
mjb – April 3, 2024

1

Computer Graphics

Simple OpenMP

openmp-simple.pptx

Mike Bailey

mjb@cs.oregonstate.edu



mjb – April 3, 2024

2

Computer Graphics

OpenMP Multithreaded Programming

• OpenMP stands for
“Open Multi-Processing”

• It is run by a consortium of 
companies, labs, and universities

• OpenMP (IMHO) gives you the 
biggest multithread benefit per 
amount of work you have to put 
into using it



mjb – April 3, 2024

3

Computer Graphics

Much of your use of OpenMP will be accomplished by issuing C/C++ 
“pragmas” to tell the compiler how to build the threads into the 

executable

#pragma omp directive [clause]

That’s it!  That’s where the compiler comes in.

But, as you are about to find out, doing parallel processing at 
all is not difficult.

The trick is doing parallel processing well.
That’s where you come in.



mjb – April 3, 2024

4

Computer Graphics

1. Go to the Project menu → Project Properties

2. Change the setting Configuration Properties → C/C++ → Language →
OpenMP Support to "Yes (/openmp)"

Using OpenMP in Microsoft Visual Studio

g++  -o  proj proj.cpp  -lm  -fopenmp

Using OpenMP on Linux

If you are using Visual Studio 2019 and get a compile message that looks like this:
1>c1xx: error C2338: two-phase name lookup is not supported for C++/CLI, C++/CX, or OpenMP; use /Zc:twoPhase-

then do this:

1. Go to "Project Properties“→ "C/C++" → "Command Line“

2. Add   /Zc:twoPhase- in "Additional Options" in the bottom section
3. Press OK



mjb – April 3, 2024

5

Computer Graphics

#ifdef   _OPENMP
fprintf( stderr, "OpenMP version %d is supported here\n", _OPENMP );

#else
fprintf( stderr, “OpenMP is not supported here – sorry!\n” );
exit( 0 );

#endif

Seeing if OpenMP is Supported on Your System

This gives you a year and month of the OpenMP you are using

To get an OpenMP version number:

OpenMP 5.0 – November 2018

OpenMP 4.5 – November 2015

OpenMP 4.0 – July 2013

OpenMP 3.1 – July 2011

• By default, flip is using g++ 11.4.1, which uses OpenMP version 4.5
• Looks like Visual Studio 2019's is even older (?)



mjb – April 3, 2024

6

Computer Graphics

Threads

We will get into more detail pretty soon, but for now, know that a thread is 
an independent execution path for your code to take.

Threads are at their very best when each one can run on a separate 
hardware core.



mjb – April 3, 2024

7

Computer Graphics

How to find out how many cores your system has:

int numprocs =  omp_get_num_procs( );

#ifndef _OPENMP

fprintf( stderr, “OpenMP is not supported – sorry!\n” );

exit( 0 );

#endif

Seeing if OpenMP is Supported on Your System:

How to specify how many OpenMP threads you want to reserve starting 
now:

omp_set_num_threads( num );

How to use one thread per core:

omp_set_num_threads(   omp_get_num_procs( )   );



mjb – April 3, 2024

8

Computer Graphics

Creating OpenMP threads for a for loop

#include <omp.h>

. . .

omp_set_num_threads( NUMT );

. . .

#pragma omp parallel for default(none)
for( int i = 0; i < arraySize; i++ )
{

. . .

}

This creates a team of threads 
from the thread pool and 
divides the for-loop passes up 
among those threads

There is an “implied barrier” at the end where 
each thread waits until all threads are done, then 
the code continues in a single thread

This sets how many threads will be in the 
thread pool.  It doesn’t create them yet, it just 
says how many will be used the next time you 
ask for them.

The code starts out executing 
in a single thread

This tells the compiler to parallelize the for-loop into multiple threads.  Each thread 
automatically gets its own personal copy of the variable i because it is defined within the for-
loop body.

The default(none) directive forces you to explicitly declare all variables declared outside the 
parallel region to be either private or shared while they are in the parallel region.  Variables 
declared within the for-loop statement are automatically private


