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ABSTRACT 
False sharing is a major class of performance bugs in parallel 
applications. Detecting false sharing is difficult as it does not 
change the program semantics. We introduce an efficient and 
effective approach for detecting false sharing based on machine 
learning. 

We develop a set of mini-programs in which false sharing can be 
turned on and off. We then run the mini-programs both with and 
without false sharing, collect a set of hardware performance event 
counts and use the collected data to train a classifier. We can use 
the trained classifier to analyze data from arbitrary programs for 
detection of false sharing. 

Experiments with the PARSEC and Phoenix benchmarks show 
that our approach is indeed effective. We detect published false 
sharing regions in the benchmarks with zero false positives. Our 
performance penalty is less than 2%. Thus, we believe that this is 
an effective and practical method for detecting false sharing.   

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Measurement techniques, 
Modeling techniques, Performance attributes. 

General Terms 
Measurement, Performance. 

Keywords 
False Sharing, Performance Events, Machine Learning. 

1. INTRODUCTION 
Parallelism has become the major source of application 
performance in the era of multicore processors. As more 
applications rely on parallelism, performance issues related to 
parallel execution are becoming a major problem for the 
developers. One such issue is false sharing.  

False sharing is a major class of performance bugs in parallel 

applications. It occurs when threads running on different 
processors/cores with local caches modify unshared data that 
happen to occupy (share) the same cache line. The performance 
penalty due to false sharing could be significant and can severely 
hinder achieving the expected speedup in a parallel application. 

False sharing does not change program semantics and is hard to 
detect. Current detection methods are expensive, thus, are not 
generally used in practice. Unlike a true sharing issue, which is 
associated with a real data movement in the application, false 
sharing is not visible within the application. Two variables that 
can cause false sharing are completely independent. The fact they 
share the same cache line may be result of the data layout driven 
by the compiler or the runtime system. Thus, application analysis 
will not reveal any false sharing. Furthermore, false sharing 
cannot be revealed by localized analysis within a single core as it 
requires multiple cores, and each to access different part of the 
cache line. Thus, there are no simple localized hardware 
mechanisms such as performance counters to detect false sharing. 

To understand the performance impact of false sharing, consider 
the example in Figure 1. Given vectors v1 and v2, it shows 3 
different functions for the parallel dot-product computation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

For a parallel dot-product computation on a multicore system 
using code in Figure 1, the main program will create multiple 
threads, each to run on a distinct core executing one of the 
pdot_N( ) functions to complete its part of the computation, 
which is identified by start and end, i.e., the regions of the  
vectors v1 and v2 assigned to each thread. If all threads use 
Method 2, the repeated writes to psum[myid] in the loop by 
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Figure 1: Code for parallel computation of dot-product 

int psum[MAXTHREADS]; // shared by threads 

int v1[N], v2[N]; 

 

void *pdot_1(...) // Method 1: Good 

{ ... 

  int mysum = 0;  

  for (i = start; i < end; i++) 

     mysum += v1[i] * v2[i];  

  psum[myid] = mysum; 

} 

void *pdot_2(...) // Method 2: Bad - 

{ ...     // False sharing 

  for (i = start; i < end; i++) 

 psum[myid] += v1[i] * v2[i]; 

} 

void *pdot_3(...) // Method 3: Bad 

{ ...     // Memory access 

  // same as pdot_1() except non-sequential 

  // vector element access (e.g, strided) 

} 



each thread could lead to repeated false sharing misses, because 
some or all elements in psum[ ] array would share a cache line. 
False sharing in this case can be avoided by using Method 1which 
uses a thread-private variable mysum in the loop. Method 3, for 
comparison, demonstrates another form of bad memory access, 
when elements in v1 and v2 are accessed non-sequentially (e.g., 
randomly or strided) between iterations, thus causing cache 
misses. For a vector size of N=108 and on a 32-core Intel Xeon 
system, Table 1shows the program execution times. 

Table 1: Execution time in seconds for programs using the 
code in Figure 1 on a 32-core Intel Xeon system for N=108 

 

Table 1 shows false sharing has a drastic performance impact; the 
multi-threaded versions with false sharing are even slower than 
the single-threaded version. 

The recent false sharing detection techniques [21][33] have 
mainly relied on tracing the data movement across multiple cores. 
This requires heavy instrumentation and excessive data gathering 
and analysis. Thus, they incur a high overhead. They also require 
special libraries which limit their applicability.  

In this work, we take a completely different approach to false 
sharing detection. Instead of trying to directly identify false 
sharing, we are looking for the telltale signature created by false 
sharing. False sharing induces certain memory access patterns on 
multiple cores. By looking at the combined performance event 
counts of the cores, we are able to detect the pattern. We use 
supervised learning to train a classifier with a set of sample 
kernels (mini-programs) – with and without false sharing. The 
trained classifier is then used to analyze memory access patterns 
of other programs.  

We have applied our trained classifier to the PARSEC and 
Phoenix benchmark programs, some of which have false sharing 
identified and validated previously [21][33].  Our light-weight 
technique is as successful as the previous heavy weight methods 
in identifying the false sharing programs.  First, our classifier did 
not incorrectly classify any program as having false sharing, thus 
zero false positives. In 97.8% cases, our classifier correctly 
identified the problem confirmed by other heavyweight methods. 
However, our instrumentation cost is minimal where the 
performance penalty is less than 2%. Further, our approach is easy 
to apply and does not require specialized tools or access to the 
source code. Thus, we believe that this is an effective and 
practical method for detecting false sharing. 

The key contributions of this paper are: 

 a novel, practical and effective methodology to detect false 
sharing based on performance event counts and machine 
learning 

 demonstrating the methodology for using a specialized set of 
small programs, in this case a set of multi-threaded mini-
programs in which false sharing can be turned on and off, for 
training a machine-classifier that can be successfully applied 
to larger applications 

 experimental results with PARSEC and Phoenix benchmarks 
show that we detect all cases with zero false positives and 
our results are verified by existing methods. 

This paper is organized as follows. Section 2 gives an overview of 
our methodology and describes the set of mini-programs and the 
performance events. Section 3 describes the training data and the 
training of the machine classifier. Section 4 presents results on 
our detection of false sharing in PARSEC and Phoenix 
benchmarks. Section 5 discusses related work and Section 6 
concludes the paper. 

2. OUR APPROACH 

2.1 Overview 
In our approach, we rely on hardware performance event counts 
collected from running programs. Performance monitoring units 
(PMUs) in processors can count many hardware events [16][20] 
and one could easily collect the desired counts via APIs (e.g., 
libpfm, PAPI) or tools (e.g., perf, Intel PTU)[6] [9][10][17][28]. 
Hardware performance event counts can help understand how the 
hardware is being used by a program and potentially provide hints 
on performance issues in a program. 

Yet raw performance event data are difficult to handle and 
confusing due to lack of standards among processors, poor 
documentation and being tightly coupled with the system 
architecture. For our purpose, having studied the events of Intel 
micro-architectures Nehalem, Westmere and Sandy Bridge [16], 
there is no single event, or even a small subset of events, that can 
indicate the presence of false sharing. Further, while it is possible 
to collect different kinds of performance event counts (and large 
amounts of them) from running programs, such data are too 
overwhelming for human processing.  

Thus we rely on machine-learning techniques for the analysis of 
performance event data. 

The basic idea in our approach is to train a machine classifier with 
a set of relevant performance event counts collected from a set of 
mini-programs (or problem-specific programs), while running 
each with and without false sharing,  by turning false sharing on 
and off as desired. However, false sharing is one of the many 
memory system issues that can affect performance. In order to be 
able to distinguish false sharing from these potential problems 
related to memory access, we also included an inefficient form of 
memory access in these programs whenever possible. This way, a 
mini-program can be classified into three possible modes of 
operation:  

 good, i.e., no false sharing, no bad memory access 

 bad, with false sharing (“bad-fs”)  

 bad, with inefficient memory access (“bad-ma”). 

  These modes make our problem a three-way classification 
instead of a binary classification, which would result if only (the 
presence or absence of) false sharing was considered. 

The steps in our methodology would be as follows: 

1. Design and develop a set of representative mini-programs 
that can run in any one of the three possible modes 

2. Identify a set of relevant performance events for the 
underlying hardware with the help of the mini-programs 

 # Threads 
Method Used 1 4 8 12 16 
1: Good 44.1 11.5 6.2 4.5 3.7 
2: Bad, false sharing 44.0 79.3 76.8 76.1 78.0 
3: Bad, memory access 250 82.8 77.1 77.3 78.2 



3. Collect performance event counts by running the mini-
programs in all possible modes 

4. Label each instance of the collected performance event data 
as “good”, “bad-fs” or “bad-ma” based on the mode to which 
the instance corresponds 

5. Train a classifier using the labeled data set as training data  

6. Use the classifier on programs previously unseen by the 
classifier and evaluate its performance. 

The expectation is that the trained classifier will take as input new 
data instances (i.e., counts of the same set of performance events) 
from unseen arbitrary programs and classify them correctly, 
informing us if false sharing is present or not. 

Our approach does not require access to the source code of a 
program and can be widely applied across different hardware/OS 
platforms as long as performance event counts can be collected.  

Our methodology of steps 1-6 above is general and can be adapted 
in different ways. For example, one could iterate through steps 1-
6 a few times, adding new min-programs in step 1 in each 
iteration and thereby gradually improving the classification 
accuracy, until desired level is reached. With an existing set of 
mini-programs, we can apply our approach to a new hardware 
platform with the workflow being steps 2-6 above; here, steps 2-6 
can be iterated a few times by selecting different performance 
events in step 2 in each iteration, until a satisfactory level of 
accuracy is reached. One could also try out different machine 
classifiers in step 5 and select the most suitable. 

2.2 Mini-programs for Training 
Selecting the set of mini-programs is crucial for building an 
effective classifier. In training our classifier we used two sets of 
mini-programs. 

2.2.1 Multi-threaded Program Set 
The first set of programs is multi-threaded (using pthreads) and 
can be summarized as follows, with the names of programs within 
parenthesis: 

 3 “scalar” programs (psums, padding, false1): each thread 
processes its own share of scalar data 

 3 “vector” programs (psumv, pdot, count): each thread 
processes its own share of vector data (e.g., Figure 1 shows a 
part of the pdot program) 

 matrix multiplication (pmatmult); each thread computes its 
share of elements in the final matrix 

 matrix compare (pmatcompare); each thread compares a 
share of element pairs of two matrices 

Each of the 3 scalar programs is different in what it does, the 
amount of memory used and the way memory is accessed. Similar 
differences exist among the 3 vector programs. In all programs, 
each thread repeatedly writes to its own variable; there is false 
sharing when these variables happen to share a cache line. The 
vector programs are also parameterized to have a “bad-ma” mode, 
introduced via inefficient access to array elements. 

In each program, we parameterize the size of the computation 
(problem size), the number of threads and the memory-access 
mode. This means, for a specific problem size and a thread 

number, we have a “good” version, a “bad-fs” version with false 
sharing and a “bad-ma” version with bad-memory-access. 

2.2.2 Sequential Program Set 
We used a second set of mini-programs that are sequential (single-
threaded) to have more training data and improve the training on 
“bad-ma” mode. This indeed improved the classification accuracy. 

These programs exercise the memory system in different ways, so 
that the overall program performance between “good” and “bad-
ma” modes differ significantly due to memory access pattern 
alone (i.e., due to cache misses). 

We have 3 programs in this set as follows: 

 read data element-wise from an array 

 write data element-wise to an array 

 read data element-wise from an array, modify the data and 
write it back 

In each of the above programs, we parameterize the size of array 
and the access pattern. There are 3 types of access to array 
elements: (i) linear (sequential order, as stored in memory), (ii) 
random, and (iii) in strides (stride can be varied). 

The idea is that, linear access would result in good memory access 
performance (“good” mode) while random and strided-access 
would result in lots of cache misses (“bad-ma” mode). We have 
another program that performs two-dimensional matrix 
multiplication using different memory access patterns and loop 
structures. 

For each program above, the different versions perform the same 
computation, the only difference being the way the data in 
memory are accessed; “good” memory access results in 
significantly better program performance than “bad-ma”. 

2.3 Identification of Performance Events 
We first go through the available list of performance events for 
the hardware platform (this can be a couple of hundreds) and 
compile a candidate list. In our case, since we focus on false 
sharing and data access in memory, events that correspond to 
memory access (loads and stores), data caches (e.g., cache line 
state, cache misses), TLBs, interaction among processor cores, 
resource stalls are included in the candidate list. The number of 
instructions is also included. On Intel Nehalem EX and Westmere 
DP micro-architectures, for example, we had about 60-70 
candidate events [16][20]. 

We next use the mini-programs to identify a set of relevant events 
from the candidate list, in two steps, as follows. 

First, for each candidate event, we run each of our multi-threaded 
mini-programs in “good” and “bad-fs” modes, with different 
numbers of threads (e.g., 3, 6, 9, 12 on a 12-core system) and note 
the event counts. If there is significant enough difference in the 
counts between “good” and “bad-fs” cases (we used minimum 2x 
ratio as a heuristic) for a majority of the mini-programs, then we 
select that event as a relevant one from the candidate list, because 
it can help to distinguish “good” and “bad-fs” cases. Second, for 
each of the remaining (unselected) candidate events, we run each 
of our mini-programs in “good” and “bad-ma” modes and select 
the event as relevant, as was done before, if it can help distinguish 
between “good” and “bad-ma” cases. 



In our experiments we noted that some event counts associated 
with L1D caches can be noisy and inconsistent, confirming the 
caution in [20]. Further a candidate event like 
Memory_Uncore_Retired.Other_core_L2_HITM did not end 
up in the final set, despite our expectations based on information 
in [15][16][20]. Table 2 shows the identified set of relevant 
performance events for the Intel Westmere DP platform. 

Table 2: Selected performance events for Westmere DP 

 

The first 15 events in Table 2 were selected based on the process 
described above. The last event, Instructions_Retired, was added 
to allow us to normalize all other event counts by dividing each of 
them by it. Such normalized counts of the first 15 events from one 
program are comparable to corresponding normalized counts from 
another program, whereas the absolute counts are not. 

While having a large set of relevant performance events is 
potentially desirable from a machine learning point of view, a 
small set is desirable due to the constraints (e.g., limited number 
of hardware registers in PMUs) that affect the accuracy of counts. 
In our experience, the set in Table 2 is a reasonable balance for 
the Intel Westmere DP platform and the problem we address. 

3. TRAINING A MACHINE CLASSIFIER 
After experimenting with several classifiers available in the public 
domain, we selected J48 in Weka [13], an implementation of the 
C4.5 decision-tree classification algorithm [23], as it produced the 
best classification results. Our experimental platform is a 12-core 
(2x6-cores) Intel Xeon X5690, 3.4GHz (Westmere DP) system 
that has 32KB/core L1-D and L1-I caches, 256KB/core L2 cache, 
12MB/CPU L3 cache and 192GB (96GBx2) RAM and running 
x86_64 GNU/Linux 2.6.32. 

3.1 Collection of Training Data 
Training data are the counts of the selected performance events 
collected by running the mini-programs. They were collected in 
two parts, as follows. Table 3 summarizes the result of data 
collection. 
Part A consists of training data collected from the multi-threaded 
mini-programs. Each mini-program is run for multiple problem 
sizes, each with a few different thread numbers and in all 3 
modes. This way, we collected an initial set of 675 data instances 

(324 good, 216 bad-fs, 135 bad-ma). We manually examined each 
of them and removed 22 bad-ma instances where the difference 
from corresponding good cases was not significant enough and 
therefore considered not suitable as training data. The result is a 
final set A of 653 instances. 

Part B consists of training data from the sequential mini-
programs. This was collected by running each mini-program for 
multiple problem sizes, each in both good and bad-ma modes. 
Here we collected an initial set of 271 instances (171 good, 100 
bad-ma). As before, we manually examined each of them and 
removed 44 (41 good and 3 bad-ma) instances and ended up with 
227 instances. 

Table 3: Summary of collected training data 

 

Thus, our overall training data set, A+B, has 880 instances. We 
manually label (classify) each training data instance by adding the 
corresponding mode (“good”, “bad-fs” or “bad-ma”) as a separate 
field. 

3.2 Classifier Training and Model Validation 
With the training data, the classifier constructs a decision-tree 
model with 6 leaves and 11 nodes, as shown in Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2: Decision-tree (non-leaf nodes labeled with ‘event #’ 

from Table 2; leaf nodes labeled with ‘classification’) 
 

As can be seen in Figure 2, the model uses only four events 
(events numbered 11, 6, 14 and 13 in Table 2). We note that the 
event 11 (Snoop_Response.HIT “M”) alone determines the “bad-
fs” classification. At every non-leaf node in the tree, branching is 
to the right if the normalized count of the corresponding event is 
above a threshold and to the left otherwise. 

Stratified 10-fold cross validation on the training data itself shows 
875/880 (or 99.4%) overall success rate. The confusion matrix is 
shown in Table 4. 

Event 
# 

Event 
Code 

Umask 
Code Description 

1 26 01 L2_Data_Requests.Demand.”I” state 
2 27 02 L2_Write.RFO.”S” state 
3 24 02 L2_Requests.LD_MISS 
4 A2 08 Resource_Stalls.Store 
5 B0 01 Offcore_Requests.Demand_RD_Data 
6 F0 20 L2_Transactions.FILL 
7 F1 02 L2_Lines_In.”S” state 
8 F2 01 L2_Lines_Out.Demand_Clean 
9 B8 01 Snoop_Response.HIT 

10 B8 02 Snoop_Response.HIT “E” 
11 B8 04 Snoop_Response.HIT “M” 
12 CB 40 Mem_Load_Retd.HIT_LFB 
13 49 01 DTLB_Misses 
14 51 01 L1D-Cache_Replacements 
15 A2 02 Resource_Stalls.Loads 
16 C0 00 Instructions_Retired 

 good bad-fs bad-ma Total 
Part A (multi-threaded 
only) 

324 216 113 653 
Part B (sequential only) 130 - 97 227 
Full training data set 
(A+B) 

454 216 210 880 

11 

6 

14 

13 

13 

bad-fs 

bad-ma 

bad-ma 

bad-ma 

good 

good 



Table 4: Confusion matrix for training data 

 

From the preceding, we see our training data and the model are 
good. We proceed to detect false sharing in arbitrary programs, 
which is discussed in the next section. 

4. DETECTION OF FALSE SHARING 
To test our trained classifier model on how well it can detect false 
sharing, we used the programs in the Phoenix [24][30] and 
PARSEC [4] benchmark sets. This allows us to compare our 
results with results from two recent works ([21] and [33]) that use 
different approaches for detecting false sharing in them. 

Table 5 shows the classification summary of the two benchmark 
suites by our classifier. We ran the programs with all provided 
input sets (e.g., 3 input sets generally for  Phoenix programs and 4 
input sets for PARSEC programs),  each with different numbers 
of threads  and also with different compiler optimizations (e.g., -
O0,…,-O3 in gcc), because false sharing could be reduced to 
some extent by compiler transformations. 

Table 5: Classification results for benchmark programs 

 

The classification for each program in Table 5 is the overall 
(majority) result considering all cases. For each “good” 
classification in Table 5, the results were 100% among all cases, 
except in histogram where 35/36 cases were “good” and 1/36 
was “bad-fs”. The “bad-ma” classification for 
matrix_multiply was 100% among all cases. For 
linear_regression, 24/36 were “bad-fs”, 11/36 were 
“good” and 1/36 was “bad-ma”. For streamcluster, 15/36 
were “bad-fs”, 11/36 were “good” and 10/36 were “bad-ma”.  

Performance overhead on programs in our approach is minimal. 
Program execution time often remains almost the same or 
insignificantly increased, at most by 2%, when collecting 
performance event counts. In contrast, [21] and [33] reported the 
program slowdown in the range of 20% and 5x, respectively. 

Let us discuss the results in detail in the next subsections. 

4.1 Phoenix Benchmarks 
In the Phoenix benchmark set, our approach classifies only 
linear_regression as having false sharing, 
matrix_mulitply as “bad-ma” and others as “good”.  

Results in [33] show that linear_regression has been 
identified as having significant false sharing, with a false positive 
for histogram. They cannot handle programs kmeans and 
pca due to a 8-thread limit. 

Results in [21] show that in addition to linear_regression, 
reverse_index and word_count also have been detected as 
having significant false sharing and kmeans with insignificant 
false sharing. Subsequently, however, they report that fixing the 
false sharing in the source code in reverse_index and 
word_count give only small speedups (2.4% and 1%), 
indicating that the false sharing in them are in fact insignificant. 
Thus our detection of false sharing in linear_regression 
agrees with the common detection of the same by [21]and [33].  

4.2 PARSEC Benchmarks 
In PARSEC, streamcluster is classified by our approach as 
having false sharing, and all others as “good”. (We could neither 
build dedup nor run facesim with the given inputs in our test 
environment). 

In [21], streamcluster has been detected as having 
significant false sharing and canneal and fuidanimate 
with insignificant false sharing. They have not reported on 
raytrace, vips, x264, bodytrack, facesim and 
freqmine due to build/execution issues. In [33], PARSEC 
programs have not been evaluated. 

4.3 Detailed Analysis of Results 
The single case of “bad-fs” out of 36 total cases for the program 
histogram was for 10MB input, with –O2 compiler flag and 12 
threads. This result was, however, not consistent in repeated runs 
and could change to a “good” classification equally well; this case 
is being investigated. 

Table 6 shows the detailed results for linear_regression, 
with execution time in seconds and the color indicating our 
classification for each case. 

Table 6: Execution time and classification result (bad-fs, good, 
bad-ma) for different cases of linear_regression  

 

We note that in Table 6, in all “bad-fs” cases, with –O0 and –O1, 
the sequential version is much faster than the multi-threaded 
versions. This indicates there is indeed a critical performance 

 Predicted Class 
good bad-fs bad-ma 

Actual 
Class 

good 453 1 0 
bad-fs 0 216 0 
bad-ma 4 0 206 

Phoenix Class PARSEC Class 
histogram good ferret good 
linear_regression bad-fs canneal good 
word_count good fluidanimate good 
reverse_index good streamcluster bad-fs 
kmeans good swaptions good 
matrix_multiply bad-ma vips good 
string_match good bodytrack good 
pca good freqmine good 
  blackscholes good 
  raytrace good 
  x264 good 

Input Compile
r Flag 

Sequenti
al (T=1) 

Parallel (T = # of threads) 
T=3 T=6 T=9 T=12 

50MB 
-O0 0.28s 0.78s 0.87s 0.63s 0.48s 
-O1 0.08s 0.19s 0.22s 0.17s 0.12s 
-O2 0.06s 0.02s 0.01s 0.01s 0.01s 

100 
MB 

-O0 0.53s 1.46s 1.48s 1.19s 0.91s 
-O1 0.15s 0.40s 0.35s 0.29s 0.23s 
-O2 0.12s 0.05s 0.02s 0.02s 0.01s 

500 
MB 

-O0 2.67s 7.44s 5.81s 5.88s 4.77s 
-O1 0.76s 1.70s 1.80s 1.56s 1.18s 
-O2 0.63s 0.23s 0.12s 0.08s 0.06s 



issue and false sharing can be the cause of it. The –O2 flag seem 
to have resolved that issue, as seen by the execution times, and 
correspondingly our classification is also “good”. With the –O3 
flag (not included here), the execution times were very close to 
those with the –O2 flag. It seems that aggressive compiler 
optimizations have resolved the issue of false sharing. The 
isolated “bad-ma” case is not fully understood yet and could be an 
error that should have been classified as good. 

To verify our detection of false sharing as well as to get further 
insight, we used the technique in [33] and their tool based on 
Umbra [32] to analyze the cases in Table 6. They count cache 
contention events among threads and conclude that there is false 
sharing if the false sharing rate and the contention rate are above 
10-3.  

Table 7 shows the false sharing rates thus obtained, along with 
our classifications in color for the T=3 and T=6 cases in Table 6 
(their approach can handle maximum of 8 threads). 

In Table 7, we see that for cases classified by our approach as 
“bad-fs”, the false sharing rates are 15x-25x greater than the rates 
for the “good” cases. According to the criteria in [33], however, 
even these “good” cases have false sharing because the rates are 
greater than 10-3. 

 

Table 7: False sharing rates [33] and our classifications for 
linear_regression (bad-fs, good, bad-ma) 

 
 

 

 

 

 

 

 

 

As with linear_regression shown in Table 7, we applied 
the approach in [33] on our multi-threaded mini-programs and 
other programs in the Phoenix and PARSEC benchmark sets. 
Except for the special cases of linear_regression above 
and the streamcluster discussed below, we get consistent 
results that verify our classifications; i.e., each of our 
classification as false sharing or not was verified by the 
corresponding false sharing rate being above 10-3 or below 10-3, 
respectively. In our mini-programs, there is a significant gap (an 
order of magnitude or more) in the false sharing rates between 
each pair of cases with and without false sharing.  

Table 8 shows the detailed results for streamcluster with 
execution time and our classification for each case.  

 

 

 

 

Table 8: Execution time and classification result for different 
cases of streamcluster (bad-fs, good, bad-ma) 

 
In Table 8 we see that for cases classified as “bad-fs”, the 
execution time in general does not improve when the number of 
threads increases along a row. False sharing can cause this.  

The top-right cell in Table 8 with 0.445s time (which is quite 
high, considering the numbers around it) and classified as “good” 
highlights another issue. With repeated experiments, we observed 
that the same case with a much shorter execution time and a 
classification result as “bad-fs” can also happen. Further 
investigation noted that the longer execution time corresponds to 
excessively larger number of instructions being executed than 
with the shorter execution time. 

Dramatic increase (or decrease) in execution time together with 
the instruction count from one execution of a program to another 
is usually a result of non-deterministic behavior of threads waiting 
on spin-locks. In the program source code we verified that there is 
spin-lock waiting by threads. In our method we normalize event 
counts by dividing them with the number of instructions. Thus the 
classification of the top-right cell can be either “good” or “bad-fs” 
depending on whether the number of instructions is quite high or 
not.  

Next let us compare our results with results from the approach in 
[33] for streamcluster. Table 9 shows the false sharing rates 
obtained from the method in [33] based on Umbra [32] for 
streamcluster, along with our classifications, for the cases 
T=4 and T=8 in Table 8. We could not run the experiments with 
the “native” input set as it takes a long time. 

Table 9: False sharing rates [33] and our classifications for 
streamcluster (bad-fs, good, bad-ma) 

  

Input Compiler 
Flag 

False Sharing Rate (T=# of threads) 
T=3 T=6 

50MB 
-O0 0.027500829  0.035161502  
-O1 0.023529737  0.032091656  
-O2 0.001447973  0.001447919  

100 
MB 

-O0 0.025712384  0.032117975  
-O1 0.022127058  0.033850679  
-O2 0.001448503  0.001448311  

500 
MB 

-O0 0.026797920  0.033536338  
-O1 0.022081920  0.033776372  
-O2 0.001449212  0.001449164  

Input Compiler 
Flag 

# of Threads (T) 
T=4 T=8 T=12 

simsmall 
-O1 0.182s 0.194s 0.445s 
-O2 0.161s 0.197s 0.231s 
-O3 0.179s 0.189s 0.232s 

sim 
medium 

-O1 0.456s 0.347s 0.381s 
-O2 0.377s 0.335s 0.334s 
-O3 0.311s 0.344s 0.444s 

simlarge 
-O1 1.670s 0.954s 0.899s 
-O2 1.256s 0.816s 0.782s 
-O3 1.273s 0.803s 0.685s 

native 
-O1 3m12.78s 1m48.59s 1m20.59s 
-O2 2m52.98s 1m37.39s 1m16.41s 
-O3 2m51.71s 1m36.72s 1m14.64s 

Input Compiler 
Flag 

# of Threads (T) 
T=4 T=8 

simsmall 
-O1 0.00173319

3  
0.001929289  

-O2 0.00194437
8  

0.002242494  
-O3 0.00169222

0  
0.002446181  

simmedium 
-O1 0.00092664

9  
0.001120633  

-O2 0.00117458
6  

0.001551658  
-O3 0.00117411

4  
0.001372999  

simlarge 
-O1 0.00060055

5  
0.000703761  

-O2 0.00082323
7  

0.000998671  
-O3 0.00082370

9  
0.000909993  



According to the criteria in [33], which says there is false sharing 
if the false sharing rate is greater than 10-3, our classifications are 
correct for all cases in Table 9 (all “good” and “bad-ma” cases are 
with no false sharing), except for the single case where the false 
sharing rate is 0.001120633 and our classification is “good”. 

In streamcluster source, there is a defined constant 
CACHE_LINE set to 32. It is expected that changing it to 64 
would eliminate false sharing [21]. Our approach, however, 
detected false sharing even after this fix, for the simsmall input for 
T=8, and it was verified via the approach in [33]. 

Tables 10 shows the overall summary of verification of our results 
for the Phoenix and PARSEC benchmarks by the approach in 
[33], on which the “Actual” columns are based.  

Table 10: Verification of our detection of false sharing in 
Phoenix and PARSEC benchmarks by the approach in [33], on 

which the “Actual” columns are based (FS=false sharing is 
present, No FS= no false sharing) 

 

The quality of our detection of false sharing is shown in Table 11, 
based on results in Table 10.  

Table 11: Performance of our detection of false sharing, based 
on Table 10 (FS=False sharing is present) 

 

We have been able to detect false sharing with 0 false positives 
and 97.8% overall correctness, when compared against the 

“actual” in the Phoenix and PARSEC benchmarks. This is a very 
good result and we can conclude that our approach can 
successfully detect false sharing in linear_regression and 
streamcluster. 

5. RELATED WORK 
Different possible definitions of false sharing and its adverse 
effect on performance are presented in [5][14][19][29]. 

There have been attempts to prevent or reduce false sharing in 
programs automatically. Compile-time techniques to reduce false 
sharing are reported in [18] where information collected on access 
to shared data are used to identify data structures that could lead 
to false sharing and they are subjected to transformations 
including padding. An approach for eliminating false sharing 
targeting parallel loops has been proposed in [8] where loop 
iterations are scheduled such that concurrently executed iterations 
access disjoint cache lines. Static analysis based approaches such 
as [8] and [18] have limited usage to simple code and data layouts 
and will not be effective with today’s applications that have 
diverse program structures and complex forms of parallelism. In 
our experiments with benchmark programs, for example, as seen 
in Section 4,  while some compiler optimizations could reduce 
false sharing in linear_regression, it was not so in 
streamcluster. Hoard [3] is a memory allocator that tries to 
prevent false sharing of heap objects caused by concurrent 
requests. Hoard ensures that data allocated for separate threads do 
not share the same cache line. But this approach cannot prevent 
false sharing within heap objects as well as those caused by thread 
contentions due to poor programming or thread scheduling. 

Several tools based on simulation or instrumentation with the 
ability to report on false sharing have been presented. A major 
drawback common to these is the significant run-time overhead 
and typically orders of magnitude slowdown.  CacheIn [27] is a 
tool that uses simulation and monitoring to collect and report 
cache performance data. It has an inefficient form of data 
processing and also a simple machine model for simulation. Pluto 
[12] that uses dynamic binary instrumentation to estimate false 
sharing cannot differentiate between true and false sharing leading 
to many false positives and has not been tested adequately with 
real-world applications. 

Techniques that use hardware performance events to analyze and 
enhance performance are numerous, but none of them addresses 
the difficult task of accurate detection of false sharing. Azimi et 
al. [2] use dynamic multiplexing and statistical sampling 
techniques to overcome limitations in online collection of event 
counts. HPCToolkit [1], PerfExpert [7], Periscope [11] and PTU 
[17] are tools that use hardware performance events to assess 
performance bottlenecks automatically in programs and suggest 
solutions. Using hardware performance events for adaptive 
compilation and run-time environment for Java has been reported 
in [25]. Shen et al. [26] use hardware performance events to 
model service requests in server applications for OS adaptation. 
Using machine-learning techniques to analyze hardware 
performance event data is not new; [22] and [31] use regression 
trees and decision-tree classifications, respectively, to first build 
models and then predict performance problems in a given 
program. 

The two most recent works on detecting false sharing were [21] 
and [33]. In Section 4 we compared our approach with these 

 # 
cases 

Actual Detected 
FS No FS FS No FS 

Phoenix      
histogram 18  0  18  0  18  
linear_regression 18  18  0  12  06  
word_count 18  0  18  0  18  
reverse_index 06  0  06  0  06  
kmeans 12  0  12  0  12  
matrix_multiply 18  0  18  0  18  
string_match 18  0  18  0  18  
pca 18  0  18  0  18  
PARSEC      
ferret 18  0  18  0  18  
canneal 18  0  18  0  18  
fluidanimate 18  0  18  0  18  
streamcluster 18  11  07  10  08  
swaptions 18  0  18  0  18  
vips 18  0  18  0  18  
bodytrack 18  0  18  0  18  
freqmine 16  0  16  0  16  
blackscholes 18  0  18  0  18  
raytrace 18  0  18  0  18  
x264 18  0  18  0  18  
Total 322 29  293 22  300 

 Detection (Our Classification) 
FS No FS 

Actual FS 22 7 
No FS 0 293 

 
Correctness (22+293)/(22+7+0+293) = 97.8% 
False Positive (FP) Rate 0/(293+0) = 0% 



based on detection of false sharing in Phoenix and PARSEC 
benchmarks. 

Liu and Berger [21] present two tools, one for detection and the 
other for automatic elimination of false sharing. Both are built on 
a framework called SHERIFF that replaces the standard pthread 
library and transforms threads to processes. Their detection has 
about 20% performance penalty on average. Their detection of 
significant false sharing in reverse_index and word_count 
(with filtering for low performance impact enabled) appears 
problematic because the speedup they gain after improvement is 
insignificant and we noted that there is no false sharing in them 
(see Section 4). While their tool for mitigating false sharing seems 
performing reasonably well, the reported significant improvement 
in the execution times of histogram and string_match 
cannot be due to removal of false sharing because there is no false 
sharing in them (see Section 4). Furthermore, when we tried out 
their tools with the Phoenix and PARSEC benchmarks we 
encountered unexpected results. We have been in communication 
with the authors to clarify matters. 

Zhao et al. [33] present an approach using memory shadowing 
[32] to analyze interactions among threads to detect true and false 
sharing. They define false sharing rate as the total number of false 
sharing misses divided by the total number of instructions 
executed and consider there is false sharing if the rate > 10-3. 
There is heavy runtime overhead (5x slowdown) in their 
approach, because it uses dynamic instrumentation to keep track 
of cache contention and cache-line ownership among threads. 
Another major limitation is that they can track only up to 8 
threads for detection of false sharing. Moreover, cold cache 
misses in histogram are incorrectly detected as false sharing 
misses due to an inherent limitation in their instrumentation 
method. 

6. CONCLUSION 
False sharing can seriously degrade performance and scalability in 
parallel programs yet it is difficult to detect. In this paper we 
presented an efficient and effective approach based on machine-
learning to detect false sharing. Our approach can be applied 
across different hardware and OS platforms provided performance 
event counts can be collected and requires neither specialized 
tools nor access to the source code. It has minimal performance 
overhead (< 2%), easy to apply and still effective. Applied on 
programs in the well known PARSEC and Phoenix benchmark 
sets, our approach detected all cases where false sharing exists 
with 0 false positives. Compared to the recent work [21] and [33], 
our approach has unique advantages that include better accuracy 
in detection. 

Ongoing and future work include detecting false sharing at a finer 
granularity, for e.g., in short time slices or at function-level (work 
reported in this paper is considering the whole duration of the 
program) and the study of how the effectiveness of our approach 
depends on the number and types of performance events and the 
number and types of mini-programs. We will also test our 
approach with more real applications and on other hardware 
platforms.  
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