
1

mjb – March 23, 2025

1

Computer Graphics

Parallel Programming
Project Notes

project.notes.pptx

Mike Bailey

mjb@cs.oregonstate.edu

To a Better Grade

mjb – March 23, 2025

2

Computer Graphics

Why Are These Notes Here?

These notes are here to:

1. Help you setup and run your projects

2. Help you get the data you collect in the right format for submission

3. Help you get a better grade by doing all of this correctly!

better grade!

better grade!

better grade!

better grade!

better grade!

mjb – March 23, 2025

3

Computer Graphics

Project Notes, I

• Feel free to run your projects on whatever systems you have access to.

• If you don’t have access to your own systems, then you can use what we have at OSU.
On-campus users will have access to Windows and Linux systems here.
Ecampus users will have remote access to our Linux systems, such as flip and rabbit.

• For the GPU and multiprocessor projects, you will have access to special systems here.

• Most of the projects will require timing to determine performance. Use the OpenMP
timing functions. They give decent answers, and this will make the timing consistent
across projects and across people. The OpenMP call:

double prec = omp_get_wtick();

tells you the precision of the clock in seconds. I get 10-9 seconds on the systems I've
been using. (I really doubt that this is true.) The OpenMP call:

double time0 = omp_get_wtime();

samples the clock right now. It gives you wall-clock time in seconds. In parallel
computing, memory latency and thread-idle time are part of the equation, so wall clock
time is what you want.

mjb – March 23, 2025

4

Computer Graphics

How We Will Be Doing Timing

#include <omp.h>

double time0 = omp_get_wtime(); // seconds
. . .

double time1 = omp_get_wtime(); // seconds
fprintf(stderr, “Elapsed time = %10.2lf microseconds\n”, 1000000. * (time1 – time0));

In this class, we don’t want to just implement – we want to characterize performance.
What speed-ups do we see, and why do we see them? How do we generalize that to
other types of problems? What insights does this give us?

So, as part of your project assignments, you will be doing a lot of timing to determine
program speed-ups.

%10.2lf is the way to print doubles (“long float”)

mjb – March 23, 2025

5

Computer Graphics

How Reliable is the Timing?

This way of timing measures wall-clock time, which is really what we want to know in a
parallel environment, not CPU time.

However, this puts you at the mercy of the other users on the system. If you are on one of
our public systems (e.g., flip), I advise you to check the system load to see how much off
your wall-clock time measurement will be due to the competition from other users. Use
the Linux uptime command::

flip01 34% uptime
11:13:37 up 96 days, 11:52, 23 users, load average: 3.56, 3.08, 2.82

These three numbers represent total CPU load averages for the last 1, 5, and 15 minutes
respectively. If the CPU load average is greater than the number of CPUs, then each
CPU is over-burdened.

Clearly you want these numbers, especially the 1-minute one, to be as small as possible
when you run your test. If they are “big”, you might want to ssh to other systems (flip01,
flip02, flip03, …) to see if you can find a better place to run or try again later.

mjb – March 23, 2025

6

Computer Graphics

How Reliable is the Timing? A Useful Trick!

I like to check the consistency of the timing by computing both peak speed and average
speed and seeing how close they are:

double maxmflops = 0.;
double summflops = 0.;

for(int t = 0; t < NUMTRIES; t++)
{

double time0 = omp_get_wtime();

#pragma omp parallel for
for(int i = 0; i < ARRAYSIZE; i++)
{

C[i] = A[i] * B[i];
}

double time1 = omp_get_wtime();
double mflops = (double)ARRAYSIZE/(time1-time0)/1000000.;
summflops += mflops;
if(mflops > maxmflops)

maxmflops = mflops;
}
printf(" Peak Performance = %8.2lf MFLOPS\n", maxmflops);
printf("Average Performance = %8.2lf MFLOPS\n", summflops/(double)NUMTRIES);

This is a reliable result:
Peak Performance = 1183.31 MFLOPS

Average Performance = 1141.41 MFLOPS

This is an unreliable result:
Peak Performance = 627.39 MFLOPS

Average Performance = 294.86 MFLOPS

You should record the peak performance
value. This gives you as close to the best
answer that you will get. But, compare that
with the average performance value. That
will tell you how reliable that peak value is.

2

mjb – March 23, 2025

7

Computer Graphics

Project Notes, II

On Linux, Use g++. The typical compile sequence for files that use OpenMP is:

g++ -o proj proj.cpp -lm -fopenmp

Note that OpenMP should always be included because we are using OpenMP calls for
timing.

Note that the second character in the 3-character sequence “-lm” is an ell, i.e., a lower-case L.

This is how you link in the math library.

mjb – March 23, 2025

8

Computer Graphics

Project Notes, III

• Most of these projects will require you to submit graphs. You can prepare the graphs
any way you want, except for drawing them by hand. (The Excel Scatter-with-Smooth-
Lines-and-Markers works well.) So that we can easily look at each other's graphs, please
follow the convention that up is faster. That is, do not plot seconds on the Y axis
because then "up" would mean "slower". Instead, plot something like Speedup or
MFLOPS or frames-per-second.

• I expect the graphs to show off your scientific literacy -- that is, I expect axes with
numbers, labels, and units, If there are multiple curves on the same set of axes, I expect
to be able to easily tell which curve goes with which quantity. After all, there is a reason
this major is called Computer Science. Not doing this makes your project unacceptable
for grading.

You lose points if you don’t do it this way.

mjb – March 23, 2025

9

Computer Graphics

Common Linux Commands

ls List the files in this folder

ls -l Make a detailed list of files in this folder

mv A B Rename a file named A to a file named B

cp A B Make a copy of file A and call it B

mkdir newdir Make a new sub-folder called newdir

cd dir Change the current folder to one underneath here called dir

cd .. Change the current folder to the one just above here

pwd Print the name of the folder you are in

rm A Remove the file called A

g++ -o proj01 proj01.cpp -lm -fopenmp
Compile the program proj01.cpp into an executable called proj01

./proj01 Run the proj01 executable

mjb – March 23, 2025

10

Computer Graphics

Diverting to a File

We all have a tendency to want to write our performance results out using printf (or cout) so
that we can see them on the screen. That’s fine. But, then we want to get those results into
a file. You could mess with file I/O, or you could use a divert on the command line.

If you are currently running your program like this:

./proj01

and it prints to the standard output screen via printf or cout, then running it like this:

./proj01 > output.csv

will write your results into the file output.csv

(If you do it a second time, you will probably have to remove the previous output.csv first.)

You can also divert the entire output (standard out and standard error) of a looping script:

bash script.bash >& output

mjb – March 23, 2025

11

Computer Graphics

Standard Output and Standard Error

Printing from C/C++:

• What is the difference between printing to standard output versus standard error?

• There is no difference in where the messages appear. They both go to the console.

• But Standard Output is buffered, meaning that the system operates efficiently by writing
the characters into an internal array and then eventually flushing that array to the
console all at once.

• Standard Error is unbuffered, meaning that the system operates inefficiently by writing
the characters one-at-a-time as they come out to the console.

• Why do we care about the difference? Because, if your program crashes, the standard
output buffer crashes with it and you don't see the messages stuck in the buffer. That
makes it hard to figure out what went wrong. However, you do see the standard error
messages. For this reason, most of the example code in this class uses standard error.

// %d is decimal integer, f = float, lf = long-float=double, \n skips to the next line:

printf("i = %d, x = %f\n", i, x); // prints to standard output

fprintf(stderr, "i = %d, x = %f\n", i, x); // prints to standard error

mjb – March 23, 2025

12

Computer Graphics

When computing performance, be sure that the numerator is amount of work done and
the denominator is the amount of time it took to do that work. For example, if you are
computing on a 2D grid and computing one value is the work done at each node, and you have
NUMS*NUMS total nodes, then (NUMS*NUMS)/Δt is one good way to measure performance.

NUMS, NUMS*NUMS, 1./Δt, and NUMS/Δt are not good ways to measure performance as they
don’t reflect the true amount of work done per time.

If you are using ridiculously high values for NUMS, the quantity NUMS*NUMS might overflow a
normal 32-bit int. You can use a long int, or just float each one separately. Instead of
(float)(NUMS*NUMS)/dt, you could say (float)NUMS*(float)NUMS/Δt

If you are squaring a size number, and are using signed ints, the largest NUMS you can use is:

If you are squaring a size number, and are using unsigned ints, the largest NUMS you can use is:

2,147,483,647 46,340

4, 294,967,295 65,535

Computing Performance

3

mjb – March 23, 2025

13

Computer Graphics

Project Turn-in Procedures

Your project turnins will be done via Canvas and will consist of:
1. All source files (.cpp, .cu, .cl)
2. A report in PDF format.
3. No other files!

Submit these files separately. Don't zip or tar (etc…) anything!

Electronic submissions are due at 23:59:59 Pacific Time on the listed due date.

Your PDF report needs to include:
1. A title area on the first page: your name, email, project number, and project name
2. Tables and graphs as requested in the handout
3. An explanation of what you did and why it worked the way it did. Your submission will

not be considered valid unless you at least attempt to explain why it works the way it
does.

Your project will be graded and the score posted to Canvas.

If you did not get full credit, your grade will have an attached Canvas note telling you why.

Don’t forget that title area! Because I concatenate all the class PDFs together for grading, lack
of a name on your project PDF will make it difficult to know who to give this score to.
It will be 5 points off if you forget your name.

mjb – March 23, 2025

14

Computer Graphics

How to Turn In a Project on Canvas

On Canvas, the assignments will look like this.

Click this link to see the handout. I do it this way so that, if the handout needs to be
clarified or corrected, I can do it quickly and instantaneously for all sections.

When you are ready to submit your files, click the Start Assignment button. That will
bring up a dialog box that looks like this:

1. Click the Upload File button, browse to your first
file (the order doesn't matter), and select the file.

2. Click Add Another File, click the new Upload
File button, browse to the second file, and select
the file.

3. Do this as many times as you need to (only
submit your PDF and your code source files
(.cpp, .cu, .cl).

4. When the files are all uploaded, click on
Submit Assignment.

mjb – March 23, 2025

15

Computer Graphics

Bonus Days

Projects are due at 23:59:59 on the listed due date, with the following exception:

Each of you has been granted 5 Bonus Days, which are no-questions-asked 24-hour project
extensions which may be applied to any project, subject to the following rules:

1. If the project handout says “No Bonus Days”, then no Bonus Days can be used on it. It is
due exactly at 23:59:59 on the given due date, no later.

2. No more than 2 Bonus Days may be applied to any one project

3. Bonus Days cannot be applied to quizzes or tests

Bonus Days are not here to give you a 2-day vacation or to enable your
procrastination! They are here to help you succeed even though you are
sick, another class has a project due that same week, etc.

Bonus Days are way, way, way more valuable at the end of the term. You
would be smart to hoard them until then.

mjb – March 23, 2025

16

Computer Graphics

To use one or more Bonus Days on a given project:

• You don't need to let me know.

• Turn-in promptness is measured by date. So, after 23:59:59 on the posted due
date, it’s late!

• I will run a script to identify the projects that will have Bonus Days deducted.

• Keep track of your Bonus Days. But, if you lose track, email me and I will look it up in
my master spreadsheet for you.

• If you have used Bonus Days on a given project, I will send you an email (well, a
Python script will, actually) telling you how many you used and how many you have
left.

Bonus Days

mjb – March 23, 2025

17

Computer Graphics

Silly Ways to Lose Points on Your Project

• You didn’t put your name on the title page of the PDF report (-5)

• You submitted some other file type for your report other than a PDF (-5)

• You put files in a .zip or .tar (etc) file (-5)

• Anything else that causes me to have to go back and grade your project
individually, unless it is because of something that was my fault (-5)

Beware:
don't do any

of these!!

mjb – March 23, 2025

18

Computer Graphics

Virtual machines are, apparently, not automatically setup to do multithreading.

If you are running on your own virtual machine and are getting performance
numbers that make absolutely no sense, try using one of the OSU machines.

A Warning About Virtual Machines

4

mjb – March 23, 2025

19

Computer Graphics

Some of you will end up having strange, unexplainable problems with your csh scripts or
.cpp programs. This could be because you are typing your code in on Windows (using
Notepad or Wordpad or Word) and then running it on Linux. Windows likes to insert an
extra carriage return ('\r') at the end of each line, which Linux interprets as a garbage
character.

You can confirm this by typing the Linux command:

od -c loop.csh
which will show you all the characters, even the '\r' (carriage returns, which you don't want)
and the '\n' (newlines, which you do want).

To get rid of the carriage returns, enter the Linux command:

tr -d '\r' < loop.csh > loop1.csh
Then run loop1.csh

This works too:

sed -i -e 's/\r$//' loop.csh

Or, on some systems, there is a utility called dos2unix which does this for you:

dos2unix < loop.csh > loop1.csh

Sorry about this. Unfortunately, this is a fact of life when you mix Windows and Linux.

A Warning about Editing on Windows and Running on Linux

mjb – March 23, 2025

20

Computer Graphics

This is the bug that Dr. and Rear Admiral Grace Hopper found (and fixed) in the late 1940s
in a relay panel in the Harvard Mark II computer. As you can see here, she dutifully
recorded it in her log. This gave rise to the phrase “computer program bug” that we still
use today. This is now part of the Smithsonian Institution American History collection.

Debugging in American History 

https://americanhistory.si.edu/collections/nmah_334663

