
mjb – March 26, 2025

1

Computer Graphics

Vector Processing

(aka, Single Instruction Multiple Data, or SIMD)

simd.vector.pptx

Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

mjb – March 26, 2025

2

Computer Graphics

What is Vectorization/SIMD and Why do We Care?

Performance!

Many hardware architectures today, both CPU and GPU, allow you to
perform arithmetic operations on multiple array elements simultaneously.

(Thus the label, “Single Instruction Multiple Data”.)

We care about this because many problems, especially scientific and
engineering, can be cast this way. Examples include convolution, Fourier
transform, power spectrum, autocorrelation, etc.

*

=

Signal

Sine and Cosine values

Fourier products

mjb – March 26, 2025

3

Computer Graphics

SIMD in Intel CPUs

Year
Released

Name Width
(bits)

Width
(FP words)

1996 MMX 64 2

1999 SSE 128 4

2011 AVX 256 8

2013 AVX-512 512 16

Xeon Phi Note: one complete cache line!
Also note: a 4x4 transformation matrix!

If you care:
• MMX stands for “MultiMedia Extensions”
• SSE stands for “Streaming SIMD Extensions”
• AVX stands for “Advanced Vector Extensions”

mjb – March 26, 2025

4

Computer Graphics

Sidebar: Matrix SIMD in Intel CPUs

Intel announced AMX – the Advanced Matrix Extensions in 2020 and built it into
CPU chips starting in 2023. It consists of 2D registers, called “tiles”. These can
multiply 16x16 matrices of data types fp16, int16, and int8 with a single instruction.

This is billed as an “AI Acceleration Engine”. I suspect this is much like the Tensor
Cores on Nvidia GPUs.

Intel

mjb – March 26, 2025

5

Computer Graphics

Intel SSE

Intel and AMD CPU architectures support vectorization. The most
well-known form is called Streaming SIMD Extension, or SSE. It
allows four floating point operations to happen simultaneously.

Normally a scalar floating point multiplication instruction happens like this:

mulss r1, r0

r1r0

“ATT form”:
mulss src, dst

*
r0*r1

mjb – March 26, 2025

6

Computer Graphics

Intel SSE

The SSE version of the multiplication instruction happens like this:

mulps xmm1, xmm0

xmm0 xmm0xmm0 xmm0 xmm1 xmm1xmm1 xmm1

*

“ATT form”:
mulps src, dst

*
*

*

mjb – March 26, 2025

7

Computer Graphics

mulps xmm1, xmm0mulss r1, r0

SSE in the Kitchen? 

mjb – March 26, 2025

8

Computer Graphics

This all sounds great!
What’s the catch?

The catch is that compilers haven’t caught up to producing really efficient
SIMD code. So, while there are great ways to express the desire for SIMD in
code, you won’t get the full potential speedup … yet.

One way to get a better speedup is to use assembly language. That’s what
we are going to do. Don’t worry – you wouldn’t need to write it.

We are giving you two assembly functions:

1. SimdMul: C[0:len] = A[0:len] * B[0:len]

2. SimdMulSum: return (ΣA[0:len] * B[0:len])

Warning – due to the nature of how different compilers and systems
handle local variables, these two functions only work on flip and rabbit

using gcc/g++, without any optimization !!!

mjb – March 26, 2025

9

Computer Graphics

void
SimdMul(float *a, float *b, float *c, int len)
{

int limit = (len/SSE_WIDTH) * SSE_WIDTH;
__asm
(

".att_syntax\n\t"
"movq -24(%rbp), %r8\n\t" // a
"movq -32(%rbp), %rcx\n\t" // b
"movq -40(%rbp), %rdx\n\t" // c

);

for(int i = 0; i < limit; i += SSE_WIDTH)
{

__asm
(

".att_syntax\n\t"
"movups (%r8), %xmm0\n\t" // load the first sse register
"movups (%rcx), %xmm1\n\t" // load the second sse register
"mulps %xmm1, %xmm0\n\t" // do the multiply
"movups %xmm0, (%rdx)\n\t" // store the result
"addq $16, %r8\n\t"
"addq $16, %rcx\n\t"
"addq $16, %rdx\n\t"

);
}

for(int i = limit; i < len; i++)
{

c[i] = a[i] * b[i];
}

}

Getting at the full SIMD power until compilers catch up

This only works on flip and rabbit using
gcc/g++, without any optimization !!!

mjb – March 26, 2025

10

Computer Graphics

Getting at the full SIMD power until compilers catch up
float
SimdMulSum(float *a, float *b, int len)
{

float sum[4] = { 0., 0., 0., 0. };
int limit = (len/SSE_WIDTH) * SSE_WIDTH;

__asm
(

".att_syntax\n\t"
"movq -40(%rbp), %r8\n\t" // a
"movq -48(%rbp), %rcx\n\t" // b
"leaq -32(%rbp), %rdx\n\t" // &sum[0]
"movups (%rdx), %xmm2\n\t" // 4 copies of 0. in xmm2

);

for(int i = 0; i < limit; i += SSE_WIDTH)
{

__asm
(

".att_syntax\n\t"
"movups (%r8), %xmm0\n\t" // load the first sse register
"movups (%rcx), %xmm1\n\t" // load the second sse register
"mulps %xmm1, %xmm0\n\t" // do the multiply
"addps %xmm0, %xmm2\n\t" // do the add
"addq $16, %r8\n\t"
"addq $16, %rcx\n\t"

);
}

__asm
(

".att_syntax\n\t"
"movups %xmm2, (%rdx)\n\t" // copy the sums back to sum[]

);

for(int i = limit; i < len; i++)
{

sum[0] += a[i] * b[i];
}

return sum[0] + sum[1] + sum[2] + sum[3];
}

This only works on flip and rabbit using
gcc/g++, without any optimization !!!

mjb – March 26, 2025

11

Computer Graphics

Array*Array Multiplication Speed

S
p

ee
d

(M
F

LO
P

S
)

Array Size (M)

Assembly

C

mjb – March 26, 2025

12

Computer Graphics

Avoiding Assembly Language: SIMD using the OpenMP SIMD Pragma

void
SimdMul(float *a, float *b, float *c, int len)
{

#pragma omp simd
for(int i= 0; i < len; i++)

c[i] = a[i] * b[i];
}

Array * Array

void
SimdMul(float *a, float b, float *c, int len)
{

#pragma omp simd
for(int i = 0; i < len; i++)

c[i] = a[i] * b;
}

Array * Scalar

mjb – March 26, 2025

13

Computer Graphics

#pragma omp simd
for(int i = 0; i < ArraySize; i++)
{

c[i] = a[i] * b[i];
}

#pragma omp simd

Avoiding Assembly Language: SIMD using the OpenMP SIMD Pragma

Assembly

C

mjb – March 26, 2025

14

Computer Graphics

Requirements for a For-Loop to be SIMD'd

• If there are nested loops, the one to vectorize must be the inner one.

• There can be no jumps or branches. “Masked assignments” (an if-statement-
controlled assignment) are OK, e.g.,

if(A[i] > 0.)
B[i] = 1.;

• The total number of iterations must be known at runtime when the loop starts

• There can be no inter-loop data dependencies such as:
a[i] = a[i-1] + 1.;

• It helps performance if the elements have contiguous memory addresses.

a[100] = a[99] + 1.; // this crosses an SSE boundary, so it is ok
a[101] = a[100] + 1.; // this is within one SSE operation, so it is not OK

100th element101st element

101st element102nd element

mjb – March 26, 2025

15

Computer Graphics

Avoiding Assembly Language: the Intel Intrinsics

Intrinsic Meaning

__m128 Declaration for a 128 bit 4-float word

_mm_loadu_ps Load a __m128 word from memory

_mm_storeu_ps Store a __m128 word into memory

_mm_mul_ps Multiply two __m128 words

_mm_add_ps Add two __m128 words

Intel has a mechanism to get at the SSE SIMD without resorting to
assembly language. These are called Intrinsics.

mjb – March 26, 2025

16

Computer Graphics

SimdMul using Intel Intrinsics

#include <xmmintrin.h>
#define SSE_WIDTH 4

void
SimdMul(float *a, float *b, float *c, int len)
{

int limit = (len/SSE_WIDTH) * SSE_WIDTH;
register float *pa = a;
register float *pb = b;
register float *pc = c;
for(int i = 0; i < limit; i += SSE_WIDTH)
{

_mm_storeu_ps(pc, _mm_mul_ps(_mm_loadu_ps(pa), _mm_loadu_ps(pb)));
pa += SSE_WIDTH;
pb += SSE_WIDTH;
pc += SSE_WIDTH;

}

for(int i = limit; i < len; i++)
{

c[i] = a[i] * b[i];
}

}

mjb – March 26, 2025

17

Computer Graphics

SimdMulSum using Intel Intrinsics

float
SimdMulSum(float *a, float *b, int len)
{

float sum[4] = { 0., 0., 0., 0. };
int limit = (len/SSE_WIDTH) * SSE_WIDTH;
register float *pa = a;
register float *pb = b;

__m128 ss = _mm_loadu_ps(&sum[0]);
for(int i = 0; i < limit; i += SSE_WIDTH)
{

ss = _mm_add_ps(ss, _mm_mul_ps(_mm_loadu_ps(pa), _mm_loadu_ps(pb)));
pa += SSE_WIDTH;
pb += SSE_WIDTH;

}
_mm_storeu_ps(&sum[0], ss);

for(int i = limit; i < len; i++)
{

sum[0] += a[i] * b[i];
}

return sum[0] + sum[1] + sum[2] + sum[3];
}

mjb – March 26, 2025

18

Computer Graphics

Intel Intrinsics

0

0.5

1

1.5

2

2.5

3

0 200000 400000 600000 800000 1000000

Intrinsics for SIMD

Array Size

S
IM

D
 S

pe
e

dU
p

C[i] = A[i]*B[i] sum = sum + A[i]*B[i]

mjb – March 26, 2025

19

Computer Graphics

#define NUM_ELEMENTS_PER_CORE (ARRAYSIZE / NUMT)

. . .

omp_set_num_threads(NUMT);
double maxMegaMultsPerSecond = 0.;

double time0 = omp_get_wtime();
#pragma omp parallel
{

int thisThread = omp_get_thread_num();
int first = thisThread * NUM_ELEMENTS_PER_CORE;
SimdMul(&A[first], &B[first], &C[first], NUM_ELEMENTS_PER_CORE);

}
double time1 = omp_get_wtime();
double megaMultsPerSecond = (double)ARRAYSIZE / (time1 - time0) / 1000000.;
. . .

Each Core Has Its Very Own SIMD Unit!
That Means You Can Combine SIMD and Multicore

The variable first is the first array element that
thisThread is in charge of.

&A[first] is the memory address of thisThread's first
element.

mjb – March 26, 2025

20

Computer Graphics

Notes:

• Remember that #pragma omp parallel creates a thread team and that all
threads execute everything in the curly braces.

• The variable thisThread is the thread number of the thread who is executing this
code right now. There will eventually be NUMT threads who get to execute this
code. Thus, all the instances of thisThread will be between 0 and NUMT-1 .

• The variable first is the first array element number that thisThread will execute.

• Starting the SIMD multiplications at &A[first], &B[first], &C[first] gives each
thread its very own set of contiguous array elements to work on. The SimdMul
function depends on this.

Combining SIMD with Multicore

mjb – March 26, 2025

21

Computer Graphics

Array Size

S
pe

ed
U

p

1 core alone

2 cores alone

4 cores alone

• Speedups are with respect to a for-loop with no multicore or SIMD.
• “cores alone” = a for-loop with “#pragma omp parallel for”.
• “cores + SIMD” = as the code looks on last two slides

2x

4x

16x

8x

1x

Combining SIMD with Multicore

mjb – March 26, 2025

22

Computer Graphics

Prefetching

Prefetching is used to place a cache line in memory before it is to be used, thus hiding the
latency of fetching from off-chip memory.

There are two key issues here:
1. Issuing the prefetch at the right time
2. Issuing the prefetch at the right distance

The right time:
If the prefetch is issued too late, then the memory values won’t be back when the
program wants to use them, and the processor has to wait anyway.

If the prefetch is issued too early, then there is a chance that the prefetched values could
be evicted from cache by another need before they can be used.

The right distance:
The “prefetch distance” is how far ahead the prefetch memory is than the memory we
are using right now.

Too far, and the values sit in cache for too long, and possibly get evicted.

Too near, and the program is ready for the values before they have arrived.

mjb – March 26, 2025

23

Computer Graphics

The Effects of Prefetching on SIMD Computations

for(int i = 0; i < NUM; i += ONETIME)
{

__builtin_prefetch (&A[i+PD], WILL_READ_ONLY, LOCALITY_LOW);
__builtin_prefetch (&B[i+PD], WILL_READ_ONLY, LOCALITY_LOW);
__builtin_prefetch (&C[i+PD], WILL_READ_AND_WRITE, LOCALITY_LOW);

SimdMul(A, B, C, ONETIME);
}

Array Multiplication
Length of Arrays (NUM): 1,000,000
Length per SIMD call (ONETIME): 256

mjb – March 26, 2025

24

Computer Graphics

Array Size (M)

S
p

ee
d

(M
F

LO
P

S
)

The Effects of Prefetching on SIMD Computations

mjb – March 26, 2025

25

Computer Graphics

• SIMD is an important way to achieve array-operation speed-ups on a CPU

• For now, you might have to write in assembly language to get to all of it

• I suspect that #pragma omp simd will catch up

• I suspect that Intel Intrinsics will catch up

• Prefetching can really help SIMD

