
Detection of False Sharing Using Machine Learning
Sanath Jayasena*, Saman Amarasinghe**, Asanka Abeyweera*, Gayashan Amarasinghe*,

Himeshi De Silva*, Sunimal Rathnayake*, Xiaoqiao Meng
#
, Yanbin Liu

#

*Dept of Computer Science & Engineering, University of Moratuwa, Sri Lanka
**Computer Science & Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, USA

#
IBM Research, Yorktown Heights, New York, USA

sanath@cse.mrt.ac.lk, saman@csail.mit.edu, asanka.09@cse.mrt.ac.lk, gayashan.09@cse.mrt.ac.lk,
himeshi.09@cse.mrt.ac.lk, sunimalr.09@cse.mrt.ac.lk, xmeng@us.ibm.com, ygliu@us.ibm.com

ABSTRACT
False sharing is a major class of performance bugs in parallel
applications. Detecting false sharing is difficult as it does not
change the program semantics. We introduce an efficient and
effective approach for detecting false sharing based on machine
learning.

We develop a set of mini-programs in which false sharing can be
turned on and off. We then run the mini-programs both with and
without false sharing, collect a set of hardware performance event
counts and use the collected data to train a classifier. We can use
the trained classifier to analyze data from arbitrary programs for
detection of false sharing.

Experiments with the PARSEC and Phoenix benchmarks show
that our approach is indeed effective. We detect published false
sharing regions in the benchmarks with zero false positives. Our
performance penalty is less than 2%. Thus, we believe that this is
an effective and practical method for detecting false sharing.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques,
Modeling techniques, Performance attributes.

General Terms
Measurement, Performance.

Keywords
False Sharing, Performance Events, Machine Learning.

1. INTRODUCTION
Parallelism has become the major source of application
performance in the era of multicore processors. As more
applications rely on parallelism, performance issues related to
parallel execution are becoming a major problem for the
developers. One such issue is false sharing.

False sharing is a major class of performance bugs in parallel

applications. It occurs when threads running on different
processors/cores with local caches modify unshared data that
happen to occupy (share) the same cache line. The performance
penalty due to false sharing could be significant and can severely
hinder achieving the expected speedup in a parallel application.

False sharing does not change program semantics and is hard to
detect. Current detection methods are expensive, thus, are not
generally used in practice. Unlike a true sharing issue, which is
associated with a real data movement in the application, false
sharing is not visible within the application. Two variables that
can cause false sharing are completely independent. The fact they
share the same cache line may be result of the data layout driven
by the compiler or the runtime system. Thus, application analysis
will not reveal any false sharing. Furthermore, false sharing
cannot be revealed by localized analysis within a single core as it
requires multiple cores, and each to access different part of the
cache line. Thus, there are no simple localized hardware
mechanisms such as performance counters to detect false sharing.

To understand the performance impact of false sharing, consider
the example in Figure 1. Given vectors v1 and v2, it shows 3
different functions for the parallel dot-product computation.

For a parallel dot-product computation on a multicore system
using code in Figure 1, the main program will create multiple
threads, each to run on a distinct core executing one of the
pdot_N() functions to complete its part of the computation,
which is identified by start and end, i.e., the regions of the
vectors v1 and v2 assigned to each thread. If all threads use
Method 2, the repeated writes to psum[myid] in the loop by

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from
Permissions@acm.org.
SC13, November 17-21, 2013, Denver, CO, USA.
Copyright 2013 ACM 978-1-4503-2378-9/13/11…$15.00.
http://dx.doi.org/10.1145/2503210.2503269

Figure 1: Code for parallel computation of dot-product

int psum[MAXTHREADS]; // shared by threads

int v1[N], v2[N];

void *pdot_1(...) // Method 1: Good

{ ...

 int mysum = 0;

 for (i = start; i < end; i++)

 mysum += v1[i] * v2[i];

 psum[myid] = mysum;

}

void *pdot_2(...) // Method 2: Bad -

{ ... // False sharing

 for (i = start; i < end; i++)

 psum[myid] += v1[i] * v2[i];

}

void *pdot_3(...) // Method 3: Bad

{ ... // Memory access

 // same as pdot_1() except non-sequential

 // vector element access (e.g, strided)

}

each thread could lead to repeated false sharing misses, because
some or all elements in psum[] array would share a cache line.
False sharing in this case can be avoided by using Method 1which
uses a thread-private variable mysum in the loop. Method 3, for
comparison, demonstrates another form of bad memory access,
when elements in v1 and v2 are accessed non-sequentially (e.g.,
randomly or strided) between iterations, thus causing cache
misses. For a vector size of N=108 and on a 32-core Intel Xeon
system, Table 1shows the program execution times.

Table 1: Execution time in seconds for programs using the
code in Figure 1 on a 32-core Intel Xeon system for N=108

Table 1 shows false sharing has a drastic performance impact; the
multi-threaded versions with false sharing are even slower than
the single-threaded version.

The recent false sharing detection techniques [21][33] have
mainly relied on tracing the data movement across multiple cores.
This requires heavy instrumentation and excessive data gathering
and analysis. Thus, they incur a high overhead. They also require
special libraries which limit their applicability.

In this work, we take a completely different approach to false
sharing detection. Instead of trying to directly identify false
sharing, we are looking for the telltale signature created by false
sharing. False sharing induces certain memory access patterns on
multiple cores. By looking at the combined performance event
counts of the cores, we are able to detect the pattern. We use
supervised learning to train a classifier with a set of sample
kernels (mini-programs) – with and without false sharing. The
trained classifier is then used to analyze memory access patterns
of other programs.

We have applied our trained classifier to the PARSEC and
Phoenix benchmark programs, some of which have false sharing
identified and validated previously [21][33]. Our light-weight
technique is as successful as the previous heavy weight methods
in identifying the false sharing programs. First, our classifier did
not incorrectly classify any program as having false sharing, thus
zero false positives. In 97.8% cases, our classifier correctly
identified the problem confirmed by other heavyweight methods.
However, our instrumentation cost is minimal where the
performance penalty is less than 2%. Further, our approach is easy
to apply and does not require specialized tools or access to the
source code. Thus, we believe that this is an effective and
practical method for detecting false sharing.

The key contributions of this paper are:

 a novel, practical and effective methodology to detect false
sharing based on performance event counts and machine
learning

 demonstrating the methodology for using a specialized set of
small programs, in this case a set of multi-threaded mini-
programs in which false sharing can be turned on and off, for
training a machine-classifier that can be successfully applied
to larger applications

 experimental results with PARSEC and Phoenix benchmarks
show that we detect all cases with zero false positives and
our results are verified by existing methods.

This paper is organized as follows. Section 2 gives an overview of
our methodology and describes the set of mini-programs and the
performance events. Section 3 describes the training data and the
training of the machine classifier. Section 4 presents results on
our detection of false sharing in PARSEC and Phoenix
benchmarks. Section 5 discusses related work and Section 6
concludes the paper.

2. OUR APPROACH

2.1 Overview
In our approach, we rely on hardware performance event counts
collected from running programs. Performance monitoring units
(PMUs) in processors can count many hardware events [16][20]
and one could easily collect the desired counts via APIs (e.g.,
libpfm, PAPI) or tools (e.g., perf, Intel PTU)[6] [9][10][17][28].
Hardware performance event counts can help understand how the
hardware is being used by a program and potentially provide hints
on performance issues in a program.

Yet raw performance event data are difficult to handle and
confusing due to lack of standards among processors, poor
documentation and being tightly coupled with the system
architecture. For our purpose, having studied the events of Intel
micro-architectures Nehalem, Westmere and Sandy Bridge [16],
there is no single event, or even a small subset of events, that can
indicate the presence of false sharing. Further, while it is possible
to collect different kinds of performance event counts (and large
amounts of them) from running programs, such data are too
overwhelming for human processing.

Thus we rely on machine-learning techniques for the analysis of
performance event data.

The basic idea in our approach is to train a machine classifier with
a set of relevant performance event counts collected from a set of
mini-programs (or problem-specific programs), while running
each with and without false sharing, by turning false sharing on
and off as desired. However, false sharing is one of the many
memory system issues that can affect performance. In order to be
able to distinguish false sharing from these potential problems
related to memory access, we also included an inefficient form of
memory access in these programs whenever possible. This way, a
mini-program can be classified into three possible modes of
operation:

 good, i.e., no false sharing, no bad memory access

 bad, with false sharing (“bad-fs”)

 bad, with inefficient memory access (“bad-ma”).

 These modes make our problem a three-way classification
instead of a binary classification, which would result if only (the
presence or absence of) false sharing was considered.

The steps in our methodology would be as follows:

1. Design and develop a set of representative mini-programs
that can run in any one of the three possible modes

2. Identify a set of relevant performance events for the
underlying hardware with the help of the mini-programs

 # Threads
Method Used 1 4 8 12 16
1: Good 44.1 11.5 6.2 4.5 3.7
2: Bad, false sharing 44.0 79.3 76.8 76.1 78.0
3: Bad, memory access 250 82.8 77.1 77.3 78.2

3. Collect performance event counts by running the mini-
programs in all possible modes

4. Label each instance of the collected performance event data
as “good”, “bad-fs” or “bad-ma” based on the mode to which
the instance corresponds

5. Train a classifier using the labeled data set as training data

6. Use the classifier on programs previously unseen by the
classifier and evaluate its performance.

The expectation is that the trained classifier will take as input new
data instances (i.e., counts of the same set of performance events)
from unseen arbitrary programs and classify them correctly,
informing us if false sharing is present or not.

Our approach does not require access to the source code of a
program and can be widely applied across different hardware/OS
platforms as long as performance event counts can be collected.

Our methodology of steps 1-6 above is general and can be adapted
in different ways. For example, one could iterate through steps 1-
6 a few times, adding new min-programs in step 1 in each
iteration and thereby gradually improving the classification
accuracy, until desired level is reached. With an existing set of
mini-programs, we can apply our approach to a new hardware
platform with the workflow being steps 2-6 above; here, steps 2-6
can be iterated a few times by selecting different performance
events in step 2 in each iteration, until a satisfactory level of
accuracy is reached. One could also try out different machine
classifiers in step 5 and select the most suitable.

2.2 Mini-programs for Training
Selecting the set of mini-programs is crucial for building an
effective classifier. In training our classifier we used two sets of
mini-programs.

2.2.1 Multi-threaded Program Set
The first set of programs is multi-threaded (using pthreads) and
can be summarized as follows, with the names of programs within
parenthesis:

 3 “scalar” programs (psums, padding, false1): each thread
processes its own share of scalar data

 3 “vector” programs (psumv, pdot, count): each thread
processes its own share of vector data (e.g., Figure 1 shows a
part of the pdot program)

 matrix multiplication (pmatmult); each thread computes its
share of elements in the final matrix

 matrix compare (pmatcompare); each thread compares a
share of element pairs of two matrices

Each of the 3 scalar programs is different in what it does, the
amount of memory used and the way memory is accessed. Similar
differences exist among the 3 vector programs. In all programs,
each thread repeatedly writes to its own variable; there is false
sharing when these variables happen to share a cache line. The
vector programs are also parameterized to have a “bad-ma” mode,
introduced via inefficient access to array elements.

In each program, we parameterize the size of the computation
(problem size), the number of threads and the memory-access
mode. This means, for a specific problem size and a thread

number, we have a “good” version, a “bad-fs” version with false
sharing and a “bad-ma” version with bad-memory-access.

2.2.2 Sequential Program Set
We used a second set of mini-programs that are sequential (single-
threaded) to have more training data and improve the training on
“bad-ma” mode. This indeed improved the classification accuracy.

These programs exercise the memory system in different ways, so
that the overall program performance between “good” and “bad-
ma” modes differ significantly due to memory access pattern
alone (i.e., due to cache misses).

We have 3 programs in this set as follows:

 read data element-wise from an array

 write data element-wise to an array

 read data element-wise from an array, modify the data and
write it back

In each of the above programs, we parameterize the size of array
and the access pattern. There are 3 types of access to array
elements: (i) linear (sequential order, as stored in memory), (ii)
random, and (iii) in strides (stride can be varied).

The idea is that, linear access would result in good memory access
performance (“good” mode) while random and strided-access
would result in lots of cache misses (“bad-ma” mode). We have
another program that performs two-dimensional matrix
multiplication using different memory access patterns and loop
structures.

For each program above, the different versions perform the same
computation, the only difference being the way the data in
memory are accessed; “good” memory access results in
significantly better program performance than “bad-ma”.

2.3 Identification of Performance Events
We first go through the available list of performance events for
the hardware platform (this can be a couple of hundreds) and
compile a candidate list. In our case, since we focus on false
sharing and data access in memory, events that correspond to
memory access (loads and stores), data caches (e.g., cache line
state, cache misses), TLBs, interaction among processor cores,
resource stalls are included in the candidate list. The number of
instructions is also included. On Intel Nehalem EX and Westmere
DP micro-architectures, for example, we had about 60-70
candidate events [16][20].

We next use the mini-programs to identify a set of relevant events
from the candidate list, in two steps, as follows.

First, for each candidate event, we run each of our multi-threaded
mini-programs in “good” and “bad-fs” modes, with different
numbers of threads (e.g., 3, 6, 9, 12 on a 12-core system) and note
the event counts. If there is significant enough difference in the
counts between “good” and “bad-fs” cases (we used minimum 2x
ratio as a heuristic) for a majority of the mini-programs, then we
select that event as a relevant one from the candidate list, because
it can help to distinguish “good” and “bad-fs” cases. Second, for
each of the remaining (unselected) candidate events, we run each
of our mini-programs in “good” and “bad-ma” modes and select
the event as relevant, as was done before, if it can help distinguish
between “good” and “bad-ma” cases.

In our experiments we noted that some event counts associated
with L1D caches can be noisy and inconsistent, confirming the
caution in [20]. Further a candidate event like
Memory_Uncore_Retired.Other_core_L2_HITM did not end
up in the final set, despite our expectations based on information
in [15][16][20]. Table 2 shows the identified set of relevant
performance events for the Intel Westmere DP platform.

Table 2: Selected performance events for Westmere DP

The first 15 events in Table 2 were selected based on the process
described above. The last event, Instructions_Retired, was added
to allow us to normalize all other event counts by dividing each of
them by it. Such normalized counts of the first 15 events from one
program are comparable to corresponding normalized counts from
another program, whereas the absolute counts are not.

While having a large set of relevant performance events is
potentially desirable from a machine learning point of view, a
small set is desirable due to the constraints (e.g., limited number
of hardware registers in PMUs) that affect the accuracy of counts.
In our experience, the set in Table 2 is a reasonable balance for
the Intel Westmere DP platform and the problem we address.

3. TRAINING A MACHINE CLASSIFIER
After experimenting with several classifiers available in the public
domain, we selected J48 in Weka [13], an implementation of the
C4.5 decision-tree classification algorithm [23], as it produced the
best classification results. Our experimental platform is a 12-core
(2x6-cores) Intel Xeon X5690, 3.4GHz (Westmere DP) system
that has 32KB/core L1-D and L1-I caches, 256KB/core L2 cache,
12MB/CPU L3 cache and 192GB (96GBx2) RAM and running
x86_64 GNU/Linux 2.6.32.

3.1 Collection of Training Data
Training data are the counts of the selected performance events
collected by running the mini-programs. They were collected in
two parts, as follows. Table 3 summarizes the result of data
collection.
Part A consists of training data collected from the multi-threaded
mini-programs. Each mini-program is run for multiple problem
sizes, each with a few different thread numbers and in all 3
modes. This way, we collected an initial set of 675 data instances

(324 good, 216 bad-fs, 135 bad-ma). We manually examined each
of them and removed 22 bad-ma instances where the difference
from corresponding good cases was not significant enough and
therefore considered not suitable as training data. The result is a
final set A of 653 instances.

Part B consists of training data from the sequential mini-
programs. This was collected by running each mini-program for
multiple problem sizes, each in both good and bad-ma modes.
Here we collected an initial set of 271 instances (171 good, 100
bad-ma). As before, we manually examined each of them and
removed 44 (41 good and 3 bad-ma) instances and ended up with
227 instances.

Table 3: Summary of collected training data

Thus, our overall training data set, A+B, has 880 instances. We
manually label (classify) each training data instance by adding the
corresponding mode (“good”, “bad-fs” or “bad-ma”) as a separate
field.

3.2 Classifier Training and Model Validation
With the training data, the classifier constructs a decision-tree
model with 6 leaves and 11 nodes, as shown in Figure 2.

Figure 2: Decision-tree (non-leaf nodes labeled with ‘event #’

from Table 2; leaf nodes labeled with ‘classification’)

As can be seen in Figure 2, the model uses only four events
(events numbered 11, 6, 14 and 13 in Table 2). We note that the
event 11 (Snoop_Response.HIT “M”) alone determines the “bad-
fs” classification. At every non-leaf node in the tree, branching is
to the right if the normalized count of the corresponding event is
above a threshold and to the left otherwise.

Stratified 10-fold cross validation on the training data itself shows
875/880 (or 99.4%) overall success rate. The confusion matrix is
shown in Table 4.

Event

Event
Code

Umask
Code Description

1 26 01 L2_Data_Requests.Demand.”I” state
2 27 02 L2_Write.RFO.”S” state
3 24 02 L2_Requests.LD_MISS
4 A2 08 Resource_Stalls.Store
5 B0 01 Offcore_Requests.Demand_RD_Data
6 F0 20 L2_Transactions.FILL
7 F1 02 L2_Lines_In.”S” state
8 F2 01 L2_Lines_Out.Demand_Clean
9 B8 01 Snoop_Response.HIT

10 B8 02 Snoop_Response.HIT “E”
11 B8 04 Snoop_Response.HIT “M”
12 CB 40 Mem_Load_Retd.HIT_LFB
13 49 01 DTLB_Misses
14 51 01 L1D-Cache_Replacements
15 A2 02 Resource_Stalls.Loads
16 C0 00 Instructions_Retired

 good bad-fs bad-ma Total
Part A (multi-threaded
only)

324 216 113 653
Part B (sequential only) 130 - 97 227
Full training data set
(A+B)

454 216 210 880

11

6

14

13

13

bad-fs

bad-ma

bad-ma

bad-ma

good

good

Table 4: Confusion matrix for training data

From the preceding, we see our training data and the model are
good. We proceed to detect false sharing in arbitrary programs,
which is discussed in the next section.

4. DETECTION OF FALSE SHARING
To test our trained classifier model on how well it can detect false
sharing, we used the programs in the Phoenix [24][30] and
PARSEC [4] benchmark sets. This allows us to compare our
results with results from two recent works ([21] and [33]) that use
different approaches for detecting false sharing in them.

Table 5 shows the classification summary of the two benchmark
suites by our classifier. We ran the programs with all provided
input sets (e.g., 3 input sets generally for Phoenix programs and 4
input sets for PARSEC programs), each with different numbers
of threads and also with different compiler optimizations (e.g., -
O0,…,-O3 in gcc), because false sharing could be reduced to
some extent by compiler transformations.

Table 5: Classification results for benchmark programs

The classification for each program in Table 5 is the overall
(majority) result considering all cases. For each “good”
classification in Table 5, the results were 100% among all cases,
except in histogram where 35/36 cases were “good” and 1/36
was “bad-fs”. The “bad-ma” classification for
matrix_multiply was 100% among all cases. For
linear_regression, 24/36 were “bad-fs”, 11/36 were
“good” and 1/36 was “bad-ma”. For streamcluster, 15/36
were “bad-fs”, 11/36 were “good” and 10/36 were “bad-ma”.

Performance overhead on programs in our approach is minimal.
Program execution time often remains almost the same or
insignificantly increased, at most by 2%, when collecting
performance event counts. In contrast, [21] and [33] reported the
program slowdown in the range of 20% and 5x, respectively.

Let us discuss the results in detail in the next subsections.

4.1 Phoenix Benchmarks
In the Phoenix benchmark set, our approach classifies only
linear_regression as having false sharing,
matrix_mulitply as “bad-ma” and others as “good”.

Results in [33] show that linear_regression has been
identified as having significant false sharing, with a false positive
for histogram. They cannot handle programs kmeans and
pca due to a 8-thread limit.

Results in [21] show that in addition to linear_regression,
reverse_index and word_count also have been detected as
having significant false sharing and kmeans with insignificant
false sharing. Subsequently, however, they report that fixing the
false sharing in the source code in reverse_index and
word_count give only small speedups (2.4% and 1%),
indicating that the false sharing in them are in fact insignificant.
Thus our detection of false sharing in linear_regression
agrees with the common detection of the same by [21]and [33].

4.2 PARSEC Benchmarks
In PARSEC, streamcluster is classified by our approach as
having false sharing, and all others as “good”. (We could neither
build dedup nor run facesim with the given inputs in our test
environment).

In [21], streamcluster has been detected as having
significant false sharing and canneal and fuidanimate
with insignificant false sharing. They have not reported on
raytrace, vips, x264, bodytrack, facesim and
freqmine due to build/execution issues. In [33], PARSEC
programs have not been evaluated.

4.3 Detailed Analysis of Results
The single case of “bad-fs” out of 36 total cases for the program
histogram was for 10MB input, with –O2 compiler flag and 12
threads. This result was, however, not consistent in repeated runs
and could change to a “good” classification equally well; this case
is being investigated.

Table 6 shows the detailed results for linear_regression,
with execution time in seconds and the color indicating our
classification for each case.

Table 6: Execution time and classification result (bad-fs, good,
bad-ma) for different cases of linear_regression

We note that in Table 6, in all “bad-fs” cases, with –O0 and –O1,
the sequential version is much faster than the multi-threaded
versions. This indicates there is indeed a critical performance

 Predicted Class
good bad-fs bad-ma

Actual
Class

good 453 1 0
bad-fs 0 216 0
bad-ma 4 0 206

Phoenix Class PARSEC Class
histogram good ferret good
linear_regression bad-fs canneal good
word_count good fluidanimate good
reverse_index good streamcluster bad-fs
kmeans good swaptions good
matrix_multiply bad-ma vips good
string_match good bodytrack good
pca good freqmine good
 blackscholes good
 raytrace good
 x264 good

Input Compile
r Flag

Sequenti
al (T=1)

Parallel (T = # of threads)
T=3 T=6 T=9 T=12

50MB
-O0 0.28s 0.78s 0.87s 0.63s 0.48s
-O1 0.08s 0.19s 0.22s 0.17s 0.12s
-O2 0.06s 0.02s 0.01s 0.01s 0.01s

100
MB

-O0 0.53s 1.46s 1.48s 1.19s 0.91s
-O1 0.15s 0.40s 0.35s 0.29s 0.23s
-O2 0.12s 0.05s 0.02s 0.02s 0.01s

500
MB

-O0 2.67s 7.44s 5.81s 5.88s 4.77s
-O1 0.76s 1.70s 1.80s 1.56s 1.18s
-O2 0.63s 0.23s 0.12s 0.08s 0.06s

issue and false sharing can be the cause of it. The –O2 flag seem
to have resolved that issue, as seen by the execution times, and
correspondingly our classification is also “good”. With the –O3
flag (not included here), the execution times were very close to
those with the –O2 flag. It seems that aggressive compiler
optimizations have resolved the issue of false sharing. The
isolated “bad-ma” case is not fully understood yet and could be an
error that should have been classified as good.

To verify our detection of false sharing as well as to get further
insight, we used the technique in [33] and their tool based on
Umbra [32] to analyze the cases in Table 6. They count cache
contention events among threads and conclude that there is false
sharing if the false sharing rate and the contention rate are above
10-3.

Table 7 shows the false sharing rates thus obtained, along with
our classifications in color for the T=3 and T=6 cases in Table 6
(their approach can handle maximum of 8 threads).

In Table 7, we see that for cases classified by our approach as
“bad-fs”, the false sharing rates are 15x-25x greater than the rates
for the “good” cases. According to the criteria in [33], however,
even these “good” cases have false sharing because the rates are
greater than 10-3.

Table 7: False sharing rates [33] and our classifications for
linear_regression (bad-fs, good, bad-ma)

As with linear_regression shown in Table 7, we applied
the approach in [33] on our multi-threaded mini-programs and
other programs in the Phoenix and PARSEC benchmark sets.
Except for the special cases of linear_regression above
and the streamcluster discussed below, we get consistent
results that verify our classifications; i.e., each of our
classification as false sharing or not was verified by the
corresponding false sharing rate being above 10-3 or below 10-3,
respectively. In our mini-programs, there is a significant gap (an
order of magnitude or more) in the false sharing rates between
each pair of cases with and without false sharing.

Table 8 shows the detailed results for streamcluster with
execution time and our classification for each case.

Table 8: Execution time and classification result for different
cases of streamcluster (bad-fs, good, bad-ma)

In Table 8 we see that for cases classified as “bad-fs”, the
execution time in general does not improve when the number of
threads increases along a row. False sharing can cause this.

The top-right cell in Table 8 with 0.445s time (which is quite
high, considering the numbers around it) and classified as “good”
highlights another issue. With repeated experiments, we observed
that the same case with a much shorter execution time and a
classification result as “bad-fs” can also happen. Further
investigation noted that the longer execution time corresponds to
excessively larger number of instructions being executed than
with the shorter execution time.

Dramatic increase (or decrease) in execution time together with
the instruction count from one execution of a program to another
is usually a result of non-deterministic behavior of threads waiting
on spin-locks. In the program source code we verified that there is
spin-lock waiting by threads. In our method we normalize event
counts by dividing them with the number of instructions. Thus the
classification of the top-right cell can be either “good” or “bad-fs”
depending on whether the number of instructions is quite high or
not.

Next let us compare our results with results from the approach in
[33] for streamcluster. Table 9 shows the false sharing rates
obtained from the method in [33] based on Umbra [32] for
streamcluster, along with our classifications, for the cases
T=4 and T=8 in Table 8. We could not run the experiments with
the “native” input set as it takes a long time.

Table 9: False sharing rates [33] and our classifications for
streamcluster (bad-fs, good, bad-ma)

Input Compiler
Flag

False Sharing Rate (T=# of threads)
T=3 T=6

50MB
-O0 0.027500829 0.035161502
-O1 0.023529737 0.032091656
-O2 0.001447973 0.001447919

100
MB

-O0 0.025712384 0.032117975
-O1 0.022127058 0.033850679
-O2 0.001448503 0.001448311

500
MB

-O0 0.026797920 0.033536338
-O1 0.022081920 0.033776372
-O2 0.001449212 0.001449164

Input Compiler
Flag

of Threads (T)
T=4 T=8 T=12

simsmall
-O1 0.182s 0.194s 0.445s
-O2 0.161s 0.197s 0.231s
-O3 0.179s 0.189s 0.232s

sim
medium

-O1 0.456s 0.347s 0.381s
-O2 0.377s 0.335s 0.334s
-O3 0.311s 0.344s 0.444s

simlarge
-O1 1.670s 0.954s 0.899s
-O2 1.256s 0.816s 0.782s
-O3 1.273s 0.803s 0.685s

native
-O1 3m12.78s 1m48.59s 1m20.59s
-O2 2m52.98s 1m37.39s 1m16.41s
-O3 2m51.71s 1m36.72s 1m14.64s

Input Compiler
Flag

of Threads (T)
T=4 T=8

simsmall
-O1 0.00173319

3
0.001929289

-O2 0.00194437
8

0.002242494
-O3 0.00169222

0
0.002446181

simmedium
-O1 0.00092664

9
0.001120633

-O2 0.00117458
6

0.001551658
-O3 0.00117411

4
0.001372999

simlarge
-O1 0.00060055

5
0.000703761

-O2 0.00082323
7

0.000998671
-O3 0.00082370

9
0.000909993

According to the criteria in [33], which says there is false sharing
if the false sharing rate is greater than 10-3, our classifications are
correct for all cases in Table 9 (all “good” and “bad-ma” cases are
with no false sharing), except for the single case where the false
sharing rate is 0.001120633 and our classification is “good”.

In streamcluster source, there is a defined constant
CACHE_LINE set to 32. It is expected that changing it to 64
would eliminate false sharing [21]. Our approach, however,
detected false sharing even after this fix, for the simsmall input for
T=8, and it was verified via the approach in [33].

Tables 10 shows the overall summary of verification of our results
for the Phoenix and PARSEC benchmarks by the approach in
[33], on which the “Actual” columns are based.

Table 10: Verification of our detection of false sharing in
Phoenix and PARSEC benchmarks by the approach in [33], on

which the “Actual” columns are based (FS=false sharing is
present, No FS= no false sharing)

The quality of our detection of false sharing is shown in Table 11,
based on results in Table 10.

Table 11: Performance of our detection of false sharing, based
on Table 10 (FS=False sharing is present)

We have been able to detect false sharing with 0 false positives
and 97.8% overall correctness, when compared against the

“actual” in the Phoenix and PARSEC benchmarks. This is a very
good result and we can conclude that our approach can
successfully detect false sharing in linear_regression and
streamcluster.

5. RELATED WORK
Different possible definitions of false sharing and its adverse
effect on performance are presented in [5][14][19][29].

There have been attempts to prevent or reduce false sharing in
programs automatically. Compile-time techniques to reduce false
sharing are reported in [18] where information collected on access
to shared data are used to identify data structures that could lead
to false sharing and they are subjected to transformations
including padding. An approach for eliminating false sharing
targeting parallel loops has been proposed in [8] where loop
iterations are scheduled such that concurrently executed iterations
access disjoint cache lines. Static analysis based approaches such
as [8] and [18] have limited usage to simple code and data layouts
and will not be effective with today’s applications that have
diverse program structures and complex forms of parallelism. In
our experiments with benchmark programs, for example, as seen
in Section 4, while some compiler optimizations could reduce
false sharing in linear_regression, it was not so in
streamcluster. Hoard [3] is a memory allocator that tries to
prevent false sharing of heap objects caused by concurrent
requests. Hoard ensures that data allocated for separate threads do
not share the same cache line. But this approach cannot prevent
false sharing within heap objects as well as those caused by thread
contentions due to poor programming or thread scheduling.

Several tools based on simulation or instrumentation with the
ability to report on false sharing have been presented. A major
drawback common to these is the significant run-time overhead
and typically orders of magnitude slowdown. CacheIn [27] is a
tool that uses simulation and monitoring to collect and report
cache performance data. It has an inefficient form of data
processing and also a simple machine model for simulation. Pluto
[12] that uses dynamic binary instrumentation to estimate false
sharing cannot differentiate between true and false sharing leading
to many false positives and has not been tested adequately with
real-world applications.

Techniques that use hardware performance events to analyze and
enhance performance are numerous, but none of them addresses
the difficult task of accurate detection of false sharing. Azimi et
al. [2] use dynamic multiplexing and statistical sampling
techniques to overcome limitations in online collection of event
counts. HPCToolkit [1], PerfExpert [7], Periscope [11] and PTU
[17] are tools that use hardware performance events to assess
performance bottlenecks automatically in programs and suggest
solutions. Using hardware performance events for adaptive
compilation and run-time environment for Java has been reported
in [25]. Shen et al. [26] use hardware performance events to
model service requests in server applications for OS adaptation.
Using machine-learning techniques to analyze hardware
performance event data is not new; [22] and [31] use regression
trees and decision-tree classifications, respectively, to first build
models and then predict performance problems in a given
program.

The two most recent works on detecting false sharing were [21]
and [33]. In Section 4 we compared our approach with these

 #
cases

Actual Detected
FS No FS FS No FS

Phoenix
histogram 18 0 18 0 18
linear_regression 18 18 0 12 06
word_count 18 0 18 0 18
reverse_index 06 0 06 0 06
kmeans 12 0 12 0 12
matrix_multiply 18 0 18 0 18
string_match 18 0 18 0 18
pca 18 0 18 0 18
PARSEC
ferret 18 0 18 0 18
canneal 18 0 18 0 18
fluidanimate 18 0 18 0 18
streamcluster 18 11 07 10 08
swaptions 18 0 18 0 18
vips 18 0 18 0 18
bodytrack 18 0 18 0 18
freqmine 16 0 16 0 16
blackscholes 18 0 18 0 18
raytrace 18 0 18 0 18
x264 18 0 18 0 18
Total 322 29 293 22 300

 Detection (Our Classification)
FS No FS

Actual FS 22 7
No FS 0 293

Correctness (22+293)/(22+7+0+293) = 97.8%
False Positive (FP) Rate 0/(293+0) = 0%

based on detection of false sharing in Phoenix and PARSEC
benchmarks.

Liu and Berger [21] present two tools, one for detection and the
other for automatic elimination of false sharing. Both are built on
a framework called SHERIFF that replaces the standard pthread
library and transforms threads to processes. Their detection has
about 20% performance penalty on average. Their detection of
significant false sharing in reverse_index and word_count
(with filtering for low performance impact enabled) appears
problematic because the speedup they gain after improvement is
insignificant and we noted that there is no false sharing in them
(see Section 4). While their tool for mitigating false sharing seems
performing reasonably well, the reported significant improvement
in the execution times of histogram and string_match
cannot be due to removal of false sharing because there is no false
sharing in them (see Section 4). Furthermore, when we tried out
their tools with the Phoenix and PARSEC benchmarks we
encountered unexpected results. We have been in communication
with the authors to clarify matters.

Zhao et al. [33] present an approach using memory shadowing
[32] to analyze interactions among threads to detect true and false
sharing. They define false sharing rate as the total number of false
sharing misses divided by the total number of instructions
executed and consider there is false sharing if the rate > 10-3.
There is heavy runtime overhead (5x slowdown) in their
approach, because it uses dynamic instrumentation to keep track
of cache contention and cache-line ownership among threads.
Another major limitation is that they can track only up to 8
threads for detection of false sharing. Moreover, cold cache
misses in histogram are incorrectly detected as false sharing
misses due to an inherent limitation in their instrumentation
method.

6. CONCLUSION
False sharing can seriously degrade performance and scalability in
parallel programs yet it is difficult to detect. In this paper we
presented an efficient and effective approach based on machine-
learning to detect false sharing. Our approach can be applied
across different hardware and OS platforms provided performance
event counts can be collected and requires neither specialized
tools nor access to the source code. It has minimal performance
overhead (< 2%), easy to apply and still effective. Applied on
programs in the well known PARSEC and Phoenix benchmark
sets, our approach detected all cases where false sharing exists
with 0 false positives. Compared to the recent work [21] and [33],
our approach has unique advantages that include better accuracy
in detection.

Ongoing and future work include detecting false sharing at a finer
granularity, for e.g., in short time slices or at function-level (work
reported in this paper is considering the whole duration of the
program) and the study of how the effectiveness of our approach
depends on the number and types of performance events and the
number and types of mini-programs. We will also test our
approach with more real applications and on other hardware
platforms.

7. ACKNOWLEDGMENTS
We thank the anonymous reviewers for their comments and
suggestions. Part of this work was done when the first author was
spending sabbatical at the Massachusetts Institute of Technology.

This work was partially supported by DOE award DE-
SC0005288, DOD DARPA award HR0011-10-9-0009, NSF
awards CCF-0632997, CCF-0811724 and Open Collaborative
Research (OCR) program from IBM.

8. REFERENCES
[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J.

Mellor-Crummey and N. R. Tallent, HPCToolkit: Tools for
performance analysis of optimized parallel programs, In
Concurrency and Computation: Practice and Experience,
22(6):685–701, John Wiley, 2010.

[2] R. Azimi, M. Stumm and R. Wisniewski, Online
performance analysis by statistical sampling of
microprocessor performance counters, In Proceedings of 19th
International Conference on Supercomputing (ICS’05),
pages 101–110, ACM, 2005.

[3] E. Berger, K. McKinley, R. Blumofe, and P.Wilson,. Hoard:
A scalable memory allocator for multithreaded applications,
ACM SIGPLAN Notices, 35(11):117–128, 2000.

[4] C. Bienia and K. Li. PARSEC 2.0: A new benchmark suite
for chip-multiprocessors, In Proceedings of the 5th Annual
Workshop on Modeling, Benchmarking and Simulation,
2009.

[5] W. J. Bolosky and M. L. Scott, False Sharing and its Effect
on Shared Memory Performance, In Proceedings of the
USENIX Symposium on Experiences with Distributed and
Multiprocessor Systems, pp. 57—71, 1993.

[6] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, A
Portable Programming Interface for Performance Evaluation
on Modern Processors, International Journal of High
Performance Computing Applications, Volume 14 Issue 3,
pages 189-204, Sage Publications, 2000.
(http://icl.cs.utk.edu/papi/)

[7] M. Burtscher, B.-D. Kim, J. Diamond, J. McCalpin, L.
Koesterke, and J. Browne, Perfexpert: An easy-to-use
performance diagnosis tool for hpc applications, In
Proceedings of International Conference for High
Performance Computing, Networking, Storage and Analysis,
SC ’10, pages 1–11, IEEE Computer Society, 2010.

[8] J.-H. Chow and V. Sarkar, False sharing elimination by
selection of runtime scheduling parameters. In Proceedings
of the international Conference on Parallel Processing
(ICPP ’97), pages 396–403, IEEE Computer Society, 1997.

[9] S. Eranian, Perfmon2: a flexible performance monitoring
interface for Linux, In Proceedings of the 2006 Linux
Symposium, Vol. I, pp. 269-288,
(http://perfmon2.sourceforge.net)

[10] S. Eranian, What can performance counters do for memory
subsystem analysis?, In Proceedings of the 2008 ACM
SIGPLAN workshop on Memory systems performance and
correctness: held in conjunction with ASPLOS '08, pp. 26—
30, ACM, 2008.

[11] M. Gerndt and M. Ott, Automatic performance analysis with
periscope, In Concurrency and Computation: Practice and
Experience,, 22(6):736–748, John Wiley, 2010.

[12] S.M. Gunther and J. Weidendorfer, Assessing Cache False
Sharing Effects by Dynamic Binary Instrumentation, In

Proceedings of the Workshop on Binary Instrumentation and
Applications (WBIA’09), pages 26—33, ACM, 2009.

[13] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten, The WEKA Data Mining Software: An
Update, ACM SIGKDD Explorations Newsletter, Volume 11
Issue 1, pages 10-18, ACM, 2009.

[14] R. L. Hyde and B. D. Fleisch, An analysis of degenerate
sharing and false coherence, Journal of Parallel and
Distributed Computing, 34(2):183–195, 1996.

[15] Intel Corporation, Avoiding and identifying false sharing
among threads, http://software.intel.com/en-us/articles/
avoiding-and-identifying-false-sharing-among-threads,
January 2013.

[16] Intel Corporation, Intel® 64 and IA-32 Architectures
Software Developer’s Manual Volume 3B: System
Programming Guide Part 2, http://www.intel.com/content/
www/us/en/architecture-and-technology/64-ia-32-
architectures-software-developer-vol-3b-part-2-manual.html?
wapkw=software+developer%E2%80%99s+manual+volume
+3b, 2012.

[17] Intel Corporation, Intel® Performance Tuning Utility 4.0
User Guide, 2011.

[18] T. Jeremiassen and S. Eggers, Reducing false sharing on
shared memory multiprocessors through compile time data
transformations, ACM SIGPLAN Notices, 30(8):179–188,
1995.

[19] V. Khera, R.P. LaRowe and C.S. Ellis, An Architecture-
Independent Analysis of False Sharing, Technical Report
TR-CS-1993-13, Duke University, 1993.

[20] D. Levinthal, Performance Analysis Guide for Intel® Core™
i7 Processor and Intel® Xeon™ 5500 processors, Intel
Corporation, http://software.intel.com/sites/products/
collateral/hpc/vtune/performance_analysis_guide.pdf, 2009.

[21] T. Liu and E.D. Berger, SHERIFF: Precise Detection and
Automatic Mitigation of False Sharing, In Proceedings of the
2011 ACM international conference on Object oriented
programming systems languages and applications
(OOPSLA’11), pages 3—18, ACM, 2011.

[22] E. Ould-Ahmed-Vall, J. Woodlee, C. Yount, K. Doshi, and
S. Abraham, Using model trees for computer architecture
performance analysis of software applications, In
Proceedings of the International Symposium on Performance
Analysis of Systems and Software (ISPASS’07), 116–125,
IEEE, 2007.

[23] J.R. Quinlan, C4. 5: Programs for Machine Learning,
Morgan Kaufmann, 1992.

[24] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C.
Kozyrakis, Evaluating MapReduce for Multi-core and
Multiprocessor Systems, In Proceedings of the 2007 IEEE

13th International Symposium on High Performance
Computer Architecture (HPCA’07), pages 13-24, IEEE
Computer Society, 2007.

[25] F.T. Schneider, M. Payer, and T.R. Gross, Online
optimizations driven by hardware performance monitoring,
In Proceedings of the 2007 ACM SIGPLAN conference on
Programming language design and implementation
(PLDI'07), pages 373–382, ACM, 2007.

[26] K. Shen, M. Zhong, S. Dwarkadas, C. Li, C. Stewart, and X.
Zhang, Hardware counter driven on-the-fly request
signatures, In the Proceedings of the 13th international
conference on Architectural support for programming
languages and operating systems (ASPLOS'08), pages 189--
200, ACM, 2008.

[27] J. Tao and W. Karl, CacheIn: A Toolset for Comprehensive
Cache Inspection, In Proceedings of the 5th international
conference on Computational Science (ICCS’05) - Volume
Part II, 2005, pages 174–181, Springer-Verlag, 2005.

[28] V. Weaver, The Unofficial Linux Perf Events Web-Page,
http://web.eece.maine.edu/~vweaver/projects/perf_events/,
February 2013.

[29] J. Weidendorfer, M. Ott, T. Klug and C. Trinitis, Latencies
of conflicting writes on contemporary multicore
architectures, In Proceedings of the 9th international
conference on Parallel Computing Technologies (PaCT
2007), pages 318–327, Springer-Verlag, 2007.

[30] R. M. Yoo, A. Romano, and C. Kozyrakis, Phoenix Rebirth:
Scalable MapReduce on a Large-Scale Shared-Memory
System, In Proceedings of the 2009 IEEE International
Symposium on Workload Characterization (IISWC’09),
pages 198-207, IEEE Computer Society, 2009.

[31] W. Yoo, K. Larson, L. Baugh, S. Kim and R.H. Campbell,
ADP: Automated diagnosis of performance pathologoes
using hardware events, In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE joint international
conference on Measurement and Modeling of Computer
Systems, pages 283—294, ACM, 2012.

[32] Q. Zhao, D. Bruening and S. Amarasinghe, Umbra: efficient
and scalable memory shadowing, In Proceedings of the 8th
annual IEEE/ACM international symposium on Code
generation and optimization (CGO’10), pages 22-31, ACM,
2010.

[33] Q. Zhao, D. Koh, S. Raza, D. Bruening, W. Wong and S.
Amarasinghe, Dynamic Cache Contention Detection in
Multi-threaded Applications, In Proceedings of the 7th ACM
SIGPLAN/SIGOPS international conference on Virtual
execution environments (VEE’11), pages 27—38, ACM,
2011.

