Simple OpenMP

Oregon State University
Mike Bailey
mjb@cs.oregonstate.edu

OpenMP Multithreaded Programming

- OpenMP stands for “Open Multi-Processing”
- It is run by a consortium of companies, labs, and universities
- OpenMP (IMHO) gives you the biggest multithread benefit per amount of work you have to put into using it

Much of your use of OpenMP will be accomplished by issuing C/C++ “pragmas” to tell the compiler how to build the threads into the executable

```c
#pragma omp directive [clause]
```

That’s it! That’s where the compiler comes in.

But, as you are about to find out, doing parallel processing at all is not difficult.

The trick is doing parallel processing well. That’s where you come in.

Using OpenMP in Microsoft Visual Studio

```cmd
g++ -o proj proj.cpp -lm -fopenmp
```

Using OpenMP on Linux

```bash
if [ "" = "" ]; then
   echo "OpenMP version %d is supported here"
else
   echo "OpenMP is not supported here – sorry!"
   exit 0
fi
```

This gives you a year and month of the OpenMP you are using

To get an OpenMP version number:

- OpenMP 5.0 – November 2018
- OpenMP 4.5 – November 2015
- OpenMP 4.0 – July 2013
- OpenMP 3.1 – July 2011

Threads

We will get into more detail pretty soon, but for now, know that a thread is an independent execution path for your code to take.

Threads are at their very best when each one can run on a separate hardware core.
How to find out how many cores your system has:

```c
int numprocs = omp_get_num_procs();
```

How to specify how many OpenMP threads you want to reserve starting now:

```c
omp_set_num_threads( num );
```

How to use one thread per core:

```c
omp_set_num_threads( omp_get_num_procs() );
```

Creating OpenMP threads for a for loop

```c
#pragma omp parallel for default(none) for( int i = 0; i < arraySize; ++i )
{
...
}
```

This tells the compiler to parallelize the for-loop into multiple threads. Each thread automatically gets its own personal copy of the variable / because it is defined within the for-loop body.

The `default(none)` directive forces you to explicitly declare all variables declared outside the parallel region to be either private or shared while they are in the parallel region. Variables declared within the for-loop statement are automatically private.