March 27, 2021

43

Redraw the Scene: 44
The Performance

void
Display()
{

if(ShowPerformance)

{
char str[128];
sprintf(str, "%6.1f GigaParticles/Sec", (float)\NUM_PARTICLES/ElapsedTime/1000000000.);
glDisable(GL_DEPTH_TEST);
glMatrixMode(GL_PROJECTION);
glLoadldentity();
gluOrtho2D(0., 100., 0., 100.);
glMatrixMode(GL_MODELVIEW);
glLoadldentity();
glColor3f(1., 1., 1.);
DoRasterString(5., 5., 0., str);

Oregon State
University
Computer Graphics

mjb — March 27, 2021

44

13. Clean-up

Oregon State
University
Computer Graphics

void
Quit()
{
Glui->close();
glutSetWindow(MainWindow);
glFinish();
glutDestroyWindow(MainWindow);
/I 13. clean everything up:
clReleaseKernel(Kernel);
clReleaseProgram(Program);
cIReleaseCommandQueue(CmdQueue);
clReleaseMemObject(dPobj);
clReleaseMemObject(dCobj);
exit(0);
}
(ea
‘.EAE

45

mjb — March 27, 2021

45

particles.cl, |

46

typedef float4 point;
typedef float4 vector;
typedef float4 color;
typedef float4 sphere;

constant float4 G
constant float DT

bool

Il x, y, z—the w is unused

Il vx, vy, vz — the w is unused
/l'r, g, b —the wis unused

/I xc, yc, zc, r

/I despite what we think of the 4 components as representing,
/ they are all referenced as .x, .y, .z, and .w

= (float4) (0., -9.8, 0., 0.);
=0.1;

constant sphere Sphere1 = (sphere)(-100., -800., 0., 600.);

IsInsideSphere(point p, sphere s)
{

float r = fast_length(p.xyz - s.xyz);
return (r<s.w);

/I gravity
/I time step
/I xc. yc, zc, r

points, vectors, colors, and spheres are all represented as floatd’s. The typedefs
¥ help the program'’s readability by showing what that float4 is actually representing.

Oregon State
University
Computer Graphics

mjb — March 27, 2021

46

23

particles.cl, Il 47
kernel
void
Particle(global point * dPobj, global vector * dVel, global color * dCobj)
{
int gid = get_global_id(0); /I particle #
point p = dPObj[gid]' v;’iﬁ&;mﬁ"«mm;é; @
A
vector v = dVel[gid]; =
pointpp =p+ Vv*DT + G * (point)(.5*DT*DT); // p’
vector vp = v + G*DT; nv (%) Ve
pp-w =1.; o bodr Each OpenCL kermel witas s
vp.w =0, (x:y:z) value backto the buffer
penCL releases the buffer
|{f(IsinsideSphere(pp, Sphere1))
vp = BounceSphere(p7V, Sphere1);
pp =p + vp*DT * (point)(.5*DT*DT);
}
dPobj[gid] cpp Computer Graphics Trick Alert: Making the bounce happen
dVellgid] =vp; from the surface of the sphere is time-consuming to compute.
} Instead, bounce from the previous position in space. If DT is
small enough, nobody will ever know...
OregnSIale
University
Computer Graphics
mjb — March 27, 2021
47
particles.cl, Il 48
vector
Bounce(vector in, vector n ')
{
nw=0.;
n = fast_normalize(n); /I make it a unit vector
/I this is the vector equation for “angle of reflection equals angle of incidence”:
vector out =in - n* (vector)(2.*dot(in.xyz, n.xyz));
/I adding or subtracting 2 float4’s gives you another float4
/I multiplying 2 float4’s gives you another float4
/I when you want a dot product, use the dot() function
outw =0
return out;
}
vector

BounceSphere(point p, vector in, sphere s)

vector n;
n.Xyz = p.XyzZ - S.Xyz;

return Bounce(in, n);

/I the vector from the sphere center to the point is the normal

Computer

Remember from the OpenCL Assembly Language notes:
Dreg| “The sqrt(x2+y2+22) assembly code is amazingly involved. | suspect it is an issue of maintaining
Unj highest precision. Use fast_sqrt(), fast_normalize(), and fast_length() when you can.”

mjb — March 27, 2021

48

24

GigaParticles / Second

Oregon State
University
Computer Graphics

Jane Parallel’s Performance

1.7

1.6

1.5

1.4

13 +

1.2 4

11

0.9 -

0.8

2048 0056
Number of Particles (x1024)

6144

8192

49

e®

mjb — March 27, 2021

49

25

