
Parallel Programming with pthreads

Mike Bailey

mjb@cs.oregonstate.edu

Oregon State University

j @ g

mjb – April 16, 2014

Oregon State University
Computer Graphics

pthreads.pptx

pthreads Multithreaded Programming

• Pthreads is short for “Posix Threads”

• Posix is an IEEE standard for a Portable Operating System (section 1003.1c)

• Pthreads is a library that you link with your program

The pthread paradigm is to let you spawn functions as separate threadsThe pthread paradigm is to let you spawn functions as separate threads

• A thread is spawned by transferring control to a specific function that you have defined.

• The thread terminates when: (1) the function returns, or (2) when pthread_exit() is called

• All threads share a single executable, a single set of global variables, and a single heap
(malloc, new)

• Each thread has its own stack (function arguments, private variables)

• pthreads is considered to be a low-level API. Oftentimes, other parallel APIs are written in
terms of pthreads (e.g., OpenMP).

mjb – April 16, 2014

Oregon State University
Computer Graphics

Compiling pthreads Programs

On Linux:

l th d fg++ -o program program.cpp -lm -pthread -fopenmp

On Windows:

From the class web site, get the files:

• pthread.h
h d h• sched.h

• pthreadVC2.lib
• pthreadVC2.dll

mjb – April 16, 2014

Oregon State University
Computer Graphics

These files came from:
http://sourceware.org/pthreads-win32

pthreads Data Types

pthread_t

pthread_attr_t

Thread id

Thread attribute

pthread_mutex_t

pthread_mutexattr_t Mutex attribute

Mutex id

pthread_cond_t

pthread condattr t

Condition id

Condition attributepthread_condattr_t

pthread_barrier_t

th d t C ll id

Condition attribute

Barrier id

pthread_once_t Call-once id

Most of the pthread_*_t variables have corresponding
th d * i it() f ti th t t b ll d b f i th i bl

mjb – April 16, 2014

Oregon State University
Computer Graphics

pthread_*_init() functions that must be called before using the variables

A Way to Clarify Referencing Memory Addresses

If you are an OpenGL programmer, the .h files you #include give you access to
constructs like this:

typedef GLuint unsigned int;

so that your code can say:
GLuint a;
glGenBuffers(1, &a);

I have found it handy to do the same thing for addresses. I like to say:
typedef void * address_t ;

so that my code can look like this:

int Arg = 0;
pthread_create(&Thread, NULL, Func, (address_t)&Arg);

int *statusp;
pthread_join(Thread, (address_t *)&statusp);

int Arg = 0;
pthread_create(&Thread, NULL, Func, (void *)&Arg);

instead of like this:

mjb – April 16, 2014

Oregon State University
Computer Graphics

int *statusp;
pthread_join(Thread, (void **)&statusp);

Creating pthreads
The pthread paradigm is to spawn an application’s threads as function calls:

#include <pthread.h>
typedef void * address_t ;

pthread_t Thread1, Thread2;
void * Func1(void *);
void * Func2(void *);void Func2(void);
. . .
int val1 = 0;
int status1 = pthread_create(&Thread1, NULL, Func1, (address_t) &val1);

it h(t t 1)switch(status1)
{

case 0:
fprintf(stderr, “Thread 1 started successfully\n”);
break;

case EAGAIN:case EAGAIN:
fprintf(stderr, “Thread 1 failed because of insufficient resources\n”);
break;

case EINVAL:
fprintf(stderr, “Thread 1 failed because of invalid arguments\n”);
break;

default:
fprintf(stderr, “Thread 1 failed for unknown reasons\n”);

}

int val2 = 1;

mjb – April 16, 2014

Oregon State University
Computer GraphicsThe NULL in pthread_create indicates that this thread’s attributes are being defaulted

;
int status2 = pthread_create(&Thread2, NULL, Func2, (address_t) &val2);
. . .

Spawning the pthreads Follows a Fork-Join or Fork-Detach Model

Main ThreadMain Thread

Detach

mjb – April 16, 2014

Oregon State University
Computer Graphics

#include <stdio.h>
#include <math.h>
#ifdef WIN32

A Simple (but complete) pthreads Program

#ifdef WIN32
#include "pthread.h"
#else
#include <pthread.h>
#endif
typedef void * address_t ; yp _

const int SUCCESS = 0;
const int FAIL = -1;

void * Func1(address_t);
id * F 2(dd t)void * Func2(address_t);

int
main(int argc, char *argv[])
{

pthread t id1;pthread_t id1;
int arg1 = 0;
int status = pthread_create(&id1, NULL, Func1, (address_t)&arg1);
fprintf(stderr, "pthread_create status 1 = %d\n", status);

pthread_t id2a;
int arg2a = 1;
status = pthread_create(&id2a, NULL, Func2, (address_t)&arg2a);
fprintf(stderr, "pthread_create status 2a = %d\n", status);

pthread_t id2b;
int arg2b 2

mjb – April 16, 2014

Oregon State University
Computer Graphics

int arg2b = 2;
status = pthread_create(&id2b, NULL, Func2, (address_t)&arg2b);
fprintf(stderr, "pthread_create status 2b = %d\n", status);

address t statusp;

A Simple (but complete) pthreads Program

address_t statusp;
pthread_join(id1, &statusp);
fprintf(stderr, "Return status 1 = %d\n", * (int *)statusp);

pthread_join(id2a, &statusp);
fprintf(stderr, "Return status 2a = %d\n", * (int *)statusp);p (, , () p);

pthread_join(id2b, &statusp);
fprintf(stderr, "Return status 2b = %d\n", * (int *)statusp);

pthread_exit(NULL);
t 0return 0;

}

void *
Func1(address_t args)
{{

fprintf(stderr, "Hello from Func1 / Thread ID 0x%08x\n", pthread_self());
return (void *)&SUCCESS;

}

void *
Func2(address_t args)
{

int which = * (int *)args;

fprintf(stderr, "Hello from Func2 / %d / Thread ID 0x%08x\n", which, pthread_self());
t (id *)&SUCCESS

mjb – April 16, 2014

Oregon State University
Computer Graphics

return (void *)&SUCCESS;
}

pthread_create status 1 = 0

Output on Linux:

Hello from Func1 / Thread ID 0xd77f9700
pthread_create status 2a = 0
Hello from Func2 / 1 / Thread ID 0xd6df8700
Hello from Func2 / 2 / Thread ID 0xd63f7700
pthread_create status 2b = 0
Return status 1 = 0
Return status 2a = 0
Return status 2b = 0

Output on Windows:
pthread_create status 1 = 0
Hello from Func1 / Thread ID 0x00851980
pthread_create status 2a = 0
Hello from Func2 / 1 / Thread ID 0x00851a18Hello from Func2 / 1 / Thread ID 0x00851a18
pthread_create status 2b = 0
Hello from Func2 / 2 / Thread ID 0x00851d28
Return status 1 = 0
Return status 2a = 0

mjb – April 16, 2014

Oregon State University
Computer Graphics

Return status 2a 0
Return status 2b = 0

A Tale of Two pthreads

What’s the difference between these two pieces of code?

int val1 = 0;
int status1 = pthread_create(&Thread1, NULL, Func1, (address_t) &val1);

1
int val2 = 1;
int status2 = pthread_create(&Thread2, NULL, Func2, (address_t) &val2);

. . .

1

int val = 0;
int status1 = pthread_create(&Thread1, NULL, Func1, (address_t) &val);

val = 1;
int status2 = pthread_create(&Thread2, NULL, Func2, (address_t) &val);

2

. . .

Hint: Go back and look at this:

mjb – April 16, 2014

Oregon State University
Computer Graphics

void *
Func2(address_t args)
{

int which = * (int *) args;

Using the Same Spawned Function in a Loop:
A Dangerous Way

This is where it can get ugly . . .

int val = 0;
i t t t 1 th d t (&Th d1 NULL F (dd t) & l)int status1 = pthread_create(&Thread1, NULL, Func, (address_t) &val);

val = 1;
i t t t 2 th d t (&Th d2 NULL F (dd t) & l)

2

int status2 = pthread_create(&Thread2, NULL, Func, (address_t) &val);

. . .

pthread_t Threads[NUM];

for(int i = 0; i < NUM; i++)
{

3 int status = pthread_create(&Threads[i], NULL, Func, (address_t) &i);
}

3

mjb – April 16, 2014

Oregon State University
Computer Graphics

. . .

Using the Same Spawned Function in a Loop:
A Better Way

pthread_t Threads[NUM];

4

int Args[NUM];

for(int i = 0; i < NUM; i++)for(int i 0; i NUM; i)
{

Args[i] = i;

int status = pthread_create(&Threads[i], NULL, Func, (address_t) &Args[i]);
}}

. . .

mjb – April 16, 2014

Oregon State University
Computer Graphics

If You’d Rather Import the Number of Threads
Dynamically Instead of Statically as a #define

As a static #define :
pthread_t Threads[NUM THREADS];

int Args[NUM THREADS];

As a static #define :

for(int i = 0; i < NUM THREADS; i++)
{

Args[i] = i;

int status = pthread_create(&Threads[i], NULL, Func, (address_t) &Args[i]);
}

As a dynamically-imported number (from a file, command line, etc) :

pthread_t * Threads = new pthread_t [NumThreads];

int * Args = new int [NumThreads];

y y p (, ,)

for(int i = 0; i < NumThreads; i++)
{

Args[i] = i;

mjb – April 16, 2014

Oregon State University
Computer Graphics

int status = pthread_create(&Threads[i], NULL, Func, (address_t) &Args[i]);
}

Passing in Multiple Arguments to the Spawned Function

pthread_t Threads[NUM];

struct abc
{

float a;
int b;int b;
char *c;

} Args[NUM];

for(int i = 0; i < NUM; i++)
{

int status = pthread_create(&Threads[i], NULL, Func, (address_t) &Args[i]);
}}

. . .

mjb – April 16, 2014

Oregon State University
Computer Graphics

Is There Any Problem with Doing Something Like This?

Goal: Want to pass an integer value of 10 into the spawning function Func()Goal: Want to pass an integer value of 10 into the spawning function Func()

int status = pthread_create(&Threads[i], NULL, Func, (address_t) 10);

or:

int value = 10;

int status = pthread_create(&Threads[i], NULL, Func, (address_t) value);

void *
Func(address t args)Func(address_t args)
{

int ten = (int) args;

mjb – April 16, 2014

Oregon State University
Computer Graphics

. . .

Is There Any Problem with Doing Something Like This?
No, It will work, but it is always bad style to mix pointers and integers

Goal: Want to pass an integer value of 10 into the spawning function Func()

We’d rather you do it this way:

int value = 10;

int status = pthread_create(&Threads[i], NULL, Func, (address_t) &value);

void *
Func(address_t args)
{

int *ip = (int *) args;
int ten = *ip;
. . .

mjb – April 16, 2014

Oregon State University
Computer Graphics

Waiting for pthreads to Finish

dd t t t 1address_t statusp1;
address_t statusp2;

pthread_join(Thread1, (address_t *)&statusp1);
pthread join(Thread2, (address t *)&statusp2); p _j (, (_) p);

if(statusp1 != NULL)
fprintf(stderr, “Thread 1 exited with status %d\n”, * (int *)statusp1);p (, , () p);

if(statusp2 != NULL)
fprintf(stderr, “Thread 2 exited with status %d\n”, * (int *)statusp2);

A thread’s status is the integer value that the spawned-off function returned,
using its return statement

mjb – April 16, 2014

Oregon State University
Computer Graphics

using its return statement.

Other Useful pthreads Management Functions

pthread_detach(pthread_t thread);

pthread_join(pthread_t thread, address_t * (&status_ptr));

Detach a thread

Wait for a thread to finish

pthread_exit(address_t value);
Terminate this thread, returning value
to any thread that is waiting for it

pthread_cancel(pthread_t thread); Cancel a thread

pthread_kill(pthread_t thread, int sig); Send a signal to a thread
(e.g., SIGINT, SIGKILL)

pthread self() Returns the thread id of this threadp _ ()

pthread_equal(pthread_t id1, pthread_t id2) Tells you if two thread ids refer to the same
thread. It returns 0 (false) or !0 (true).

mjb – April 16, 2014

Oregon State University
Computer Graphics

Forcing a Function to Be Called Just Once

void InitFunc(void);

pthread_once_t inits;

Typically a function that sets some things up

pthread_once_init(&inits); You must remember to do this

th d (&i it I itF) N m tt h m tim s this li f d ts pthread_once(&inits, InitFunc); No matter how many times this line of code gets
executed, InitFunc() will only be called once

mjb – April 16, 2014

Oregon State University
Computer Graphics

Getting and Setting a pthread’s Information

pthread attr t attr ;pthread_attr_t attr ;
int * stackaddr;
size_t stacksize;

pthread_attr_init(&attr); You must remember to do this

pthread_attr_getstackaddr(&attr, (address_t *) &stackaddr);

pthread_attr_getstacksize(&attr, &stacksize);

pthread_attr_setstackaddr(&attr, (address_t) stackaddr);

pthread_attr_setstacksize(&attr, stacksize);

Supposedly, these functions have been deprecated in favor of:

mjb – April 16, 2014

Oregon State University
Computer Graphics

pthread_attr_setstack(&attr, (address_t) stackaddr, stacksize);
pthread_attr_getstack(&attr, (address_t *) &stackaddr, &stacksize);

#include <stdio h>

On the OSU EECS babylon Linux machine:

#include <stdio.h>
#include <math.h>
#include <pthread.h>

intint
main(int argc, char *argv[])
{

pthread_attr_t attr;
size t stacksize;size_t stacksize;

pthread_attr_init(&attr);
pthread_attr_getstacksize(&attr, &stacksize);

fprintf(stderr, "Stack Size = %d = 0x%08x\n", stacksize, stacksize);

return 0;
}}

Stack Size = 10485760 = 0x00a00000 = 10 MB

mjb – April 16, 2014

Oregon State University
Computer Graphics

Stack Size = 10485760 = 0x00a00000 = 10 MB

pthreads Mutexes

Goal: create a mutual exclusion (“mutex”) lock that only one thread can acquire at a time:

pthread_mutex_t Sync;
. . .

pthread mutex init(&Sync NULL);pthread_mutex_init(&Sync, NULL);

. . .
pthread_mutex_lock(&Sync);

<< code that needs the mutual exclusion >>

You must remember to do this

<< code that needs the mutual exclusion >>
pthread_mutex_unlock(&Sync);

pthread mutex trylock(&Sync);pthread_mutex_trylock(&Sync);

pthread_mutex_unlock (&Sync);

pthread_mutex_lock() blocks, waiting for the mutex lock to become available

The NULL in pthread_mutex_init() indicates that this mutex’s attribute object is being defaulted

mjb – April 16, 2014

Oregon State University
Computer Graphics

If the lock is not available, pthread_mutex_trylock() does not block. This is
good if there is some more computing that could be done if the lock is not yet
available. If the lock is available, trylock() acquires it.

pthreads Barriers

#define NUMTHREADS 16

pthread_barrier_t barrier;

pthread_barrier_init(&barrier, NULL, NUMTHREADS); You must remember to do this()

pthread barrier wait(&barrier);pthread_barrier_wait(&barrier);

This is implemented with an internally-kept mutex variable, condition variable, and a count
of how many threads have gotten to this point.

Wh NUMTHREADS th d fi ll ll th d b i it() th b i i l d

mjb – April 16, 2014

Oregon State University
Computer Graphics

When NUMTHREADS threads finally call pthread_barrier_wait(), the barrier is released.

Project #4 Use of Barriers

mjb – April 16, 2014

Oregon State University
Computer Graphics

pthreads Condition Variables: Overview
This is really useful. It lets threads be suspended while waiting for some

event to happen. Otherwise, they would have to keep polling. And, you are

Program: Init a condition variable and a mutex

pp y p p g y
the one who gets to decide what the event is and when it occurs.Thread #1

Program: Lock the mutex

Program: Call pthread_cond_wait

Pth d S d thi th d’ tiPthreads: Suspends this thread’s execution

Pthreads: Unlocks the mutex

Program: Lock the mutex

Thread #2

Program: Lock the mutex

Program: Call pthread_cond_signal or pthread_cond_broadcast

Program: Unlock the mutex

Pthreads: Locks the mutex

Pthreads: Wakes the thread up

mjb – April 16, 2014

Oregon State University
Computer Graphics

Program: Do what needs to be done

Program: Unlock the mutex as soon as it can

pthreads Condition Variables: Functions

struct timespec

pthread_mutex_t lock;
pthread_cond_t cond ;
struct timespec delta_time;

struct timespec
{

time_t tv_sec; // seconds
long tv_nsec; // nanoseconds

} ;

pthread_mutex_init(&lock, NULL); You must remember to do this
pthread_cond_init(&cond, NULL);

pthread_cond_wait(&cond, &lock);

You must remember to do this

Suspend this thread

pthread_cond_timedwait(&cond, &lock, &delta_time);

(&)

Suspend this thread, but allow a timeout
to wake it up

pthread_cond_broadcast(&cond);

pthread_cond_signal(&cond);

Wakeup all threads waiting

Wakeup one thread waiting

mjb – April 16, 2014

Oregon State University
Computer Graphics

