OpenMP Reduction Case Study:
Trapezoid Integration Example

Oregon State
University
Mike Bailey

mjb@cs.oregonstate.edu

Oregon State
University
Computer Graphics
trapezoid.pptx mjb — March 17, 2025

Find the area under the curve y = sin(x) 2

forO0<x<T
using the Trapezoid Rule

0.9

0.8

0.7
0.6

T A \
. / \

0.1
0 / T T T T T |\]

0 0.5 1 1.5 2 2.5 3 3.5

Exact answer: jo (sin x)dx =—cosx|; =2.0

Oregon State
University
Computer Graphics
mjb — March 17, 2025

Don’t do it this way ! 3

const double A = 0;

const double B = M_PI;

double dx = (B - A)/ (float) (numSubdivisions — 1);
double sum = (Function(A) + Function(B)) / 2;

omp_set_num_threads(numThreads);

#pragma omp parallel for default(none), shared(dx,sum)

for(inti=1;i<numSubdivisions - 1; i++)

{
double x = A + dx * (float) i;
double f = Function(x);

sum += f;
}
sum *= dx;

—

* There is no guarantee when each thread will execute this line

* There is not even a guarantee that each thread will finish this line
before some other thread interrupts it.

Assembly code:
Load sum What if the scheduler decides to
Add f < switch threads right here?
Oregon State
University Store sum
Computer Graphics

mjb — March 17, 2025

The answer should be 2.0 exactly, but in 30 trials, it’s not even close.4
And the answers aren’t even consistent. How do we fix this?

0.469635
0.517984
0.438868
0.437553
0.398761
0.506564
0.489211
0.584810
0.476670
0.530668
0.500062
0.672593
0.411158
0.408718
0.523448

0.398893
0.446419
0.431204
0.501783
0.334996
0.484124
0.506362
0.448226
0.434737
0.444919
0.442432
0.548837
0.363092
0.544778
0.356299

sum

0.8

0.7

0.6

0.5

0.3

0.2

0.1

10

15

Trial #

20

25 30

Oregon State
University
Computer Graphics
mjb — March 17, 2025

There are Three Ways to Make the Summing Work Correctly: 5

#1: Atomic
1

#pragma omp parallel for shared(dx)
for(inti = 0; i < numSubdivisions; i++)
{

double x = A + dx * (float) i;

double f = Function(x);

<_f#lpragma omp atomic>

sum +=f;

}

More lightweight than critical (#2)
Uses a hardware instruction CMPXCHG (compare-and-exchange)
« Can only handle these operations:

X++, ++X, X--, ==X
X OP= expr, X = X Op expr, X = expr op X
where op is one of: +, -, *, /, &, |, #, <<, >>

Oregon State
University
Computer Graphics
mjb — March 17, 2025

There are Three Ways to Make the Summing Work Correctly:
#2: Critical

#pragma omp parallel for shared(dx)
for(inti = 0; i < numSubdivisions; i++)
{
double x = A + dx * (float) i;
double f = Function(x);

< #ipragma omp critica

sum +=f;
Y

» More heavyweight than atomic (#1)
» Allows only one thread at a time to enter this block of code (similar to a mutex)
« Can have any operations you want in this block of code

Oregon State
University
Computer Graphics
mjb — March 17, 2025

There are Three Ways to Make the Summing Work Correctly:
#3: Reduction

3
#pragma omp parallel for shared(dx)@ction(ﬂs@
for(inti = 0; i < numSubdivisions; i++)
{
double x = A + dx * (float) i;
double f = Function(x);
sum +=f;
}

* OpenMP creates code to make this as fast as possible
 Reduction operatorscanbe: +,-,* , &,|, ", &&, || , max, min

Oregon State
University
Computer Graphics
mjb — March 17, 2025

Speed of Reduction vs. Atomic vs. Critical

(up = faster)

4]
Q
c
©
E
o
=
o
o

MegaFunctionEvaIuations per Second

Oregon State
University
Computer Graphics

mjb — March 17, 2025

So, do it this way ! 9

const double A =
const double B =

0.;

M_PI;

double dx = (B - A) / (float) (numSubdivisions — 1);
omp_set_num_threads(numThreads);

double sum = (Function(A) + Function(B)) / 2

#pragma omp parallel for default(none),shared(d ,reduction(+:suE
for(inti=1;i < numSubdivisions - 1; i++)

{
double x = A + dx * (float) i;
double f = Function(x);
sum += f;
}
0ﬁ° *
% sum *= dx;
By
Oregon State

University
Computer Graphics
mjb — March 17, 2025

Two Reasons Why Reduction is so Much Better in this Case 10

{

double x = A + dx * (float) i;
double f = Function(x);

#pragma omp parallel for shared(dx),reduction(+:sum)
T __ | for(inti = 0; i < numSubdivisions; i++)
o1 sum +=f;
| =

MegaF unctionEvaluations per S

Reduc / - }
tion
Atomie

Critica)

1. Reduction secretly creates a temporary private

variable for each thread’s running sum. Each thread

adding into its own running sum doesn’t interfere
/‘: with any other thread adding into its own running

/E sum, and so threads don’t need to slow down to get
7': out of the way of each other.

Reduction automatically creates a binary tree

structure, like this, to add the N running sums in
log,N time instead N time.

Oregon State
University
Computer Graphics

mjb — March 17, 2025

LG

0

LAVAVAVAVAVAY)

O(N) vs. O(log,N)

2. Reduction automatically creates a binary tree
structure, like this, to add the N running sums in
log,N time instead N time.

Serial addition:
Adding 8 numbers requires 7 steps

11

Adding 1,048,576 (1M) numbers requires 1,048,575 steps

Parallel addition:
Adding 8 numbers requires 3 steps

Adding 1,048,576 (1M) numbers requires 20 steps

mjb — March 17, 2025

If You Understand NCAA Basketball Brackets, You Understand Power-of-Two Reduction 12

ENTER YOUR BRACKET, PLAY FOR A TRIP

A OFFICIAL

Visit CBSSports.com/Challenge NCAD oo

First Rownd Sec ond Rownd Sweet 14 EHite 8 Fimal Four Hational Champéonhip Finial Four Elite @ Sweet 15 Second Rownd First Rowrd

March 2122 March 2324 March 2329 March 30-31 Apri d Agrit & Aprl 4 Warch 20-31 hhech 2829 March 2324 Migech 2122

1 LICLA 15 Carolinga
mwcspsou @®CBS SPORTS R
%7 2025 Women's NCAA Bracket 4{”‘“"7
G Tech Singigng
5o Migs 5 Asbama

& Baylior & hiad yiand

13 Giand Canyon : ' 13 higedolc 51

= Spokane 1 Birmingham 2 il e s

ILS 3N Camning

_L:' Michignn 5 Mational EAT]
10 Hanard Champlonship 4&

_ZNC Stk 2 Dusko
b USC [J i Teusm
18 UNGG ! - = Ew HIPT/WAM
8 Cibforn & N
Tampa, FL
3 Mis, Sisin Apri & A Cringy T
4 Mansas Sf 5 Temaossen

i Monhek 4 Ohio 51
13 Lhmi ; I‘J Martana 8

i Spokane 4 Birmingham 3 S
L T S |

1 Muteay 51 I | 1SEPRIN

3 Chelghpma First Fowr 3 Wt Dama

; March 1820 E

v FGLU 18 5F Ausbn

7 Qi 51, —— 18 UC San Déogo 11 Cofurnibia S —— o T—
Sy ra Spokane 1 4 Saulharn UL E” Washrgtnn Brmingham 2 !.:‘ i

3 UCann 11 fowed 52 16 Hgh Paini i TGy
| |
0 18 Askanzas & !7 Brmingham3 , i Erlisatan i |18 wmam & sy Bemingham 3 4| 1 FOU

CIIIVCI OIT

Computer Graphics

Source: CBS Sports mjb — March 17, 2025

Why Not Do Reduction by Creating Your Own sums Array, 13
one for each Thread, Like This?

float *sums = new float [omp_get num_threads()];
for(inti=0;i<omp_get num_threads(); i++)
sums[i] =0,

#pragma omp parallel for private(myPartialSum),shared(sums)
for(inti=0;i<N;i++)
{

myPartialSum = ...

sums[omp_get thread num()] += myPartialSum,;

}

float sum = 0;
for(inti=0; i < omp_get num_threads(); i++)
sum +=sums[i|;

delete [] sums;

» This seems perfectly reasonable, it works, and it gets rid of the problem of
multiple threads trying to write into the same reduction variable.

 But the reason we don’t do this is that this method provokes a problem caIIed
¢ False Sharing. We will get to that when we discuss caching. (=

