

IB
M

IBM Visualization Data Explorer

Programmer’s Reference

Version 3 Release 1 Modification 4

SC38-0497-06

IBM IBM Visualization Data Explorer

Programmer’s Reference

Version 3 Release 1 Modification 4

SC38-0497-06

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page xvii.

Seventh Edition (May 1997)

This edition applies to IBM Visualization Data Explorer Version 3.1.4, to IBM Visualization Data Explorer SMP Version 3.1.4, and to
all subsequent releases and modifications thereof until otherwise indicated in new editions. Make sure you are using the correct
edition for the level of the product. Order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address given below.

A form for readers’ comments appears at the back of this publication. If the form has been removed, address your comments to:

 IBM Corporation
Thomas J. Watson Research Center/Hawthorne
Data Explorer Development
P.O. Box 704
Yorktown Heights, NY 10598-0704

 USA

If you send information to IBM, you grant IBM a nonexclusive right to use or distribute that information, in any way it believes
appropriate, without incurring any obligation to you.

 Copyright International Business Machines Corporation 1991-1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Figures . xiii

Tables . xv

Notices . xvii
Products, Programs, and Services . xviii
Trademarks and Service Marks . xviii
Copyright notices . xix

About This Book . xxv
Summary of Topics . xxvi
Typographic Conventions . xxvii
Related Publications and Sources . xxvii

IBM Publications . xxvii
Non-IBM Publications . xxvii
Other sources of information . xxviii

Chapter 1. Overview . 1
1.1 Writing a Stand-alone Program Using the Data Explorer Data Model 3
1.2 Writing a Stand-alone Program Using Data Explorer Modules 3
1.3 Controlling the Data Explorer Executive or User Interface from a Separate

Program . 4

Chapter 2. Writing a Simple Module . 5
2.1 Getting Started Writing a Module . 5
2.2 Adding the Hello Module . 6

Hello Module with Error Checking . 11
2.3 Data Explorer Data Model . 12
2.4 Memory Management . 13

Allocating and Freeing Memory . 13
Reference Counts . 14

2.5 Data Explorer Execution Model . 14

Chapter 3. Module Builder . 17
3.1 Overview . 18
3.2 Creating a Module with the Module Builder: A Summary 18
3.3 Using the Module Builder: A Quick Walk Through 20
3.4 Module Builder: Menu Bar . 22

File Options . 22
Edit Options . 23
Build Options . 23
Help Options . 23

3.5 Module Builder: Overall Module Description 23
3.6 Module Builder: Individual Parameter Information Section 24
3.7 Worker Routine . 26

Positions Specification . 26
Connections Specification . 26
Input Data . 27
Output Data . 27
Implementing Default Input Parameters . 28

 Copyright IBM Corp. 1991-1997 iii

Worker Routine Examples . 28

Chapter 4. Working with Data . 31
4.1 Add Module Example—Add a Number to Every Data Value 32
4.2 Add2 Module Example—Add Two Data Fields 33
4.3 Add2Invalid Module Example—Manipulate Invalid Data 34

Chapter 5. Working with Positions . 37
5.1 MakeX Module Example—Create New Positions 38
5.2 MakeXEfficient Module Example—Create New Positions 41

Chapter 6. Working with Connections . 43
6.1 AverageCell Module Example—Average the Data Values of All Neighbors 44

Chapter 7. Importing Data . 47
7.1 Writing a Filter . 48
7.2 Writing an Import Module . 51

Chapter 8. Using the Pick Structure . 55
8.1 The Pick Structure . 56
8.2 ShowPick Module Example—Using Color to Show a Picked Object 56

Chapter 9. Writing Modules for a Parallel Environment 67
9.1 A Parallel Version of the Add Module . 68
9.2 A Parallel Version of the AverageCell Module 71

Chapter 10. Making a Module Work . 79
10.1 Module Description Files . 80

Examples of Module Description Files . 83
10.2 Asynchronous Modules . 84
10.3 Inboard, Outboard, and Runtime-loadable Modules 85
10.4 Compiling, Linking, and Debugging an Inboard Module 85
10.5 Compiling, Linking, and Debugging an Outboard Module 86

Special Considerations for Outboard Modules 87
Asynchronous Outboard Module: An Example 89

10.6 Compiling, Linking, and Debugging a Runtime-loadable Module 91
10.7 Memory Leaks . 92

Chapter 11. Working with Data Model Objects 95
11.1 Field Class . 97
11.2 Group Class . 98

Generic Operations . 98
Series Groups . 99
MultiGrid Groups . 99
Composite Fields . 100
Parts . 100

11.3 Array Class . 101
Generic Operations . 101
Irregular Arrays . 101
String List Routines . 102
Array Handling . 102
Creating Positions and Connections Grids 103
Regular Arrays . 104
Path Arrays . 104

iv IBM Visualization Data Explorer: Programmer’s Reference

Product Arrays . 105
Mesh Arrays . 105
Constant Arrays . 105

11.4 String Class . 106
11.5 Private Class . 106
11.6 Printing Objects . 106
11.7 Field Construction . 106

Points and Dependent Data . 106
Connections . 107
Standard Components . 107

11.8 Extracting Module Parameters . 108
11.9 Creating Simple Data Explorer Objects 109
11.10 Component Manipulation . 110
11.11 Data Import and Export . 110

Data Explorer Format Files . 110
netCDF Data . 111

Chapter 12. System Services . 113
12.1 Error Handling and Messages . 114
12.2 Timing . 116
12.3 Memory Allocation . 116
12.4 Object Class . 117

Type Definitions . 117
Classes and Subclasses . 118
Object Routines . 119
Setting Data Types . 120

12.5 Cache . 121
12.6 Pending Commands . 122
12.7 Looping Support . 122
12.8 Parallelism . 123
12.9 Basic Data Types . 123

Points and Vectors . 124
Lines, Triangles, Quadrilaterals, Tetrahedra, and Cubes 124
Colors . 125
Angles . 125
Transformation Matrices . 126
Basic Operations . 126

12.10 Module Access . 127
12.11 Asynchronous Services . 129

Chapter 13. Data Processing . 131
13.1 Data Partitioning . 132
13.2 Interpolation and Mapping . 132
13.3 Invalid Data . 133

Examples . 136
13.4 Growing and Shrinking Partitioned Data 137
13.5 Hashing . 139

Examples . 140
13.6 Pick-Assistance Routines . 142

Example . 143

Chapter 14. Geometric Objects . 145
14.1 Text . 146
14.2 Clipping . 146

 Contents v

14.3 Path Operations . 146

Chapter 15. Rendering . 149
15.1 Transformation . 150
15.2 Surface Shading . 151
15.3 Tiling . 152

Rendering Model . 153
Tiling Options . 153

15.4 Xform Class . 154
15.5 Screen Class . 154
15.6 Clipped Class . 155
15.7 Camera Class . 155
15.8 Light Class . 156
15.9 Image Fields . 156

Chapter 16. DXLink Developer's Toolkit . 157
16.1 Introduction . 158
16.2 Example 1: sealevel.c . 159
16.3 Example 2: maptoplane.c . 161
16.4 Example 3: xapp.c . 164
16.5 Initialization and Exit . 169
16.6 Messaging System . 170

Sending Messages to the Server . 171
Receiving Messages from the Server . 171
Messaging Routines . 172

16.7 Execution Control . 173
16.8 Program Control . 174

Loading programs and macros . 175
Setting Variables . 175
Retrieving Values Sent From Data Explorer 177

16.9 Window Control . 178

Appendix A. Data Explorer Libraries . 179
A.1 libDXlite.a . 179
A.2 libDXcallm.a . 179
A.3 libDXL.a . 179

Appendix B. Data Explorer Data Model Library: DXlite Routines 181

Appendix C. Data Explorer Library Routines 183
DXAbortTaskGroup . 189
DXAdd, DXCross, DXDiv, DXDot, DXLength, DXMax, DXMin, DXMul,

DXNeg, DXNormalize, DXSub . 189
DXAddArrayData . 190
DXAddFaceNormal, DXAddFaceNormals 191
DXAddLine, ...Triangle, ...Quad, ...Tetrahedron, ...Lines, ...Triangles,

...Quads, ...Tetrahedra . 192
DXAddMessage, DXMessageReturn, DXMessageGoto 193
DXAddPoint, ...Color, ...FrontColor, ...BackColor, ...Opacity, ...Normal,

DXAddPoints, ...Colors, ...FrontColors, ...BackColors, ...Opacities,
...Normals . 194

DXAddTask . 195
DXAllocate, DXAllocateZero, DXAllocateLocal, DXAllocateLocalZero,

DXAllocateLocalOnly, DXAllocateLocalOnlyZero 196

vi IBM Visualization Data Explorer: Programmer’s Reference

DXAllocateArray . 197
DXApplyTransform . 198
DXArrayConvert, DXArrayConvertV . 199
DXBeginLongMessage, DXEndLongMessage 201
DXBoundingBox . 201
DXCallModule, DXModSet..., DXSetModule... 203
DXChangedComponentValues, DXChangedComponentStructure 204
DXCheckRIH . 205
DXClipBox . 206
DXClipPlane . 208
DXColorNameToRGB . 208
DXCompareModuleID . 209
DXComponentReq, DXComponentOpt, DXComponentReqLoc,

DXComponentOptLoc . 209
DXConcatenate, DXInvert, DXTranspose, DXAdjointTranspose,

DXDeterminant, DXApply . 210
DXCopy . 211
DXCopyAttributes . 212
DXCopyModuleID . 213
DXCreateArrayHandle . 214
DXCreateHash . 214
DXCreateInvalidComponentHandle . 215
DXCreateTaskGroup . 216
DXCull . 217
DXDebug, DXEnableDebug, DXQueryDebug 219
DXDelete . 220
DXDeleteComponent . 221
DXDeleteHashElement . 221
DXDestroyHash . 222
DXDisplayX, DXDisplayX8, DXDisplayX12, DXDisplayX24 222
DXEmptyField . 224
DXEndField . 224
DXEndObject . 226
DXExecuteTaskGroup . 226
DXExists . 227
DXExportDX . 228
DXExtract . 228
DXExtractFloat . 229
DXExtractInteger . 230
DXExtractNthString . 230
DXExtractParameter . 231
DXExtractString . 232
DXFree . 233
DXFreeArrayDataLocal . 233
DXFreeArrayHandle . 234
DXFreeInvalidComponentHandle . 234
DXFreeModuleID . 235
DXGeometricText . 236
DXGetArrayClass . 236
DXGetArrayData . 237
DXGetArrayDataLocal . 237
DXGetArrayEntry, DXGetArrayEntries . 238
DXGetArrayInfo . 239
DXGetAttribute . 240

 Contents vii

DXGetCacheEntry, DXGetCacheEntryV . 240
DXGetCameraMatrix, DXGetCameraRotation,

DXGetCameraMatrixWithFuzz . 241
DXGetClippedInfo . 242
DXGetComponentAttribute . 242
DXGetComponentValue . 243
DXGetConnections . 244
DXGetConstantArrayData . 244
DXGetEnumeratedAttribute . 245
DXGetEnumeratedComponentAttribute . 245
DXGetEnumeratedComponentValue . 246
DXGetEnumeratedMember . 247
DXGetError . 247
DXGetErrorExit . 248
DXGetErrorMessage . 249
DXGetFloatAttribute . 249
DXGetFont . 251
DXGetGroupClass . 251
DXGetImageSize, DXGetImageBounds . 252
DXGetIntegerAttribute . 253
DXGetInvalidComponentArray . 254
DXGetInvalidCount . 254
DXGetItemSize . 255
DXGetMember . 255
DXGetMemberCount . 256
DXGetMeshArrayInfo . 256
DXGetMeshOffsets . 257
DXGetModuleId . 258
DXGetNextHashElement . 258
DXGetNextInvalidElementIndex . 259
DXGetNextValidElementIndex . 259
DXGetObjectClass . 260
DXGetObjectTag, DXSetObjectTag . 260
DXGetPart . 261
DXGetPartClass . 262
DXGetPathArrayInfo . 262
DXGetPathOffset . 263
DXGetPickPoint . 264
DXGetPixels . 264
DXGetPrivateData . 265
DXGetProductArrayInfo . 265
DXGetRegularArrayInfo . 266
DXGetScreenInfo . 267
DXGetSeriesMember . 267
DXGetString . 268
DXGetStringAttribute . 269
DXGetTime . 269
DXGetType . 271
DXGetValidCount . 271
DXGetXformInfo . 272
DXGrow, DXGrowV . 273
DXImportCDF . 274
DXImportCM . 274
DXImportDX . 275

viii IBM Visualization Data Explorer: Programmer’s Reference

DXImportHDF . 275
DXImportNetCDF . 276
DXInitGetNextHashElement . 277
DXInitModules . 277
DXInitGetNextInvalidElementIndex, DXInitGetNextValidElementIndex . . . 278
DXInsert . 278
DXInsertHashElement . 279
DXInterpolate . 280
DXInvalidateConnections . 280
DXInvalidateDupBoundary . 281
DXInvalidateUnreferencedPositions . 281
DXInvertValidity . 282
DXIsElementValid, DXIsElementInvalid . 283
DXIsElementValidSequential, DXIsElementInvalidSequential 283
DXIterateArray . 285
DXLn, DXTri, DXQuad, DXTetra . 286
DXLocalizeInterpolator . 287
DXLoopDone . 287
DXLoopFirst . 288
DXMakeFloat . 289
DXMakeGridConnections, DXMakeGridConnectionsV 289
DXMakeGridPositions, DXMakeGridPositionsV 290
DXMakeImage . 291
DXMakeInteger . 291
DXMakeString . 292
DXMakeStringList, DXMakeStringListV . 292
DXMap . 293
DXMapArray . 294
DXMapCheck . 294
DXMarkTime, DXMarkTimeLocal . 295
DXMessage . 296
DXNeighbors . 297
DXNewAmbientLight . 297
DXNewArray, DXNewArrayV . 298
DXNewCamera . 299
DXNewClipped . 300
DXNewCompositeField . 301
DXNewConstantArray, DXNewConstantArrayV 302
DXNewDistantLight . 302
DXNewField . 303
DXNewGroup . 304
DXNewInterpolator . 305
DXNewMeshArray, DXNewMeshArrayV . 306
DXNewMultiGrid . 306
DXNewPathArray . 307
DXNewPrivate . 308
DXNewProductArray, DXNewProductArrayV 308
DXNewRegularArray . 309
DXNewScreen . 311
DXNewSeries . 312
DXNewString . 312
DXNewXform . 313
DXOutputRGB . 315
DXPartition . 316

 Contents ix

DXPrint, DXPrintV . 316
DXPrintAlloc . 317
DXPrintTimes . 318
DXProcessorId . 319
DXProcessors . 320
DXProcessParts . 320
DXPt, DXVec . 322
DXQueryAmbientLight . 323
DXQueryArrayCommon, DXQueryArrayCommonV 323
DXQueryArrayConvert, DXQueryArrayConvertV 325
DXQueryConstantArray . 325
DXQueryDistantLight . 326
DXQueryGridConnections . 327
DXQueryGridPositions . 327
DXQueryHashElement . 328
DXQueryOriginalSizes, DXQueryOriginalMeshExtents 329
DXQueryParameter . 330
DXQueryPickCount . 331
DXQueryPickPath . 332
DXQueryPokeCount . 332
DXReadyToRun . 334
DXReAllocate . 334
DXReference . 335
DXRegisterInputHandler . 336
DXRemove . 336
DXRename . 337
DXRender . 337
DXReplace . 338
DXResetError . 339
DXRGB . 339
DXRibbon . 340
DXRotateX, DXRotateY, DXRotateZ, DXScale, DXTranslate, DXMat . . . 340
DXSaveInvalidComponent . 342
DXScalarConvert . 342
DXSetAllInvalid . 343
DXSetAllValid . 343
DXSetAttribute, DXDeleteAttribute . 344
DXSetBackgroundColor, DXGetBackgroundColor 345
DXSetCacheEntry, DXSetCacheEntryV . 345
DXSetClippedObjects . 347
DXSetComponentAttribute . 347
DXSetComponentValue . 348
DXSetConnections . 349
DXSetElementInvalid . 349
DXSetElementValid . 350
DXSetEnumeratedMember . 350
DXSetError, DXErrorReturn, DXErrorGoto 351
DXSetErrorExit . 352
DXSetFloatAttribute . 353
DXSetGroupType, DXSetGroupTypeV . 353
DXSetIntegerAttribute . 354
DXSetMember . 355
DXSetMeshOffsets . 355
DXSetOrthographic, DXGetOrthographic . 356

x IBM Visualization Data Explorer: Programmer’s Reference

DXSetPart . 357
DXSetPathOffset . 357
DXSetPendingCmd . 358
DXSetPerspective, DXGetPerspective . 359
DXSetResolution, DXGetCameraResolution 360
DXSetScreenObject . 361
DXSetSeriesMember . 361
DXSetStringAttribute . 362
DXSetView, DXGetView . 363
DXSetXformObject . 363
DXShrink . 364
DXStatistics . 365
DXSwap . 365
DXTraceTime . 367
DXTraversePickPath . 367
DXTrim . 368
DXTube . 368
DXTypeCheck, DXTypeCheckV . 369
DXTypeSize, DXCategorySize . 370
DXUnreference . 371
DXUnsetGroupType . 371
DXValidPositionsBoundaryBox . 373
DXWarning . 374

Glossary . 375

Index . 379

 Contents xi

xii IBM Visualization Data Explorer: Programmer’s Reference

 Figures

1. Data Explorer architecture . 2
2. The Hello Module in a Visual Program . 9
3. The Hello Module with a String Interactor in a Visual Program 10
4. Module Builder Dialog Box . 19
5. Worker Routine: Example1_worker . 28
6. Worker Routine. Example2_worker . 28
7. Worker Routine. Example3_worker . 29
8. Parts of a Group . 100
9. Order of Vertices in Connection Elements 125

10. Transformation of Coordinates . 150
11. Types of Connections and Positions . 153
12. sealevel.net . 159
13. maptoplane.net . 162
14. Data Explorer architecture . 180

 Copyright IBM Corp. 1991-1997 xiii

xiv IBM Visualization Data Explorer: Programmer’s Reference

 Tables

1. Data Explorer Objects . 96
2. Summary of Type Conversions . 199
3. Summary of Category Conversions . 199
4. Set Attributes . 225
5. Format Keyword Description . 228
6. Summary of Type Conversions . 324
7. Summary of Category Conversions . 324

 Copyright IBM Corp. 1991-1997 xv

xvi IBM Visualization Data Explorer: Programmer’s Reference

 Notices

Products, Programs, and Services . xviii
Trademarks and Service Marks . xviii
Copyright notices . xix

 Copyright IBM Corp. 1991-1997 xvii

Products, Programs, and Services
References in this publication to IBM* products, programs, or services do not imply
that IBM intends to make these available in all countries in which it operates. Any
reference to an IBM product, program, or service is not intended to state or imply
that only IBM’s product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM’s
intellectual property rights may be used instead. Evaluation and verification of
operation in conjunction with other products, except those expressly designated by
IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give the user any license
to those patents. License inquiries should be sent, in writing, to:

International Business Machines Corporation
IBM Director of Licensing
500 Columbus Avenue
Thornwood, New York 10594
USA

Trademarks and Service Marks
The following terms, marked by an asterisk (*) at their first occurrence in this
publication, are trademarks or registered trademarks of the IBM Corporation in the
United States and/or other countries.

AIX
IBM
IBM Power Visualization System
RISC System/6000
Visualization Data Explorer

The following terms, marked by a double asterisk (**) at their first occurrence in this
publication, are trademarks of other companies.

AViiON Data General Corporation
DEC Digital Equipment Corporation
DGC Data General Corporation
Graphics Interchange Format (GIF) CompuServe, Inc.
Hewlett-Packard Hewlett-Packard Company
HP Hewlett-Packard Company
iFOR/LS Apollo Computer, Inc.
Motif Open Software Foundation
NetLS Apollo Computer, Inc.
Network Licensing Software Apollo Computer, Inc.
OpenWindows Sun Microsystems, Inc.
OSF Open Software Foundation, Inc.
PostScript Adobe Systems, Inc.
X Window System Massachusetts Institute of Technology

xviii IBM Visualization Data Explorer: Programmer’s Reference

 Copyright notices
IBM Visualization Data Explorer contains software copyrighted as follows:

� E. I. du Pont de Nemours and Company

 Copyright 1997 E. I. du Pont de Nemours and Company

Permission to use, copy, modify, distribute, and sell this software and its
documentation for any purpose is hereby granted without fee, provided that the
above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the
name of E. I. du Pont de Nemours and Company not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior
permission. E. I. du Pont de Nemours and Company makes no representations
about the suitability of this software for any purpose. It is provided “as is”
without express or implied warranty.

E. I. du Pont de Nemours and Company disclaims all warranties with regard to
this software, including all implied warranties of merchantability and fitness, in
no event shall E. I. du Pont de Nemours and Company be liable for any
special, indirect or consequential damages or any damages whatsoever
resulting from loss of use, data or profits, whether in an action of contract,
negligence or other tortious action, arising out of or in connection with the use
or performance of this software.

� National Space Science Data Center

 Copyright 1990-1994 NASA/GSFC

National Space Science Data Center
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 USA
(NSI/DECnet -- NSSDCA::CDFSUPPORT)
(Internet -- CDFSUPPORT@NSSDCA.GSFC.NASA.GOV)

� University Corporation for Atmospheric Research/Unidata

 Copyright 1993, University Corporation for Atmospheric Research

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose without fee is hereby granted, provided that the
above copyright notice appear in all copies, that both that copyright notice and
this permission notice appear in supporting documentation, and that the name
of UCAR/Unidata not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission. UCAR
makes no representations about the suitability of this software for any purpose.
It is provided “as is” without express or implied warranty. It is provided with no
support and without obligation on the part of UCAR Unidata, to assist in its use,
correction, modification, or enhancement.

 � NCSA

NCSA HDF version 3.2r4
March 1, 1993

NCSA HDF Version 3.2 source code and documentation are in the public
domain. Specifically, we give to the public domain all rights for future licensing
of the source code, all resale rights, and all publishing rights.

 Notices xix

We ask, but do not require, that the following message be included in all
derived works:

Portions developed at the National Center for Supercomputing Applications at
the University of Illinois at Urbana-Champaign, in collaboration with the
Information Technology Institute of Singapore.

THE UNIVERSITY OF ILLINOIS GIVES NO WARRANTY, EXPRESSED OR
IMPLIED, FOR THE SOFTWARE AND/OR DOCUMENTATION PROVIDED,
INCLUDING, WITHOUT LIMITATION, WARRANTY OF MERCHANTABILITY
AND WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE

� Gradient Technologies, Inc. and Hewlett-Packard Co.

 Copyright Gradient Technologies, Inc. 1991,1992,1993
 Copyright Hewlett-Packard Co. 1988,1990

June, 1993

UNIX is a registered trademark of UNIX Systems Laboratories, Inc.

Gradient is a registered trademark of Gradient Technologies, Inc.

NetLS and Network Licensing System are trademarks of Apollo Computer, Inc.,
a subsidiary of Hewlett-Packard Co.

� Sam Leffler and Silicon Graphics

 Copyright 1988-1996 Sam Leffler
 Copyright 1991-1996 Silicon Graphics, Inc.

Permission to use, copy, modify, distribute, and sell this software and its
documentation for any purpose is hereby granted without fee, provided that (i)
the above copyright notices and this permission notice appear in all copies of
the software and related documentation, and (ii) the names of Sam Leffler and
Silicon Graphics may not be used in any advertising or publicity relating to the
software without the specific, prior written permission of Sam Leffler and Silicon
Graphics.

THE SOFTWARE IS PROVIDED “AS-IS” AND WITHOUT WARRANTY OF
ANY KIND, EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT
LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE
FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED
OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

 � Compuserve Incorporated

The Graphics Interchange Format is the copyright property of Compuserve
Incorporated. GIF(SM) is a Service Mark property of Compuserve Incorporated.

� Integrated Computer Solutions, Inc.

Motif Shrinkwrap License

READ THIS LICENSE AGREEMENT CAREFULLY BEFORE USING THE
PROGRAM TAPE, THE SOFTWARE (THE “PROGRAM”), OR THE
ACCOMPANYING USER DOCUMENTATION (THE “DOCUMENTATION”).

xx IBM Visualization Data Explorer: Programmer’s Reference

THIS AGREEMENT REPRESENTS THE ENTIRE AGREEMENT
CONCERNING THE PROGRAM AND DOCUMENTATION POSAL,
REPRESENTATION, OR UNDERSTANDING BETWEEN THE PARTIES WITH
RESPECT TO ITS SUBJECT MATTER. BY BREAKING THE SEAL ON THE
TAPE, YOU ARE ACCEPTING AND AGREEING TO THE TERMS OF THIS
AGREEMENT. IF YOU ARE NOT WILLING TO BE BOUND NY THE TERMS
OF THIS AGREEMENT, YOU SHOULD PROMPTLY RETURN THE
CONTENTS, WITH THE TAPE SEAL UNBROKEN; YOUR MONEY WILL BE
REFUNDED.

1. License: ISC remains the exclusive owner of the Program and the
Documentation. ICS grant to Customer a nonexclusive, nontransferable (except
as provided herein) license to use, modify, have modified, and prepare and
have prepared derivative works of the Program as necessary to use it.

2. Customer Rights: Customer may use, modify and have modified and prepare
and have prepared derivative works of the Program in object code form as is
necessary to use the Program. Customer may make copies of the Program up
to the number authorized by ICS in writing, in advance. There shall be no fee
for Statically linked copies of the Motif libraries. Statically linked copies are
object code copies integrated within a single application program and
executable only with that single application. Run Time copies require payment
of ICS' then applicable fee. Run Time copies are copies which include any
portion of a linkable object file (“.o” file), library file (“.a” file), the window
manager (mwm manager), the U.I.L. compiler, a shared library, or any tool or
mechanism that enables generation of any portion of such components; other
copies will require payment of ICS' applicable fees. TRANSFERS TO THIRD
PARTIES OF COPIES OF THE LICENSED PROGRAMS, OR OF
APPLICATIONS PROGRAMS INCORPORATING THE PROGRAM (OR ANY
PORTION THEREOF), REQUIRE ICS' RESELLER AGREEMENT. Customer
may not lease or lend the Program to any party. Customer shall not attempt to
reverse engineer, disassemble or decompile the program.

3. Limited Warranty: (a) ICS warrants that for thirty (30) days from the delivery
to Customer, each copy of the Program, when installed and used in
accordance with the Documentation, will conform in all material respects to the
description of the Program's operations in the Documentation. (b) Customer's
exclusive remedy and ICS' sole liability under this warranty shall be for ICS to
attempt, through reasonable efforts, to correct any material failure of the
Program to perform as warranted, if such failure is reported to ICS within the
warranty period and Customer, at ICS' request, provides ICS with sufficient
information (which may include access to Customer's computer system for use
of Customer's copies of the Program by ICS personnel) to reproduce the defect
in question; provided, that if ICS is unable to correct any such failure within a
reasonable time, ICS may, at its sole option, refund to the Customer the license
fee paid for the Product. (c) ICS need not treat minor discrepancies in the
Documentation as errors in the Program, and may instead furnish correction to
the Program. (d) ICS does not warrant that the operation of the Program will be
uninterrupted or error-free, or that all errors will be corrected. (e) THE
FOREGOING WARRANTY IS IN LIEU OF, AND ICS DISCLAIMS, ALL OTHER
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILL ICS BE LIABLE FOR ANY
INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT

 Notices xxi

LIMITATION LOST PROFITS, ARISING OUT OF THE USE OR INABILITY TO
USE THE PROGRAM OR DOCUMENTATION.

4. Term and Termination: The term of this agreement shall be indefinite;
however, this Agreement may be terminated by ICS in the event of a material
default by Customer which is not cured within thirty (30) days after the receipt
of notice of such breech by ICS. Customer may terminate this Agreement at
any time by destruction of the Program, the Documentation, and all other
copies of either of them. Upon termination, Customer shall immediately cease
use of, and return immediately to ICS, all existing copies of the Program and
Documentation, and cease all use thereof. All provisions hereof regarding
liability and limits thereon shall survive the termination of this the Agreement.

5. U.S. GOVERNMENT LICENSES. If the Product is provided to the U.S.
Government, the Government acknowledges receipt of notice that the Product
and Documentation were developed at private expense and that no part of
either of them is in the public domain. The Government acknowledges ICS'
representation that the Product is “Restricted Computer Software” as defined in
clause 52.227-19 of the Federal Acquisition Regulations (the “FAR” and is
“Commercial Computer Software” as defined in Subpart 227.471 of the
Department of Defense Federal Acquisition Regulation Supplement (the
“DFARS”). The Government agrees that (i) if the software is supplied to the
Department of Defense, the software is classified as “Commercial Computer
Software” . and that the Government is acquiring only “Restricted Rights” in the
software and its documentation as that term is defined in Clause
252.227-7013(c)(1) of the DFARS and (ii) if the software is supplied to any unit
or agency of the Government other than the Department of Defense, then
notwithstanding any other lease or license agreement that may pertain to, or
accompany the delivery of, the computer software and accompanying
documentation, the rights of the Government regarding its use, reproduction
and disclosure are as set forth in Clause 52.227-19(c)(2) of the FAR. All copies
of the software and the documentation sold to or for use by the Government
shall contain any and all notices and legends necessary or appropriate to
assure that the Government acquires only limited right in any such
documentation and restricted rights in any such software.

6. Governing Law: This license shall be governed by and construed in
accordance with the laws of the Commonwealth of Massachusetts as a contract
made and performed therein.

� OMRON Corporation, NTT Software Corporation, and MIT

 Copyright 1990, 1991 by OMRON Corporation, NTT Software Corporation,
and Nippon Telegraph and Telephone Corporation
 Copyright 1991 by the Massachusetts Institute of Technology

Permission to use, copy, modify, distribute, and sell this software and its
documentation for any purpose is hereby granted without fee, provided that the
above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the
names of OMRON, NTT Software, NTT, and M.I.T. not be used in advertising
or publicity pertaining to distribution of the software without specific, written
prior permission. OMRON, NTT Software, NTT, and M.I.T. make no
representations about the suitability of this software for any purpose. It is
provided “as is” without express or implied warranty.

xxii IBM Visualization Data Explorer: Programmer’s Reference

OMRON, NTT SOFTWARE, NTT, AND M.I.T. DISCLAIM ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
OMRON, NTT SOFTWARE, NTT, OR M.I.T. BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE
USE OR PERFORMANCE OF THIS SOFTWARE.

 Notices xxiii

xxiv IBM Visualization Data Explorer: Programmer’s Reference

 About

About This Book

Summary of Topics . xxvi
Typographic Conventions . xxvii
Related Publications and Sources . xxvii

IBM Publications . xxvii
Non-IBM Publications . xxvii
Other sources of information . xxviii

 Copyright IBM Corp. 1991-1997 xxv

This reference is intended for programmers who:

1. want to write their own modules for use with Data Explorer, or
2. want to write applications which incorporate Data Explorer modules or use the

Data Explorer data model, or
3. want to write applications which directly control the Data Explorer executive or

user interface. Programmers using this reference should be familiar with Data
Explorer (in particular, its data model).

In addition to covering various aspects of creating and implementing modules, this
reference describes in detail the use of the Module Builder—a utility that simplifies
these tasks considerably.

Summary of Topics
� Chapter 1, “Overview” on page 1 briefly discusses the various ways the Data

Explorer libraries can be used and points you to the appropriate sections,
depending on what task you want to accomplish and how you want to use Data
Explorer.

� Chapter 2, “Writing a Simple Module” on page 5 presents a simple example to
outline the basic procedure for creating and implementing a module. It also
summarizes the data and execution models of Data Explorer.

� Chapter 3, “Module Builder” on page 17, details the basic features of the
Module Builder user interface.

� Chapter 4, “Working with Data” on page 31 shows how to write modules which
are concerned only with “data” component of an object. A simple module which
adds two fields together is described.

� Chapter 5, “Working with Positions” on page 37 shows how to write modules
which operate on the “positions” component of an object. A simple “glyph” type
module which places a mark at each position in a field is described.

� Chapter 6, “Working with Connections” on page 43 shows how to write
modules which operate using the “connections” component of an object. A
simple module which averages data over the nearby neighbors in a field is
described.

� Chapter 7, “Importing Data” on page 47 shows how to write an import filter.
� Chapter 8, “Using the Pick Structure” on page 55 shows how to write a module

which uses the structure output by the Pick tool to perform specific operations
on objects “picked” using the mouse in the Image window.

� Chapter 9, “Writing Modules for a Parallel Environment” on page 67, explains
how to write a module for execution on parallel processors.

� Chapter 10, “Making a Module Work” on page 79, deals with the main aspects
of implementing a new module: module description files, compilation and
linking, and debugging.

� Chapter 11, “Working with Data Model Objects” on page 95, details the
programming interface of the Data Explorer data model.

� Chapter 12, “System Services” on page 113, Chapter 13, “Data Processing”
on page 131, and Chapter 14, “Geometric Objects” on page 145 summarize
the Data Explorer routines available for:

– System services (e.g, error handling and storage allocation)
– Data processing (e.g, partitioning and hashing)
– Creating geometric objects.

� Chapter 15, “Rendering” on page 149, deals with several advanced aspects of
rendering an image: transformations, shading, and tiling.

xxvi IBM Visualization Data Explorer: Programmer’s Reference

 About

� Chapter 16, “DXLink Developer's Toolkit” on page 157, describes the main
features of this aid to application programming for Data Explorer.

� Appendix B, “Data Explorer Data Model Library: DXlite Routines” on page 181,
lists the subset of Data Explorer routines for creating, querying, and modifying
Data Explorer Objects.

� Appendix C, “Data Explorer Library Routines” on page 183, lists and describes
all the Data Explorer interface routines.

� “Glossary” on page 375, a glossary of Data Explorer terms, follows the
appendices.

 Typographic Conventions
Boldface Identifies commands, keywords, files, directories, messages from the

system, and other items whose names are defined by the system.

Italic Identifies parameters with names or values to be supplied by the user.

Monospace Identifies examples of specific data values and text similar to what you
might see displayed or might type at a keyboard or that you might write
in a program.

Related Publications and Sources

 IBM Publications
� IBM Visualization Data Explorer User’s Guide, SC38-0496

Details the main features of Data Explorer, including the data model, data
import, the user interface, the Image window, and the visual program editor.
and the scripting language. Of particular interest to programmers: chapters on
the data model and the scripting language.

� IBM Visualization Data Explorer User’s Reference, SC38-0486

Contains detailed descriptions of Data Explorer’s tools.

Note: Consult this reference if you are creating visual programs or scripts.

� IBM Visualization Data Explorer Programmer’s Reference, SC38-0497

Contains detailed descriptions of the Data Explorer library routines.

Note: Consult this reference if you are writing your own modules for Data
Explorer.

 Non-IBM Publications
The following treat various aspects of computer graphics and visualization:

Adobe Systems Incorporated, PostScript Language Reference Manual, 2nd
Ed., Addison-Wesley Publishing Company, Massachusetts, 1990.

Aldus Corporation and Microsoft Corporation, Tag Image File Format
Specification, Revision 5.0, Aldus Corporation, Washington, 1988.

Arvo, Jim, ed., Graphics Gems II, Academic Press, Inc., Boston,
Massachusetts, 1991.

 About This Book xxvii

Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F., Computer Graphics:
Principles and Practice, Addison-Wesley Publishing Company; Massachusetts,
1990.

Friedhoff, Richard M., and Benzon, William, Visualization: The Second
Computer Revolution, New York, Harry N. Abrams, Inc., 1989.

Glassner, Andrew, ed., Graphics Gems, Academic Press, Inc., Boston,
Massachusetts, 1990.

Hill, F.S., Jr., Computer Graphics. Macmillan Publishing Company, New York,
1990.

Kirk, David, ed., Graphics Gems III, Academic Press, Inc., Boston,
Massachusetts, 1992.

Robin, Harry, The Scientific Image: from cave to computer, Harry N. Abrams,
Inc., New York, 1992.

Rogers, David F., Procedural Elements for Computer Graphics, McGraw-Hill
Book Company, New York, 1985.

Rogers, David F. and Adams, J.Alan, Mathematical Elements for Computer
Graphics, 2nd Ed., New York, McGraw-Hill Book Company, 1990.

SIGGRAPH Conference Proceedings, Association for Computing Machinery,
Inc.: A Publication of ACM SIGGRAPH, New York, various years.

Tufte, Edward, The Visual Display of Quantitative Information, Graphics Press,
Cheshire, Connecticut, 1983.

Other sources of information
For additional ideas, consult the “DX Repository,” available through anonymous
FTP (ftp.tc.cornell.edu. in directory pub/Data.Explorer), and gopher
(ftp.tc.cornell.edu. port 70). This public software resource includes information
and visual programs contributed by Data Explorer users from around the world.
We encourage you to contribute your innovations and ideas to the Repository, in
the form of new modules, macros, visual programs, and tips and tricks you discover
as you learn and master Data Explorer.

On the Internet, the newsgroup comp.graphics.apps.data-explorer is used by
customers around the word to share information and ask questions. This
newsgroup is also followed by Data Explorer developers.

If you have access to the World Wide Web, you can find the Data Explorer home
page at http://www.almaden.ibm.com/dx/.

xxviii IBM Visualization Data Explorer: Programmer’s Reference

 Overview

 Chapter 1. Overview

1.1 Writing a Stand-alone Program Using the Data Explorer Data Model 3
1.2 Writing a Stand-alone Program Using Data Explorer Modules 3
1.3 Controlling the Data Explorer Executive or User Interface from a Separate

Program . 4

 Copyright IBM Corp. 1991-1997 1

The Data Explorer libraries allow you to use Data Explorer functionality in a variety
of ways. Depending on the task you want to accomplish, the way you use the
libraries will vary. Figure 1 shows the Data Explorer architecture.

DX Architecture

DX Executive

DX Data Model

DX ModulesUser
Program

User
Program

DX DistributionCustom

DX UI

Figure 1. Data Explorer architecture

The Data Explorer User Interface and Data Explorer Executive are the two
programs you use when you create and execute visual programs. Underlying the
Data Explorer Executive is a collection of modules, which in turn use the Data
Explorer data model to manipulate all of the objects in a program (data sets,
isosurfaces, images, etc.). The Data Explorer architecture is described in more
detail in Chapter 1, “Overview” on page 1 in IBM Visualization Data Explorer
User’s Guide.

If you want to write a module to use in the Data Explorer Visual Program Editor, or
in the scripting language, you will probably use the libDXlite.a library. This library
contains all of the Data Explorer data model routines which allow you to query,
manipulate, and create data model objects. Much of this reference book concerns
this common use of the Data Explorer library routines. You should be familiar with
the material in Chapter 11, “Working with Data Model Objects” on page 95, which
discusses how to use the Data Explorer data model routines. You may also want to
incorporate one or more of the existing Data Explorer modules into your own
module, or use some of the high level data processing functions, such as
interpolation. In this case you would need to use the libDXcallm.a library.
DXCallModule is discussed in 12.10, “Module Access” on page 127.

Chapter 2 through Chapter 10 show you a number of examples of modules,
including import filters and various data manipulation modules. These examples
are supported by .c files and makefiles in /usr/lpp/dx/samples/program_guide. If
you wish to incorporate routines from the libDXcallm.a library, simply change the

2 IBM Visualization Data Explorer: Programmer’s Reference

 Overview

makefiles to link to this library instead of to libDXlite.a. All of the routines in
libDXcallm.a are described in Appendix C, “Data Explorer Library Routines” on
page 183, while the subset of routines available in libDXlite.a is listed in
Appendix B, “Data Explorer Data Model Library: DXlite Routines” on page 181.
When you write a module for use in Data Explorer, the Data Explorer Executive is
still the process which “owns main”. Your module is simply incorporated into Data
Explorer. Your module can be directly built in to the Data Explorer Executive
(inboard module), run as a separate process (outboard module), or loaded into the
Data Explorer executive at runtime (runtime-loadable module). Each of these is
discussed in Chapter 10, “Making a Module Work” on page 79. Using
runtime-loadable modules is in general the preferred option.

1.1 Writing a Stand-alone Program Using the Data Explorer Data
Model

You may also want to write a stand-alone program which uses the Data Explorer
data model. For example, you may want to write a data filter which processes data,
writing it out to a file in Data Explorer format using DXExportDX. In this case, your
stand-alone program “owns main” and simply links in Data Explorer data model
routines, which are listed in Appendix B, “Data Explorer Data Model Library: DXlite
Routines” on page 181, and discussed in Chapter 11, “Working with Data Model
Objects” on page 95. Graphically, this is represented by the lower “User Program”
in Figure 1 on page 2, which embeds Data Explorer data model routines into the
user's program.

1.2 Writing a Stand-alone Program Using Data Explorer Modules
You may want to write a stand-alone program which directly uses Data Explorer
modules. You would link to the libDXcallm.a library, and use DXCallModule to call
individual Data Explorer. In this case, as with the previous one, your stand-alone
program “owns main”. Note that you can do complete visualization programs in this
way, from Import to Isosurface to Display from within your own program. However,
you will not be getting the functionality of the Data Explorer Executive in this case,
including cache management, and control of execution order. You will, in addition,
be responsible for deleting objects when you are finished using them. Note that
with the SuperviseWindow and SuperviseState modules (see “SuperviseWindow”
on page 336 and “SuperviseState” on page 332 in IBM Visualization Data Explorer
User’s Reference), direct manipulation within the Image window is available without
the Image tool, so that a program using DXCallModule can provide direct
interaction with objects.

Examples of stand-alone programs including .c files and makefiles which use the
CallModule library can be found in /usr/lpp/dx/samples/callmodule. Graphically,
this is represented by the lower “User Program” in Figure 1 on page 2, which
embeds Data Explorer module routines into the user's program.

 Chapter 1. Overview 3

1.3 Controlling the Data Explorer Executive or User Interface from a
Separate Program

You may want to write a program which controls the Data Explorer Executive. For
example, you could write your own user interface, providing a custom “look and
feel”, and send Data Explorer script language commands to the Data Explorer
executive. In this case you would get all of the functionality provided by the
executive (cache management, control of execution order, and object
management). You could also directly control the Data Explorer User Interface from
a separate program, loading and executing visual programs. For example, you may
wish to fire up Data Explorer with a “canned” visualization program once a
simulation is complete, with parameters within the visual program preset to
particular values.

Graphically, both of these are represented by the upper “User Program” in Figure 1
on page 2, which controls the Data Explorer Executive or User Interface from the
user's program. The libDXL.a library (DXLink) provides this functionality, and is
discussed in Chapter 16, “DXLink Developer's Toolkit” on page 157. Examples of
DXLink programs can be found in /usr/lpp/dx/samples/dxlink.

With the functionality provided by SuperviseWindow and SuperviseState (see
“SuperviseWindow” on page 336 and “SuperviseState” on page 332 in IBM
Visualization Data Explorer User’s Reference), your program does not need the
Image tool (which is provided only within the Data Explorer User Interface) in order
to provide direct user interaction in the image window. Thus a custom GUI
communicating only with the Data Explorer Executive can implement all of the
user-interaction provided by the Data Explorer User Interface. Examples of custom
direct interactors can be found in /usr/lpp/dx/samples/supervise; while these
examples are demonstrated using the Data Explorer User Interface, there is no
necessity that they do so, as all of the modules used in these examples
(SuperviseWindow, SuperviseState, and Display, in particular) are available directly
from the Data Explorer Executive.

4 IBM Visualization Data Explorer: Programmer’s Reference

Chapter 2. Writing a Simple Module

 Simple Module

This chapter discusses the basics of writing a simple module for Data Explorer.
Subsequent chapters cover some typical types of modules you might want to write.
Although Data Explorer modules support a broad range of data and connections
types, your module need support only those types it can be expected to encounter.
Moreover, it is not necessary to manipulate all the components of a Data Explorer
Field. The programming examples in later chapters illustrate modules that
manipulate particular components (e.g., “data”).

Before writing a module, you should have a general understanding of the Data
Explorer data model and be familiar with the way data is carried in Fields, Groups,
and components (see 2.3, “Data Explorer Data Model” on page 12). For a detailed
treatment of the data model, see Chapter 3, “Understanding the Data Model” on
page 15 in IBM Visualization Data Explorer User’s Guide. In this manual,
Chapter 11, “Working with Data Model Objects” on page 95, summarizes the
routines that implement the model.)

Two other important topics are briefly reviewed in subsequent sections:

1. managing the memory allocated to and used by visual programs and their
constituent modules (see 2.4, “Memory Management” on page 13) and

2. the Data Explorer execution model (see 2.5, “Data Explorer Execution Model”
on page 14).

2.1 Getting Started Writing a Module
To build a module, you must:

1. Define the module’s function and its interface (i.e., its inputs and outputs).
2. Create a module description file containing this information.
3. Write the module.
4. Compile and link the module.

Once you have completed these four steps, you can run a version of Data Explorer
that incorporates the module.

The Module Builder is a point-and-click interface that facilitates much of this work
by creating the files necessary for a module:

� a module description file
� a C-code framework (or template) file

 � a makefile.

All you need do is add your own application code to the framework file. (See
Chapter 3, “Module Builder” on page 17.)

A module can be added to Data Explorer in one of three forms: inboard, outboard,
or runtime-loadable. An inboard module is linked directly into a new Data Explorer
executive. An outboard module is a separate executable linked to the Data
Explorer routine library and controlled by the executive. It can later be compiled
and linked as an inboard module for greater efficiency. A runtime-loadable module
can be loaded when Data Explorer is started or while it is running. It is more
portable than the inboard module version of the same function and more efficient

 Copyright IBM Corp. 1991-1997 5

than the outboard version. See 10.3, “Inboard, Outboard, and Runtime-loadable
Modules” on page 85.

2.2 Adding the Hello Module
The procedure in this example follows the 4-step sequence outlined above.

(1) Define the module’s function, inputs, and outputs
The Hello module appends an input string to "hello." The resulting combination is
the module’s output. If the input string is NULL, the default output is "hello world."

(2) Create a module description file
Data Explorer’s graphical user interface and executive access the module
description file to determine the names of the modules and their inputs and outputs.

Note: This type of file is commonly referred to as an “mdf” file (because of its file
extension) and is created automatically from user input to the Module
Builder, as described in Chapter 3, “Module Builder” on page 17. However,
for very simple modules like the one in this example, it is usually easier and
quicker to create the file with a text editor.

Parameter names are a part of the module interface that can be seen by the user.
In the graphical user interface, parameter names appear in the configuration dialog
box and also serve as default names for interactors. In the scripting language,
module parameters can be specified by name.

A new module cannot have the name of an existing Data Explorer module (see IBM
Visualization Data Explorer User’s Reference for a complete list). You should also
be aware of the following requirements:

� A Data Explorer module name must be a single alphanumeric string and its first
character must be a letter. (Standard Data Explorer module names capitalize
the first character of each “word” in a name, as in Attribute and AutoAxes. You
may observe this convention or not, as you wish, for the modules you create.)

� The module must be assigned to a tool category—in a CATEGORY statement in
the module description file. The category can be any of those listed in the
Category palette of the VPE window or a new one that you create by naming it
in the statement.

In the following example, the mdf file consists of five statements:

 MODULE Hello

 CATEGORY Greetings

DESCRIPTION Prefixes “hello” to the input string

INPUT value; string; “world”; input string

OUTPUT greeting; string; prefixed string

MODULE Specifies the module name as Hello.

CATEGORY Assigns the module to a new, user-specified category (Greetings).

DESCRIPTION Describes Hello’s purpose: to affix “hello” to the input string.

INPUT Assigns the name value to the input parameter; specifies its
parameter type as string; specifies its default value as “world”; and
describes it as an input string.

6 IBM Visualization Data Explorer: Programmer’s Reference

OUTPUT Assigns the name greeting to the output parameter; specifies its
parameter type as string; and describes it as a prefixed string.

For details, see 10.1, “Module Description Files” on page 80.

 Simple Module

(3) Write the module
Having defined the module in a description file, you can now implement the module
with a C-language function like the one shown here.

ð1 #include <dx/dx.h>

ð2

ð3

ð4 Error m_Hello(Object \in, Object \out)

ð5 {

ð6 char message[3ð], \greeting;

ð7

ð8 if (!in[ð])

ð9 sprintf(message, "hello world");

1ð else {

11 DXExtractString(in[ð], &greeting);

12 sprintf(message, "%s %s", "hello", greeting);

13 }

14

15 out[ð] = DXNewString(message);

16 return OK;

17 }

The dx.h file “included” in line 01 contains the definitions of all the Data Explorer
library routines. The name of the function that implements a module must consist
of the module name (specified in the MODULE statement of the description file)
prefixed by m_. In this case, the function name is m_Hello.

When Data Explorer invokes a module, it passes the module two pointers: the first
to an array containing the inputs, the second to an array containing the outputs.
(See 2.5, “Data Explorer Execution Model” on page 14 for details of parameter
passing.)

Because the input parameter of this module is passed to m_Hello as an array of
pointers, in[ð] is the value parameter. If no argument is specified for value, in[ð]
is NULL, and the default output (“hello world”) is placed in message. If you do
specify an argument, a library routine (DXExtractString) extracts it from in[ð], and
greeting becomes a pointer to that string. In line 12, greeting is appended to
“hello,” creating message.

Once message has been created, the DXNewString library routine creates a String
Object for the output out[ð].

Note: The output of any Data Explorer module must be a Data Explorer Object
(such as an Array, Field, or Group). See Table 1 on page 96 for a complete list of
Data Explorer Objects.

 Chapter 2. Writing a Simple Module 7

(4) Compiling and Linking Hello...
...as an inboard module: Copy the following files to the directory you want to
work in:

/usr/lpp/dx/samples/program_guide/Makefile_workstation
/usr/lpp/dx/samples/program_guide/hello.c
/usr/lpp/dx/samples/program_guide/hello.mdf

Now rename the makefile to Makefile (the name of the default makefile) and enter:
make hello. This command creates an executable that contains the Hello module.

To invoke this executable (from the directory to which the files were copied), enter:

dx -mdf ./hello.mdf -exec ./dxexec.

This command starts Data Explorer (the hello.mdf file tells the graphical user
interface about Hello and its inputs and outputs).

You can now run any visual program that uses the Hello module. One such
program is hello.net in the directory /usr/lpp/dx/samples/program_guide.

...as an outboard module: Copy the following files to the directory you want to
work in:

/usr/lpp/dx/samples/program_guide/Makefile_workstation
/usr/lpp/dx/samples/program_guide/hello.c
/usr/lpp/dx/samples/program_guide/hello_outboard.mdf

Now rename the makefile to Makefile (the name of the default makefile) and enter:
make hello_outboard. This command creates the executable hello_outboard.

To invoke the executable (from the directory to which the files were copied), enter:

dx -mdf ./hello_outboard.mdf

This command starts Data Explorer (the hello_outboard.mdf file tells the graphical
user interface about Hello and its inputs and outputs).

You can now run any visual program that uses the Hello module. One such
program is hello.net in the directory /usr/lpp/dx/samples/program_guide.

Note: The mdf file of the outboard module contains one additional statement,
OUTBOARD, which specifies the executable (hello_outboard; see 10.1, “Module
Description Files” on page 80). This statement may also specify the name of a
host on which to run the executable.

 MODULE Hello

 CATEGORY Greetings

DESCRIPTION Prefixes “hello” to the input string

 OUTBOARD hello_outboard

INPUT value; string; “world”; input string

OUTPUT greeting; string; prefixed string

...as a runtime-loadable module: Copy the following files to the directory you
want to work in:

/usr/lpp/dx/samples/program_guide/Makefile_workstation
/usr/lpp/dx/samples/program_guide/hello.c
/usr/lpp/dx/samples/program_guide/hello_loadable.mdf

Now rename the makefile to Makefile (the name of the default makefile) and enter:
make hello_loadable. This command creates the executable hello_loadable.

8 IBM Visualization Data Explorer: Programmer’s Reference

Note: Runtime-loadable modules are not available for SunOS 4.1 or Data General
AViiON.

To invoke the executable (from the directory to which the files were copied), enter:

dx -mdf ./hello_loadable.mdf

This command starts Data Explorer (the hello_loadable.mdf file tells the graphical
user interface about Hello and its inputs and outputs).

You can now run any visual program that uses the Hello module. One such
program is hello.net in the directory /usr/lpp/dx/samples/program_guide.

Note: The mdf file of the runtime-loadable module contains one additional
statement, LOADABLE, which specifies the executable (hello_loadable; see 10.1,
“Module Description Files” on page 80).

 MODULE Hello

 CATEGORY Greetings

DESCRIPTION Prefixes “hello” to the input string

 LOADABLE hello_loadable

INPUT value; string; “world”; input string

OUTPUT greeting; string; prefixed string

 Simple Module

Including Hello in a Visual Program
In this example (Figure 2), the Hello module is not given an input value and
therefore uses its default string (“hello world”) as output. The Echo module sends
the string to Data Explorer’s Message window.

Echo

Figure 2. The Hello Module in a Visual Program. The protrusion of the upper tab indicates
that the Hello module is using default input. When input is supplied through a connecting
“arc,” as it is to the Echo module, the input tab folds in.

A visual program that produces the string "hello, how are you?" can be created by:

� Using the visual program in Figure 2 and entering the string ", how are you?"
as the argument of the value input parameter of the Hello module’s
configuration dialog box, or

� Creating a visual program (Figure 3 on page 10) in which a string interactor
stand-in provides the input (previously entered in the interactor by the user).

 Chapter 2. Writing a Simple Module 9

Figure 3. The Hello Module with a String Interactor in a Visual Program. Note that both
input tabs are folded in (compare Figure 2).

Using Hello in a Script
In the following example, no input to Hello is provided, so the module produces its
default output:

 a = Hello();

 Echo(a);

In the next three examples, the user provides input to the Hello module. All three
produce the output “hello, how are you?”

Example 1

 b = Hello(“, how are you?”);

 Echo(b);

Example 2

 b = Hello(value = “, how are you?”);

 Echo(b);

Example 3

 a = “, how are you?”;

 b = Hello(a);

 Echo(b);

10 IBM Visualization Data Explorer: Programmer’s Reference

Hello Module with Error Checking
The definition of the Hello module (see 2.2, “Adding the Hello Module” on page 6)
contains no error checking code. This omission, of course, is not a recommended
practice. In the following version, the Data Explorer routine DXSetError reports
errors to the user.

ð1 #include <dx/dx.h>

ð2

ð3

ð4 m_HelloErrorChecking(Object \in, Object \out)

ð5 {

ð6 char message[3ð], \greeting, longmessage=NULL;

ð7

ð8 if (!in[ð]) {

ð9 sprintf(message, "hello world");

1ð out[ð] = DXNewString(message);

11 }

12 else {

13 if (!DXExtractString(in[ð], &greeting)) {

14 DXSetError(ERROR_BAD_PARAMETER, "value must be a string");

15 goto error;

16 }

17 if (strlen(greeting)<=(28-strlen("hello")) {

18 sprintf(message, "%s %s", "hello", greeting);

19 out[ð] = DXNewString(message);

2ð }

21 else {

22 longmessage = DXAllocate((strlen("hello")+strlen(greeting)+2)

 \ sizeof(char));

23 if (!longmessage)

24 goto error;

25 sprintf(longmessage, "%s %s", "hello", greeting);

26 out[ð] = DXNewString(longmessage);

27 DXFree((Pointer)longmessage);

28 }

29 }

3ð return OK;

31

32 error:

33 DXFree((Pointer)longmessage);

34 return ERROR;

35 }

In this example, the return from DXExtractString (line 13) is checked. If the routine
returns ERROR, the error message “value must be a string” is generated and Hello
returns ERROR.

The combined length of the user-supplied parameter string and “hello” is checked
against the length of the buffer. If it exceeds the length, a new buffer is allocated
for the output message (and freed before returning). Because longmessage is
initialized to NULL, it can safely be freed on error, even if it has not yet been
allocated.

Note: The m_module function should return an error code according to the Data
Explorer library standard: ERROR for error and OK for successful completion. Thus
the module entry point would typically be declared by:

 Simple Module

 Chapter 2. Writing a Simple Module 11

Error m_module(Object \in, Object \out);

To create a version of Data Explorer that includes the HelloErrorChecking module,
copy the following files to the directory you want to work in:

/usr/lpp/dx/samples/program_guide/Makefile_workstation
/usr/lpp/dx/samples/program_guide/hello_errorchecking.c
/usr/lpp/dx/samples/program_guide/helloerr.mdf

Now rename the makefile to Makefile (the name of the default makefile) and enter:
make helloerr. This command creates an executable that contains the
HelloErrorChecking module.

To invoke this executable (from the directory to which the files were copied), enter:

dx -mdf ./helloerr.mdf -exec ./dxexec.

This command starts Data Explorer (the helloerr.mdf file tells the graphical user
interface about HelloErrorChecking and its inputs and outputs).

You can now run any visual program that uses the HelloErrorChecking module.
One such program is hello_errorchecking.net in the
/usr/lpp/dx/samples/program_guide directory.

2.3 Data Explorer Data Model
Fields are the fundamental informational entities in Data Explorer. A Field contains
the components that carry the actual numbers. The “positions” component, for
instance, contains the positions of a data set, while the “data” component contains
the data values (e.g., temperatures). Groups are higher-level structures and may
consist of Fields or other Groups (see Table 1 on page 96).

Generally, a component consists of an Array of data, information describing the
data (i.e., its type, dimensionality, or both), and a name associated with the
component. Standard components include “positions,” “data,” and “colors.” The
name of a component does not usually imply anything about its characteristics
(e.g., its data type or dimensionality).

Module operations typically take place at the Field level and involve changing or
creating components. For example:

� The Compute module may create an output Field whose data component is the
sum of the “data” components of two input Fields.

� The AutoColor module creates an output Object whose “colors” component is
based on the “data” component of the input Field.

� The Isosurface module creates an output Object whose “positions” and
“connections” components describe a surface of constant value in the input
Object’s data Field.

Modules in Data Explorer are generally required to be pure functions and they must
not modify their inputs. Instead, to modify the “data” component of an input Object,
a module must first make a copy of the Object. Note that the data model allows
the module to copy the structure without copying the data. Some modules (e.g.,
Isosurface) create a completely new Object for the output (as will be illustrated in
later chapters).

12 IBM Visualization Data Explorer: Programmer’s Reference

Because a module typically works by manipulating the components of a Field, and
because its input may be a more complicated Object consisting of Groups, it must
often operate recursively. In particular, the efficient use of multiple processors
requires that a parallel module must be able to traverse Groups, since partitioning
creates a special type of Group called a Composite Field.

For example, a module designed to add a number to every data value in each data
component of an input Object first makes a copy of the input Object on which it is
to operate. This copy duplicates the structure of the input Object (the hierarchy of
Groups and Fields) but not the Arrays containing the values in the components of
the Fields. In the worker part of the routine, a new “data” component is created to
hold the modified data values (the other components can be shared with the input
Object, since they will not be modified).

The worker part of the routine first queries the Object to determine whether it is a
Field or a Group:

� If it is a Field, the routine extracts the “data” component of the input Object,
creates a new “data” component, places it in the output Object, computes the
sum, puts the result in the new component, and returns.

� If it is a Group, the routine extracts each of the group’s children and recursively
calls itself for each child to determine whether that child is a Field or a Group,
and so on. (See Chapter 4, “Working with Data” on page 31 for an illustration
of how a module performs this procedure on an input Object.)

 Simple Module

 2.4 Memory Management
The executive is responsible for managing Objects successfully returned as output
by modules and for the memory allocated to those Objects. Any memory allocated
or any Objects created that are not returned as output are the responsibility of the
module. For instance, in an unsuccessful execution of a module, no Objects are
returned. It is important that the programmer remember this difference when
writing a module.

Allocating and Freeing Memory
Memory allocation results from either of the following:

� Calls to DXAllocate and DXAllocateLocal.

In general, allocations resulting from these calls must be freed before returning.

� The creation of a new Object (e.g, by DXNewField or DXNewArray).

On successful return, memory allocated for the use of these routines does not
usually need to be freed: the Objects returned are managed by the executive,
and the module is not responsible for their deletion. However, in case of error,
no output Objects are returned, and the module is responsible for deleting all
Objects created.

When a Field is placed in a Group, the Field is deleted when the Group is
deleted; and, on error, only the Group should be deleted. Similarly, an Array
placed in a Field is deleted when the Field is deleted. For that reason it is
often helpful to set the pointer of a Field or Array to NULL after placing it in a
higher-level Object. The Field or Array can then be safely deleted on error,
regardless of whether it has been placed in a higher-level Object.

 Chapter 2. Writing a Simple Module 13

 Reference Counts
In Data Explorer, reference counts typically require no special action from the user.
Thus modules seldom need to call DXReference for any reason, and they usually
call DXDelete only to clean up Objects after an error. Note the following:

� All Objects are created with a reference count of zero (0).
� If you call DXDelete on an Object having a reference count of 0 or 1, the

Object is invalidated and the space is freed. If the reference count is greater
than 1, DXDelete simply decrements the count by 1 and returns.

� If an Object is incorporated in another Object by a call to
DXSetComponentValue or DXSetMember, its reference count is incremented to
1.

This means you can create Array Objects and use DXSetComponentValue to
add them to a Field as a component, without having to call DXDelete: the Array
will be deleted when the Field itself is deleted. (However, if an error occurs
before you add the Array to the Field, you must call DXDelete.)

� Objects returned as output from your module should not be referenced.
� New Objects that are not part of another Object will have a reference count of

0. The executive increments the reference counts for outputs used by other
modules and deletes the Objects when memory space is needed.

2.5 Data Explorer Execution Model
The executive executes your module by calling the C function that you provide and
passing it two arguments: one pointer to an Array for the input Object(s); another to
an Array for the output Object(s) the module creates. In each case, the size of the
Array is defined by the corresponding mdf file and the number of input and output
statements found there.

If a parameter is not specified by the user when the module is called, the
corresponding element of the input Array is set to NULL.

As noted earlier, Data Explorer modules are generally required to be pure
functions, producing the same results from the same inputs. The reason for this
requirement is that the executive caches the results of module execution and does
not reexecute the module (given the same input) if the previously computed result
is still in the cache.

In particular, modules must not maintain state (e.g., by saving values in global or
static variables). Indeed, it may be impossible for a module to maintain state in a
multiprocessor environment, since it may execute on a different processor each
time. However, a module may use the cache to maintain information that makes
succeeding invocations more efficient, provided that it maintains pure-function
semantics. (For more information, see 12.5, “Cache” on page 121.)

Outboard modules whose PERSISTENT flag is set (see page 80) may maintain state,
but they are still required to maintain pure-function semantics: the executive might
not execute a module if its inputs have not changed and the results are still in the
cache. Modules that have no outputs are executed every time a visual program
using them is run, regardless of whether or not their inputs have changed. See
also Chapter 4, “Data Explorer Execution Model” on page 37 in IBM Visualization
Data Explorer User’s Guide.

14 IBM Visualization Data Explorer: Programmer’s Reference

For Future Reference

Although you must supply a C function for Data Explorer to call, it is still
possible to write the bulk of a module in FORTRAN: Write a C “wrapper” that
(1) extracts the data from the input Object (using the programming interface
described in this manual) and (2) passes the data to the FORTRAN subroutine.

You should be aware of the following when writing a module that interfaces to a
FORTRAN routine:

� FORTRAN variables are always called by reference. For example, if you
are using the Module Builder you need to modify the worker routine so that
it passes the addresses of the parameters.

� Since FORTRAN routines do not return a value, the ERROR (or OK) return
value must be a parameter.

� Depending on the compiler, it may be necessary to affix an underscore to
the name of the FORTRAN routine and to lowercase the name of the
worker routine.

� Passing strings from C to a FORTRAN routine may require passing both the
string length and the string pointer. Consult the appropriate compiler
manual.

 Simple Module

 Chapter 2. Writing a Simple Module 15

16 IBM Visualization Data Explorer: Programmer’s Reference

 Chapter 3. Module Builder

3.1 Overview . 18
3.2 Creating a Module with the Module Builder: A Summary 18
3.3 Using the Module Builder: A Quick Walk Through 20
3.4 Module Builder: Menu Bar . 22

File Options . 22
Edit Options . 23
Build Options . 23
Help Options . 23

3.5 Module Builder: Overall Module Description 23
3.6 Module Builder: Individual Parameter Information Section 24
3.7 Worker Routine . 26

Positions Specification . 26
Connections Specification . 26
Input Data . 27
Output Data . 27
Implementing Default Input Parameters . 28
Worker Routine Examples . 28

 Module Builder

 Copyright IBM Corp. 1991-1997 17

The Module Builder is a point-and-click interface for creating a module from
user-supplied information.

The next several sections describe the general structure of modules built with the
Module Builder; its dialog box; and examples of the “worker routine”—the interface
between a module and the user-supplied application code.

 3.1 Overview
From specifications supplied by the user, the Module Builder generates three files:

1. a module description file (with the extension .mdf);
2. a C-code framework file that implements the structure of the module; and

 3. a makefile.

The C-code framework file itself consists of three major routines:

� The first routine checks input parameters and creates output Objects. It is
named by prefixing m_ to the module name (e.g., the entry point for a module
named Example is m_Example).

� The second routine traverses hierarchically defined data Objects. When this
routine (Traverse) encounters a Data Explorer Field Object, it calls the third
routine.

� The third routine (doLeaf) creates a “worker routine” as an interface to the
user’s application-specific code: it extracts the input arguments, sets up the
outputs, and calls the user-supplied code. (See 3.7, “Worker Routine” on
page 26 and “Worker Routine Examples” on page 28.). The worker routine
appears at the end of the C-code framework file.

To complete a customized module, the user need only:

add the application-specific code to the worker routine (after the line “User’s
code goes here” at the end of the C-code framework file) by:

using an “include” file, or
adding the application code directly to the framework file.

Using an include file is recommended because (1) if you rerun the module builder,
it will overwrite the .c file, and (2) it makes replacing your own code easy.

Notes:

1. The Module Builder is designed to accommodate the most common form of
customized module, in which the output Object is a copy of the input, but the
data component is modified.

2. Other inputs can be constant parameters or other hierarchically defined data
Objects (note that the hierarchy of the data Objects must match exactly).

3.2 Creating a Module with the Module Builder: A Summary
To begin a Module Builder session, enter: dx -builder. The dialog box (Figure 4
on page 19) consists of a menu bar and two major sections:

� A Overall Module Description section for defining the module, and
� An Individual Parameter section for defining the individual input and output

parameters.

18 IBM Visualization Data Explorer: Programmer’s Reference

When all the necessary information has been entered, save it. For new modules,
use the Save as... option in the File pull-down menu (or Save, if the specified
module name is already known to the system). The saved file has the name of the
module and the extension .mb.

You can now use the options in the Build pull-down menu to create a module
description file (.mdf), a C-code module framework (.c), a makefile (.make), or all
three together. You can incorporate your own application code in the C-code
framework file and reference additional files in the makefile.

Compile the program as follows:

make -f filename.make

This command creates a customized version of the Data Explorer executive that
can use the new module. To run this version in your working directory, enter the
following command:

For an inboard module:

dx -mdf filename.mdf -exec dxexec

For an outboard or runtime-loadable module:

dx -mdf filename.mdf

 Module Builder

Figure 4. Module Builder Dialog Box. In the Individual Parameter Information section, the Input or Output?
button specifies the kind of parameter being defined, and the associated Number setting specifies its ordinal ranking
(i.e., first, second, etc.). Use the Number stepper buttons to proceed from one parameter description to the next.

 Chapter 3. Module Builder 19

To create a version of the Data Explorer executive with more than one customized
module, you must:

1. concatenate in a single mdf file the module descriptions you want to use;
2. create a makefile that references the combined mdf file as well as all the

individual .c framework files.
3. compile the program as above.

You can now run the new version with the new mdf file.

3.3 Using the Module Builder: A Quick Walk Through
In this example, you will use the Module Builder to create a simple module that
adds a single number to each data value of a set.

Note: This function is supplied with Data Explorer as part of the Compute module
and is used here only for purposes of illustration.

1. Start the Module Builder with the command dx -builder. The Module Builder
dialog box appears.

2. Fill in the Overall Module Description section as follows:

Name Type in a name for the module (for this example, use “Add.”)

Category Select a category for the new module, either by clicking on one of
the entries in the Existing pull-down menu or by typing in a menu
name or a name of your choosing.

Description Type in a short description of the module. This description will
appear in the module’s configuration dialog box (in the VPE
window).

Number of inputs
Use the stepper buttons to set the value to “2.” The two inputs of
the new module will be a data Field and the number to be added
to each data value.

Number of outputs
The module generates a single output. Use the stepper buttons
to set the value to “1” if that is not already the value. The output
is the new Field (i.e., the data value plus the added value).

Outboard Activate the outboard toggle button and type in “Add” in the
Executable Name field. (Leave the other toggle buttons and fields
as they are.)

Note: In this example, the new (“outboard”) module is an
independent process. In contrast, an “inboard” module is
compiled and incorporated as part of the Data Explorer
executable; and a runtime-loadable module is compiled
independently and loaded into Data Explorer at run time.

3. Fill in the Individual Parameter Information section as follows:

Input Number % 1 5
The first input is the data field.

a. Set the button in the top-left corner of the Individual
Parameter Information section to Input if that is not already
the setting.

20 IBM Visualization Data Explorer: Programmer’s Reference

b. Use the stepper buttons to set Number to “1” if that is not
already the value.

c. Enter a name for this parameter in the Name field (e.g., “data”).
d. Enter a short description in the Description field.
e. Confirm that the Required toggle button for the first input is

activated.
f. Confirm that the field object toggle button (below Object
Type) is activated.

g. On the right-hand side of the Individual Parameter
Information section, select float (“floating point”) and Scalar
for Data type and Data shape respectively.

h. Set Positions and Connections to Not required (information
about these components is not needed).

i. For this example, since the dependency of the data on
positions or connections in the output Object will be the same
as it was in the input Object, select Positions or
Connections.

Input Number % 2 5
The second input is the value to be added to each data value.

a. Confirm that the button in the top-left corner of the
Individual Parameter Information section is set to Input.

b. Use the stepper buttons to set Number to “2”.
c. Enter a name for this parameter in the Name field (e.g.,

“value”).
d. Enter a short description in the Description field.
e. Confirm that the Required toggle button is deactivated.
f. Specify a default value, such as “0.”

g. If the default value is meant to be descriptive, activate the
Descriptive toggle button.

h. Under Object Type, activate the simple parameter toggle
button.

i. Now activate the Scalar toggle button (below Type on the
right-hand side).

Output Number % 1 5
Now describe the output of the module.

a. Change Input to Output (top-left corner of the Individual
Parameter Information section). The Number setting changes
to “1” automatically.

b. Enter a name for this parameter in the Name field (e.g.,
“result”).

c. Enter a short description in the Description field.
d. Confirm that the field object toggle button (below Object

Type) is activated.
e. Confirm that Data type and Data Shape are set to float and

Scalar respectively.
f. Confirm that Dependency is set to Positions or connections.

You can now create the necessary files:
a. Click on Build in the dialog box menu bar and select Create All in the

pull-down menu.

 Module Builder

 Chapter 3. Module Builder 21

The Module Builder creates three files for the Add module: Add.c,
Add.mdf, and Add.make.

b. To insert the necessary user-specific code in Add.c, use an editor. Look for
the phrase “User’s code goes here” at the bottom of the file, and type in the
following:

 int i;

 float value;

 if (value_knt==ð)

value = ð;

 else

value = value_data[ð];

for (i=ð; i<data_knt; i++) {

result_data[i] = data_data[i]+value;

 }

First, variables i and value are declared. Next, the default value of ð is
enforced by checking whether a number has been passed as the value
parameter. If value_knt is equal to ð, the user did not pass a number, and
value is set to ð. Otherwise, the passed number is used. Finally, the data
component of the output is modified by adding value to every data item in
the input.

Alternatively, you could have put this information in a separate file and
used the Include File Name option in the Overall Module Description
section.

To create a version of Data Explorer that uses this module, type

make -f Add.make

To run Data Explorer using this module, type

dx -mdf Add.mdf

If you were creating an inboard module instead, the only difference would be in
the command to run Data Explorer:

dx -mdf Add.mdf -exec ./dxexec

3.4 Module Builder: Menu Bar
The pull-down menus of the Module Builder are File, Edit, Build, and Help.

 File Options
New Reinitializes the Module Builder.
Open Opens a specified file (.mb) for modification.
Save Saves the current module specification under the current name

(grayed-out unless a name has been provided with Open or Save
As...).

Save As... Saves the current module specifications under a new name.
Quit Exits the Module Builder.

22 IBM Visualization Data Explorer: Programmer’s Reference

 Edit Options
Comment Specifies a comment to be associated with the module. This

comment will appear in both the resulting C-code and mdf
files.

Options... Specifies one of the following options for a module:
� Pin—Run the module on the same processor each time

the visual program is executed (in a multiprocessor
environment).

� Side_Effect—Run the module every time the visual
program is executed—because the module produces
additional effects (other than its output), such as writing
out a log file.

 Module Builder Build Options
Create MDF Create an mdf file from the current module specifications.
Create C Create a C-code framework file from the current module

specifications.
Create Makefile Create a makefile from the current module specifications.
Create All Create all three files from the current module specifications.
Build Executable Compile and link a version of Data Explorer using this

module.
Build and Run DX Compile, link, and run a version of Data Explorer using this

module.

 Help Options
The Help options for the Module Builder are the same as those for the Image
window and the VPE (as detailed in the User’s Guide). You can access this
information through the Using Help... option of the Help pull-down menu.

3.5 Module Builder: Overall Module Description
Use this section to specify the following information.

Name The name of the module.
Category The name of the tool category to which the module is to be

assigned. This can be the name of an existing category or a
name of your choosing. Click on Existing (at the right of the
text field) for a list of existing categories. If you then click on
one of the categories in the list, the category name is
automatically inserted in the text field.

Description A brief description of the module being defined. It appears in
a Description of... box when the Description... button of
the module’s configuration dialog box is selected.

Number of inputs The number of inputs to the module.
Number of outputs The number of outputs from the module.
Module Type The type of module: inboard, outboard, or runtime-loadable.

Specify the type by activating the appropriate toggle button.
The default is “inboard.”

 Chapter 3. Module Builder 23

Notes:

1. Activating the outboard toggle button makes available
two associated text fields (Executable Name and Outboard
Host) and one toggle button (Persistent):

Executable Name Specifies the name of the module
executable.

Outboard Host Specifies the name of the host
machine on which the outboard
module is to be run. This
parameter defaults to “local host.”

Persistent Specifies that the outboard module
is not be terminated after it
produces output.

For more information on outboard modules, see 10.5,
“Compiling, Linking, and Debugging an Outboard Module”
on page 86.

2. Activating the runtime-loadable toggle button makes
available the Executable Name text field. For more
information, see 10.6, “Compiling, Linking, and
Debugging a Runtime-loadable Module” on page 91.

Executable name See Module Type above.
Outboard Host See Module Type above.
Persistent See Module Type above.
Asynchronous The module may create data asynchronously, in response to

events outside of Data Explorer. See 10.2, “Asynchronous
Modules” on page 84.

Include File Name The name of an include file to be inserted in the worker
routine.

3.6 Module Builder: Individual Parameter Information Section
Use this section to specify the following information about each input and output
parameter.

Input or Output? The kind of parameter: input or output.
Number The ordinal number of the input or output being defined: “1”

(first), “2” (second), and so on.
Name The parameter name, which appears in the module’s

configuration dialog box and is displayed when the tab of the
module stand-in is selected. It may also be used in script
mode and appear in the C-code framework file.

Description A brief description of the parameter being defined. It
appears in a Description of... box when the
Description... button of the module’s configuration dialog
box is selected.

Required Specification that the parameter must be set, because no
default value is possible. This option is grayed-out for output
parameters.

Default value The default value of the parameter. It appears in the module
configuration dialog box and is included in the C-code
framework file as a comment.

24 IBM Visualization Data Explorer: Programmer’s Reference

Note: Implementing the default value is the module writer’s
responsibility.

Descriptive Specifies whether the default value is an actual value or a
descriptive phrase (e.g., “center of object”).

Object Type This parameter allows the user to specify a Field Object or a
simple parameter. Each specification has an associated set
of options that are enabled when the appropriate toggle
button is activated.

Field Parameter Options

Data type The type of the data associated with the
parameter (click on the associated button to
display a list of valid types). This
information is used in the C-code framework
file to check for errors before the user’s
routine is called.

Data Shape The “shape” of the data associated with the
parameter (e.g., scalar). This information is
used in the C-code framework file to check
for errors before the user’s routine is called.

Positions One of the following options controlling
information about the positions component
of the first input parameter:

� Not required—No positions information
is passed.

� Regular—a compact representation of
the positions is passed.

� Irregular—An explicit Array of positions
is passed.

This option is grayed-out for all but the first
input argument.

Connections One of the following options controlling
information about the connections
component of the first input parameter:

 � Not required—No connections
information is passed.

� Regular—a compact representation of
the connections is passed.

� Irregular—An explicit Array of
connections is passed.

This option is grayed-out for all but the first
input argument.

Element type The type of connection element expected by
the module: lines, quads, cubes, triangles,
or tetrahedra. The specification is checked
against the connection type of the first input
argument before the user’s routine is called.

This option is grayed-out unless the
connections component is passed in by the
Connections option.

 Module Builder

 Chapter 3. Module Builder 25

Dependency The dependency of the data component of
the input. The specification is checked
against the dependency of the input Fields.

Simple Parameter Options

This set of options is enabled and displayed only when the
simple parameter toggle button is activated (see above).

Type The type of the parameter, as specified by
activating one of 10 toggle buttons.

Vector Length The length of the vector (given that the
parameter type is a vector).

 3.7 Worker Routine
At the end of the C-code framework file created by the Data Explorer Module
Builder is a “worker routine” that serves as an interface to the user’s application
code. The entry point to this routine (i.e., its name) consists of the module name
affixed to “_worker” (e.g., the name of the worker routine for the X module is
X_worker).

The Module Builder prepares a parameter list for the worker routine that contains
information from the module input parameters, along with pointers to memory for
module results. Three examples appear in “Worker Routine Examples” on
page 28. In each example, the Module Builder creates a module with two inputs
(the first a Field/Group, and the second a Value) and one output (a Field/Group
Object).

 Positions Specification
If the worker routine needs information about the positions component of the first
input parameter, it will use one of two sets of arguments to define that information,
depending on whether the request is for regular or irregular positions:

Regular positions arguments:

int p_knt Total number of positions

int p_dim Dimensionality of positions

int \p_counts Count of positions along each dimension

float \p_origin Origin of regular grid

float \p_deltas Delta vectors, p_dim x p_dim

Irregular positions arguments:

int p_knt Total number of positions

int p_dim Dimensionality of positions

float \p_positions Explicit list of positions

 Connections Specification
If the worker routine needs information about the connections component of the first
input parameter, it will use one of two sets of arguments for defining that
information, depending on whether the request is for regular or irregular positions:

26 IBM Visualization Data Explorer: Programmer’s Reference

Regular connections arguments:

int c_knt Total number of connections elements

int c_nv Number of vertices per element

int \c_counts Count of vertices along each dimension

Irregular connections arguments:

int c_knt Total number of connections elements

int c_nv Number of vertices per element

int \c_connections Explicit list of connections elements

 Module Builder

 Input Data
For each input to the module, a count value and a pointer are sent to the worker
routine. These arguments are named by appending _knt and _data respectively to
the parameter name given in the Individual Parameter Information section of the
Module Builder interface. Thus, for an input parameter named param1, the worker
routine would add the following to its argument list:

int param1_knt The number of elements in the parameter.

type \param1_data A pointer to the data associated with the parameter.

The pointer type is that specified in the Data type

field of the Individual Parameter
Information section of the

 Module Builder.

For a Field/Group input, these arguments reflect the contents of the “data”
component of the leaf. For a Value input (which must be a Data Explorer Array),
they reflect the contents of the parameter. Because the parameters are inputs to
the module, the arguments are read-only.

 Output Data
For each output of the module, a counts value and a pointer are sent to the worker
routine. These arguments are named by appending _knt and _data respectively to
the parameter name given in the Individual Parameter Information section of the
Module Builder dialog box. Thus, for an input parameter named param2, the worker
routine would add the following to its argument list:

int param2_knt The number of elements in the parameter.

type \param2_data A pointer to the data associated with the parameter.

The pointer type is that specified in the Data type

field of the Individual Parameter
Information section of the

 Module Builder.

For a Field/Group output, these arguments reflect the contents of the “data”
component of the leaf (if the leaf is a Data Explorer Field) or of the array itself (if
the leaf is a Data Explorer Array). For a Value input (which must be a Data
Explorer Array), they reflect the contents of the parameter. The memory associated
with these parameters is not initialized.

 Chapter 3. Module Builder 27

Implementing Default Input Parameters
If an input parameter is not provided, the corresponding counts argument of the
worker routine for that parameter is zero (0). Implementing the default for the input
parameter is the function of the worker routine.

Worker Routine Examples

Figure 5. Worker Routine: Example1_worker. This routine requests no positions or
connections.

int

Example1_worker(

int inputObject_knt, float \inputObject_data,

int inputArgument_knt, float \inputArgument_data,

int outputObject_knt, float \outputObject_data)

{

 /\

\ The arguments to this routine are:

 \

\ The following are inputs and therefore read-only. The default

\ values are given and should be used if knt is ð.

 \

\ inputObject_knt, inputObject_data: count and pointer for input "inputObject"

\ no default value given.

\ inputArgument_knt, inputArgument_data: count and pointer for input "inputArgument"

\ nondescriptive default value is "1.ð"

 \

 \ The following are outputs and therefore writable.

 \

\ outputObject_knt, outputObject_data: count and pointer for output "outputObject"

 \/

 /\

\ User’s code goes here.

 \/

}

Figure 6. Worker Routine. Example2_worker. This routine requests regular positions and
connections.

int

Example2_worker(

 int p_knt, int p_dim, int \p_counts, float \p_origin, float \p_deltas,

 int c_knt, int c_nv, int \c_counts,

 int inputObject_knt, float \inputObject_data,

 int inputArgument_knt, float \inputArgument_data,

 int outputObject_knt, float \outputObject_data)

28 IBM Visualization Data Explorer: Programmer’s Reference

{

 /\

\ The arguments to this routine are:

 \

 \ p_knt: total count of input positions

 \ p_dim: dimensionality of input positions

 \ p_counts: count along each axis of regular positions grid

 \ p_origin: origin of regular positions grid

 \ p_deltas: regular positions delta vectors

 \ c_knt: total count of input connections elements

 \ c_nv: number of vertices per element

 \ c_counts: vertex count along each axis of regular positions grid

 \

\ The following are inputs and therefore read-only. The default

\ values are given and should be used if knt is ð.

 \

\ inputObject_knt, inputObject_data: count and pointer for input "inputObject"

\ no default value given.

\ inputArgument_knt, inputArgument_data: count and pointer for input "inputArgument"

\ nondescriptive default value is "1.ð"

 \

 \ The following are outputs and therefore writable.

 \

\ outputObject_knt, outputObject_data: count and pointer for output "outputObject"

 \/

 /\

\ User’s code goes here.

 \/

}

 Module Builder

Figure 7. Worker Routine. Example3_worker. This routine requests irregular positions and
connections.

int

Example3_worker(

 int p_knt, int p_dim, float \p_positions,

 int c_knt, int c_nv, int \c_connections,

 int inputObject_knt, float \inputObject_data,

 int inputArgument_knt, float \inputArgument_data,

 int outputObject_knt, float \outputObject_data)

 Chapter 3. Module Builder 29

{

 /\

\ The arguments to this routine are:

 \

 \ p_knt: total count of input positions

 \ p_dim: dimensionality of input positions

 \ p_positions: pointer to positions list

 \ c_knt: total count of input connections elements

 \ c_nv: number of vertices per element

 \ c_connections: pointer to connections list

 \

\ The following are inputs and therefore read-only. The default

\ values are given and should be used if knt is ð.

 \

\ inputObject_knt, inputObject_data: count and pointer for input "inputObject"

\ no default value given

\ inputArgument_knt, inputArgument_data: count and pointer for input "inputArgument"

\ nondescriptive default value is "1.ð"

 \

 \ The following are outputs and therefore writable.

 \

\ outputObject_knt, outputObject_data: count and pointer for output "outputObject"

 \/

 /\

\ User’s code goes here.

 \/

}

30 IBM Visualization Data Explorer: Programmer’s Reference

Chapter 4. Working with Data

4.1 Add Module Example—Add a Number to Every Data Value 32
4.2 Add2 Module Example—Add Two Data Fields 33
4.3 Add2Invalid Module Example—Manipulate Invalid Data 34

 Data

 Copyright IBM Corp. 1991-1997 31

For modules that manipulate the data component of an Object, positions and
connections are often irrelevant. The Statistics module, for example, computes the
mean of a data Field regardless of whether the connections are quads or cubes. In
fact, it is unnecessary for the Statistics module to examine or access the
connections component at all.

The Module Builder is well suited to creating such modules.

4.1 Add Module Example—Add a Number to Every Data Value
The Add module adds a number to every data value in a Field.

Note: This example is for illustration rather than “practice,” since its function is
already provided by Compute (see “Compute” on page 86 in IBM
Visualization Data Explorer User’s Reference).

The Add module takes two inputs: the first, data, is of type field and has no
default value; the second, addend, is of type scalar, and has a default value of
zero (0).

The Add module has one output: result, of type field.

(1) Start the Module Builder with the command:

 dx -builder

The Module Builder dialog box appears. Note that the dialog box carries no
information, since no module has been specified. (For a simple example of
creating a module with the Module Builder, see 3.3, “Using the Module Builder: A
Quick Walk Through” on page 20)

(2) Select Open from the File pull-down menu. An Open a Module Builder
file... dialog box appears.

(3) Read in /usr/lpp/dx/samples/program_guide/add.mb as follows:

� Type the full path name in the Filter field of the dialog box.
� Click on (in sequence):

– the Filter button
– the name of the file in the Files field
– the OK button.

Information describing the inputs and output of the module (extracted from the
add.mb file) appears in the Module Builder dialog box. (Of course, if you were
creating this module from scratch, you would fill in the information yourself.)

(4) Save the .mb file to a writable directory (use Save As... in the File pull-down
menu).

(5) Select Create All from the Build pull-down menu of the dialog box. This
option creates three files for the module: add.c, add.mdf, and add.make.

(6) Implement the Add function .

Use an editor to add the following lines after “User’s code goes here,” near the end
of the add.c file:

32 IBM Visualization Data Explorer: Programmer’s Reference

 int i;

 float value;

/\ first implement the default for addend of ð \/

if (addend_knt == ð)

value = ð;

 else

value = \addend_data;

/\ add addend to each value in the data field \/

for (i=ð; i < result_knt; i++) {

result_data[i] = data_data[i] + value;

 }

 return 1;

The file /usr/lpp/dx/samples/program_guide/add.c contains a completed version
of this program.

(7) To create a version of Data Explorer that includes the Add module, enter the
command:

make -f add.make dxexec

(You have now created an executable that contains the Add module.)

(8) To invoke this version, enter:

dx -mdf ./add.mdf -exec ./dxexec

This command starts Data Explorer (the add.mdf file tells the graphical user
interface about Add and its inputs and outputs). The executable dxexec invoked
here is the one created in Step 6.

(9) With this version of Data Explorer you can now run any visual program that
uses the Add module. One such program is
/usr/lpp/dx/samples/program_guide/add.net

 Data

4.2 Add2 Module Example—Add Two Data Fields
This module adds together the data components of two input Fields. Thus, one of
its functions is to ensure that the hierarchies of the two input Objects match
one-to-one.

The Add2 module takes two inputs: field1 and field2. Each is of type field and
has no default value.

The Add2 module has one output, result, of type field.

Repeat Steps (1) through (5) of the first example (see 4.1, “Add Module
Example—Add a Number to Every Data Value” on page 32), using the file name
“add2” instead of “add.” Step (5) will produce files add2.c, add2.mdf, and
add2.make.

(6) Implement the Add2 function. Use an editor to add the following lines after
“User’s code goes here,” near the end of the add2.c file:

 Chapter 4. Working with Data 33

 int i;

/\ first check that the lengths of the data buffers match \/

if (field1_knt != field2_knt) {

DXSetError(ERROR_INVALID_DATA,"data components do not match");

 return ð;

 }

for (i=ð; i < field1_knt; i++)

result_data[i] = field1_data[i] + field2_data[i];

 return 1;

}

The file /usr/lpp/dx/samples/program_guide/add2.c contains a completed version
of this program.

(7) To create a version of Data Explorer that includes the Add2 module, enter
the command:

make -f add2.make dxexec

(You have now created an executable that contains the Add2 module.)

(8) To invoke this version, enter:

dx -mdf ./add2.mdf -exec ./dxexec

This command starts Data Explorer (the add2.mdf file tells the graphical user
interface about Add2 and its inputs and outputs). The executable dxexec invoked
here is the one created in Step 6.

(9) With this version of Data Explorer you can now run any visual program that
uses the Add2 module. One such program is
/usr/lpp/dx/samples/program_guide/add2.net

4.3 Add2Invalid Module Example—Manipulate Invalid Data
The Data Explorer data model makes it possible to identify invalid input (position
and connections elements) and mark the resulting output as “invalid.” (see 13.3,
“Invalid Data” on page 133). Invalid elements (and the data associated with them)
are ignored by Data Explorer modules.

In the example given here, the Add2Invalid module processes two input data
components. If either of the two data values is invalid, the resulting sum is treated
as invalid. The routines that support this function check for matching data types,
matching dependencies, missing Fields, and so on.

Repeat Steps (1) through (5) of the first example (see 4.1, “Add Module
Example—Add a Number to Every Data Value” on page 32), using the file name
“add2invalid” instead of “add.” Step (5) will produce files add2invalid.c,
add2invalid.mdf, and add2invalid.make.

(6) Implement the Add2Invalid function. Because this module uses routines for
handling invalid data, the necessary modifications of the .c file are more extensive
than those required for the preceding examples.

34 IBM Visualization Data Explorer: Programmer’s Reference

As written, the add2_invalid.c file passes only the data component to the
lowest-level routine (Add2Invalid_worker); it does not pass information about the
data’s validity. The solution is to modify the doLeaf routine, rather than the worker
routine. The doLeaf routine has access to all the components of an input or output
Field and not to just the data component.

In the routine doLeaf, starting at the comment “Call the user’s routine. Check the
return code.” insert the following:

/\ create invalid component handles for each input field \/

inv_handle1 = DXCreateInvalidComponentHandle(in[ð], NULL,

 src_dependency);

inv_handle2 = DXCreateInvalidComponentHandle(in[1], NULL,

 src_dependency);

/\ the loop that actually adds the data components.

\ if either of the two input data values is invalid, then the

\ output is marked invalid, and set to the value ð

 \/

out_ptr = (float \)out_data[ð];

in1_ptr = (float \)in_data[ð];

in2_ptr = (float \)in_data[1];

for (i=ð; i<out_knt[ð]; i++) {

if (DXIsElementValid(inv_handle1, i) &&

DXIsElementValid(inv_handle2, i)) {

\out_ptr = \in1_ptr + \in2_ptr;

 }

 else {

\out_ptr = ð.ð;

 DXSetElementInvalid(inv_handle1, i);

 }

 out_ptr++;

 in1_ptr++;

 in2_ptr++;

 }

/\ the invalid-component-handle information is added to the output field \/

if (!DXSaveInvalidComponent((Field)out[ð], inv_handle1))

 goto error;

 DXFreeInvalidComponentHandle(inv_handle1);

 DXFreeInvalidComponentHandle(inv_handle2);

 return OK;

error:

 return ERROR;

(7) Remove the call to Add2Invalid_worker: it is not needed. All of the data
processing code has been added to doLeaf.

(8) Insert the following declarations at the top of the routine doLeaf:

InvalidComponentHandle inv_handle1, inv_handle2;

float \out_ptr, \in1_ptr, \in2_ptr;

The file /usr/lpp/dx/samples/program_guide/add2invalid.c contains a completed
version of this program.

 Data

 Chapter 4. Working with Data 35

(9) To create a version of Data Explorer that includes the Add2Invalid module,
enter the command:

make -f add2invalid.make dxexec

(You have now created an executable that contains the Add2Invalid module.)

(10) To invoke this version, enter:

dx -mdf ./add2invalid.mdf -exec ./dxexec

This command starts Data Explorer (the add2invalid.mdf file tells the graphical
user interface about Add2Invalid and its inputs and outputs). The executable
dxexec invoked here is the one created in Step 8.

(11) With this version of Data Explorer you can now run any visual program that
uses the Add2Invalid module. One such program is
/usr/lpp/dx/samples/program_guide/add2_invalid.net

36 IBM Visualization Data Explorer: Programmer’s Reference

Chapter 5. Working with Positions

5.1 MakeX Module Example—Create New Positions 38
5.2 MakeXEfficient Module Example—Create New Positions 41

 Positions

 Copyright IBM Corp. 1991-1997 37

The following examples illustrate the manipulation of the “positions” component of a
data Field. In these examples it is not necessary to access the “data” component:
the data value at a particular position has no effect on the output of the module.
This example conforms to the general principle, that the only components of a Field
that need to be accessed are those required for the module’s function.

5.1 MakeX Module Example—Create New Positions
The MakeX module places an “x” at every position in an input Field. MakeX differs
from the Add module (see 4.1, “Add Module Example—Add a Number to Every
Data Value” on page 32) in that, instead of simply modifying a component of the
input Field, it creates new positions and connections components.

The MakeX module takes two inputs: the first, data, is of type field and has no
default value; the second, size, is of type float, and has a default value of 1.

The MakeX module has one output: result, of type field.

(1) Start the Module Builder with the command:

 dx -builder

The Module Builder dialog box appears. Note that the dialog box carries no
information, since no module has been specified. (For a simple example of
creating a module with the Module Builder, see 3.3, “Using the Module Builder: A
Quick Walk Through” on page 20)

(2) Select Open from the File pull-down menu. An Open a Module Builder
file... dialog box appears.

(3) Read in /usr/lpp/dx/samples/program_guide/makex.mb as follows:

� Type the full path name in the Filter field of the dialog box.
� Click on (in sequence):

– the Filter button
– the name of the file in the Files field
– the OK button.

Information describing the inputs and output of the module (extracted from the
makex.mb file) appears in the Module Builder dialog box.

(4) Save the .mb file to a writable directory (use Save As... in the File pull-down
menu).

(5) Select Create All from the Build pull-down menu of the dialog box. This option
creates three files for the module: makex.make, makex.c, and makex.mdf.

(6) Implement the MakeX function. As in the example of Add2Invalid (see 4.3,
“Add2Invalid Module Example—Manipulate Invalid Data” on page 34), the MakeX
module needs access to the input Object at a higher level than that provided by the
MakeX_worker routine. Consequently, the addition of new user code includes a
modification of the routine doLeaf as well.

Use an editor to add the following lines (after extracting the positions Array with
DXGetArrayData):

38 IBM Visualization Data Explorer: Programmer’s Reference

. . .

p_position = (float \)DXGetArrayData(array);

if (! positions)

 goto error;

 }

/\ New User code starts here \/

/\

 \ Make the new positions array for the output. The positions are

 \ 3-dimensional.

 \/

positions = DXNewArray(TYPE_FLOAT, CATEGORY_REAL, 1, 3);

if (! positions)

 goto error;

/\

 \ Check that the input positions are 3-dimensional:

 \/

if (p_dim != 3) {

DXSetError(ERROR_INVALID_DATA,"input positions must be 3-dimensional");

 goto error;

 }

/\

 \ Allocate space to the new positions array. Four positions are needed

 \ for every input position (the four points making up the "x").

 \/

if (! DXAddArrayData(positions, ð, 4\p_knt, NULL))

 goto error;

/\ Get a pointer to the output positions. \/

out_pos_ptr = (Point \)DXGetArrayData(positions);

/\ Make a connections component for the output. The connections are

 \ 2-dimensional (lines).

 \/

connections = DXNewArray(TYPE_INT, CATEGORY_REAL, 1, 2);

/\ Allocate space to the new connections array. There are two lines for

 \ each input position.

 \/

if (! DXAddArrayData(connections, ð, 2\p_knt, NULL))

 goto error;

DXSetAttribute((Object)connections, "element type",

 (Object)DXNewString("lines"));

/\ Get a pointer to the new connections. \/

conn_ptr = (Line \)DXGetArrayData(connections);

/\ Get the size of the "x" \/

 DXExtractFloat(in[1], &size);

 Positions

 Chapter 5. Working with Positions 39

/\ Now "draw" the x's \/

for (i=ð; i< p_knt; i++) {

inpoint = DXPt(p_positions[3\i], p_positions[3\i+1], p_positions[3\i+2]);

out_pos_ptr[4\i] = DXPt(inpoint.x - size, inpoint.y, inpoint.z);

out_pos_ptr[4\i+1] = DXPt(inpoint.x + size, inpoint.y, inpoint.z);

out_pos_ptr[4\i+2] = DXPt(inpoint.x, inpoint.y - size, inpoint.z);

out_pos_ptr[4\i+3] = DXPt(inpoint.x, inpoint.y + size, inpoint.z);

conn_ptr[2\i] = DXLn(4\i, 4\i+1);

conn_ptr[2\i+1] = DXLn(4\i+2, 4\i+3);

 }

/\ Clean up; we're about to significantly modify the positions and connections

 \/

 DXChangedComponentStructure((Field)out[ð],"positions");

 DXChangedComponentStructure((Field)out[ð],"connections");

/\ Now place the new positions and connections in the output field \/

DXSetComponentValue((Field)out[ð], "positions", (Object)positions);

positions = NULL;

DXSetComponentValue((Field)out[ð], "connections", (Object)connections);

connections = NULL;

/\ Finalize the field \/

 DXEndField((Field)out[ð]);

/\ return \/

 return OK;

error:

 DXDelete((Object)positions);

 DXDelete((Object)connections);

 return ERROR;

(7) Remove the call to MakeX_worker: it is not needed. All of the data
processing code has been added to doLeaf (Step 5).

(8) Insert the following declarations after the first block of code in the doLeaf
routine:

/\ User added declarations \/

Point \out_pos_ptr, inpoint;

Array connections=NULL, positions=NULL;

 Line \conn_ptr;

 float size;

The file /usr/lpp/dx/samples/program_guide/makex.c contains a completed version
of this program.

(9) To create a version of Data Explorer that includes the MakeX module, enter
the command:

make -f makex.make dxexec

(You have now created an executable that contains the MakeX module.)

(10) To invoke this version, enter:

dx -mdf ./makex.mdf -exec ./dxexec

40 IBM Visualization Data Explorer: Programmer’s Reference

This command starts Data Explorer (the makex.mdf file tells the graphical user
interface about MakeX and its inputs and outputs). The executable dxexec invoked
here is the one created in Step 8.

(11) With this version of Data Explorer you can now run any visual program that
uses the MakeX module. One such program is
/usr/lpp/dx/samples/program_guide/makex.net

5.2 MakeXEfficient Module Example—Create New Positions
The preceding example module, MakeX, manipulates regular (compactly encoded)
positions less efficiently than it might. Note that the first call to DXGetArrayData in
the file makex.c expands the compact coding of regular positions. MakeXEfficient
eliminates this expansion.

MakeXEfficient has the same two inputs as MakeX: data, is of type field and has
no default value; addend, is of type size, and has a default value of 1.

MakeXEfficient has the same output as MakeX: result is of type field.

Repeat Steps (1) through (5) of the preceding example (see 5.1, “MakeX Module
Example—Create New Positions” on page 38), using the file name “makexeff” in
place of “makex.” Step (5) will produce files makexeff.c, makexeff.mdf, and
makexeff.make.

(6) Implement the MakeXEfficient function . MakeXEfficient uses Array-handling
routines like those described in “Array Handling” on page 102. But the main
differences from MakeX are a handle for manipulating the input-positions Array, and
a scratch buffer to hold the coordinates of a single position (three floating-point
numbers in this example). Note that there is no call to DXGetArrayData for a
pointer to the input-positions Array, thereby avoiding inefficiencies by not expanding
regular positions.

Edit the makexeff.c file and replace the line

p_positions = (float\) DXGetArrayData(array)

with the following:

if (!(handle = DXCreateArrayHandle(array)))

 goto error;

scratch = DXAllocate(3\sizeof(float));

 if (!scratch)

 goto error;

Another necessary code change is one inside the loop labeled “Now "draw" the
x’s” in the .c file—a call to the DXIterateArray routine to access the current
position. Add the following pair of lines after the comment in the loop:

in_ptr = (float \)DXIterateArray(handle, i, in_ptr, scratch);

inpoint = DXPt(in_ptr[ð], in_ptr[1], in_ptr[2]);

Of course, the handle and the scratch buffer have to be freed at some point. Add
the following lines before the MakeXEfficient_worker code near the end of the file:

 Positions

 Chapter 5. Working with Positions 41

/\ Delete scratch and handle \/

 DXFree((Pointer)scratch);

 DXFreeArrayHandle(handle);

/\ return \/

 return OK;

error:

/\ Delete scratch and handle \/

 DXFree((Pointer)scratch);

 DXFreeArrayHandle(handle);

 return ERROR;

Add the following lines after the first block of code in the doLeaf routine:

/\ User-added declarations \/

float \scratch, \in_ptr, size;

Point inpoint, \out_pos_ptr;

 ArrayHandle handle;

 Array connections;

 Line \conn_ptr;

The file /usr/lpp/dx/samples/program_guide/makexeff.c contains a completed
version of this program.

(7) To create a version of Data Explorer that includes the MakeXEfficient
module, enter the command:

make -f makexeff.make dxexec

(You have now created an executable that contains the MakeX module.)

(8) To invoke this version, enter:

dx -mdf ./makexeff.mdf -exec ./dxexec

This command starts Data Explorer (the makexeff.mdf file tells the graphical user
interface about MakeX and its inputs and outputs). The executable dxexec invoked
here is the one created in Step 6.

(9) With this version of Data Explorer you can now run any visual program that
uses the MakeXEfficient module. One such program is
/usr/lpp/dx/samples/program_guide/makex_efficient.net

42 IBM Visualization Data Explorer: Programmer’s Reference

Chapter 6. Working with Connections

6.1 AverageCell Module Example—Average the Data Values of All Neighbors 44

 Connections

 Copyright IBM Corp. 1991-1997 43

The module in this example manipulates both the data and the connections
components of an input Field (the modules in Chapter 4, “Working with Data” on
page 31 and Chapter 5, “Working with Positions” on page 37, did not require a
connections component). Modules that perform interpolation need information about
the interpolation elements (connections). For example, the Isosurface module uses
different interpolation methods according to the type of connection.

6.1 AverageCell Module Example—Average the Data Values of All
Neighbors

The AverageCell module computes, for each cell, the average of the data values of
that cell and all its neighbors.

Note: This module works only on data that is cell-centered (i.e.,
connection-dependent) and has connections of type “quads.”

The AverageCell module takes one input: input, of type field, which has no
default value. The module has one output: output, of type field.

(1) Start the Module Builder with the command:

 dx -builder

The Module Builder dialog box appears. Note that the dialog box carries no
information, since no module has been specified. (For a simple example of
creating a module with the Module Builder, see 3.3, “Using the Module Builder: A
Quick Walk Through” on page 20).

(2) Select Open from the File pull-down menu. An Open a Module Builder file...
dialog box appears.

(3) Read in /usr/lpp/dx/samples/program_guide/averagecell.mb as follows:

� Type the full path name in the Filter field of the dialog box.
� Click on (in sequence):

– the Filter button
– the name of the file in the Files field
– the OK button.

Information describing the inputs and output of the module (extracted from the
averagecell.mb file) appears in the Module Builder dialog box.

(4) Save the .mb file to a writable directory (use Save As... in the File pull-down
menu).

(5) Select Create All from the Build pull-down menu of the dialog box. This
option creates three files for the module: averagecell.c, averagecell.mdf, and
averagecell.make,

(6) Implement the AverageCell function .

Use an editor to add the following lines after “User’s code goes here” in the
averagecell.c file:

44 IBM Visualization Data Explorer: Programmer’s Reference

int \itemcounts = NULL, i, neighbor;

/\ make scratch space to hold the number of items added for each element \/

itemcounts = DXAllocate(input_knt\sizeof(int));

 if (!itemcounts)

 goto error;

 /\

\ first initialize the output data component to zero, and itemcounts to

 \ zero.

 \/

for (i=ð; i<input_knt; i++) {

output_data[i] = ð;

 itemcounts[i]=ð;

 }

/\ for each data value, add that value to the appropriate items in the

\ output data array. Also increment itemcounts for those cells.

 \/

for (i=ð; i<input_knt; i++) {

/\ first do itself \/

 output_data[i]+=input_data[i];

 itemcounts[i]++;

/\ now do neighbors in fastest-varying dimension \/

neighbor = i-1;

if (neighbor >= ð && ((i % (c_counts[1]-1)) != ð)) {

 output_data[neighbor]+=input_data[i];

 itemcounts[neighbor]++;

 }

neighbor = i+1;

if (neighbor < input_knt &&(((i+1)%(c_counts[1]-1)) != ð)) {

 output_data[neighbor]+=input_data[i];

 itemcounts[neighbor]++;

 }

/\ now do neighbors in the slowest-varying dimension \/

neighbor = i - (c_counts[1]-1);

if (neighbor >= ð) {

 output_data[neighbor]+=input_data[i];

 itemcounts[neighbor]++;

 }

neighbor = i + (c_counts[1]-1);

if (neighbor < input_knt) {

 output_data[neighbor]+=input_data[i];

 itemcounts[neighbor]++;

 }

 }

 Connections

 Chapter 6. Working with Connections 45

/\ now divide by the number of items added for that cell \/

for (i=ð; i< input_knt; i++)

output_data[i] = output_data[i]/itemcounts[i];

 DXFree((Pointer)itemcounts);

 return OK;

error:

 DXFree((Pointer)itemcounts);

 return ERROR;

}

The file /usr/lpp/dx/samples/program_guide/averagecell.c contains a completed
version of this program.

(7) To create a version of Data Explorer that includes the AverageCell module,
enter the command:

make -f averagecell.make dxexec

(You have now created an executable that contains the AverageCell module.)

(8) To invoke this version, enter:

dx -mdf ./averagecell.mdf -exec ./dxexec

This command starts Data Explorer (the averagecell.mdf file tells the graphical
user interface about AverageCell and its inputs and outputs). The executable
dxexec invoked here is the one created in Step 6.

(9) With this version of Data Explorer you can now run any visual program that
uses the AverageCell module. One such program is
/usr/lpp/dx/samples/program_guide/averagecell.net

46 IBM Visualization Data Explorer: Programmer’s Reference

 Chapter 7. Importing Data

7.1 Writing a Filter . 48
7.2 Writing an Import Module . 51

 Importing

 Copyright IBM Corp. 1991-1997 47

If you want to import data that is not in a format supported by Data Explorer, you
have three options:

� Write an import filter to convert the data to Data Explorer or General Array
importer format on disk.

� Write an import filter to convert the data to Data Explorer or General Array
header format on standard output, and use the external filter option of Import to
import the data. (See “Import” on page 165 in IBM Visualization Data Explorer
User’s Reference.)

� Write your own import module to read the data and create a Data Explorer
Object as its output (e.g., a Field Object).

Notes:

1. The following examples illustrate the conversion of data from Hierarchical Data
Format (HDF) to Data Explorer file format. Understanding the examples does
not require any familiarity with HDF.

2. HDF libraries are not distributed with Data Explorer and no makefiles are
provided for the programs used. If you have the HDF libraries, you can use the
same compilation and linking procedures as you do for other programs
requiring those libraries.

3. The Import module will import HDF data. The example in 7.2, “Writing an
Import Module” on page 51 is for illustration only.

7.1 Writing a Filter
The filters used to create a Data Explorer format file on disk and on standard
output are essentially the same.

Assume a single data set of scalar data stored in an HDF file. All HDF files are
gridded. The dimensionality and size of the grid are to be determined from queries
to the data set.

The following C program requires the HDF file name as an argument. It is found in
/usr/lpp/dx/samples/program_guide/simpleimportfilter.c .

ð1

ð2

ð3 #include <stdio.h>

df.h is a necessary include file for HDF library routines.

ð4 #include <df.h>

ð5

ð6 #define MAXRANK 3

ð7

ð8 main(argc, argv)

ð9 char \argv[];

1ð {

11 FILE \in;

12 char filename[8ð];

13 int dims, counts[MAXRANK], numelements, i, j;

14 float deltas[MAXRANK\MAXRANK], origins[MAXRANK], \databuf=NULL;

15

Check that the user has supplied the name of the file to be opened.

48 IBM Visualization Data Explorer: Programmer’s Reference

16 if (argc < 2) {

17 fprintf(stderr,"Usage: simpleimportfilter <filename> \n");

18 return ð;

19 }

2ð

21 strcpy(filename, argv[1]);

22 }

The HDF library routine DFishdf checks the file for accessibility and for the correct
(HDF) format. If the file is not accessible or is not an HDF file, the routine
generates an error message.

23 if (DFishdf(filename) != ð) {

24 fprintf(stderr,

25 "file \"%s\" is not accessible, or is not an hdf file\n",

26 filename);

27 return ð;

28 }

Initialize the HDF library.

29 DFSDrestart();

The HDF library routine DFSDgetdims returns the dimensionality of the grid (1D, 2D,
etc.) in dims. The number of positions in each dimension is returned in the Array
counts.

3ð DFSDgetdims(filename, &dims, counts, MAXRANK);

Determine the number of elements in the data Array.

31 numelements=1;

32 for (i=ð; i<dims; i++) {

33 numelements= numelements \ counts[i];

34 }

Create a buffer for the data.

35 databuf = (float \)malloc(numelements\sizeof(float));

36 if (!databuf) {

37 fprintf(stderr,"out of memory\n");

38 return ð;

39 }

The HDF library routine DFSDgetdata reads the data from the HDF file to the data
Array.

4ð DFSDgetdata(filename, dims, counts, databuf);

Write the Data Explorer file format description of the data Array on standard output.

41 printf("object 1 class array type float rank ð items %d data follows\n",

42 numelements);

43 for (i=ð; i<numelements; i++)

44 printf(" %f\n ", databuf[i]);

Set the dependency of the data to “positions.”

45 printf("attribute \"dep\" string \"positions\"\n ");

Now create the position origin and deltas (origin 0 and deltas 1 in each dimension).

 Importing

 Chapter 7. Importing Data 49

46 for (i=ð; i<dims; i++) {

47 origins[i] = ð.ð;

48 for (j=ð; j<dims; j++) {

49 if (i==j)

5ð deltas[i\dims + j] = 1.ð;

51 else

52 deltas[i\dims + j] = ð.ð;

53 }

54 }

Write out the connections and positions.

55 switch (dims) {

56 case (1):

57 printf("object 2 class gridconnections counts %d\n", counts[ð]);

58 printf("object 3 class gridpositions counts %d\n", counts[ð]);

59 printf(" origin %f\n", origins[ð]);

6ð printf(" delta %f\n", deltas[ð]);

61 break;

62 case (2):

63 printf("object 2 class gridconnections counts %d %d\n",

64 counts[ð], counts[1]);

65 printf("object 3 class gridpositions counts %d %d\n",

66 counts[ð], counts[1]);

67 printf(" origin %f %f\n", origins[ð], origins[1]);

68 printf(" delta %f %f\n", deltas[ð], deltas[1]);

69 printf(" delta %f %f\n", deltas[2], deltas[3]);

7ð break;

71 case (3):

72 printf("object 2 class gridconnections counts %d %d %d\n",

73 counts[ð], counts[1], counts[2]);

74 printf("object 3 class gridpositions counts %d %d %d\n",

75 counts[ð], counts[1], counts[2]);

76 printf(" origin %f %f %f\n", origins[ð], origins[1], origins[2]);

77 printf(" delta %f %f %f\n", deltas[ð], deltas[1], deltas[2]);

78 printf(" delta %f %f %f\n", deltas[3], deltas[4], deltas[5]);

79 printf(" delta %f %f %f\n", deltas[6], deltas[7], deltas[8]);

8ð break;

81 default:

82 printf(stderr,"dimensionality must be 1D, 2D, or 3D");

83 return ð;

84 }

Write out the description of the Field.

85 printf("object 4 class field\n");

86 printf(" component \"data\" value 1\n");

87 printf(" component \"connections\" value 2\n");

88 printf(" component \"positions\" value 3\n");

89

9ð return 1;

91

50 IBM Visualization Data Explorer: Programmer’s Reference

7.2 Writing an Import Module
Any external filter, like the one just illustrated, has the disadvantage of running
more slowly than an import module because it sends the data to a file or through a
socket. A built-in module reads the data into memory, where Data Explorer uses it
directly. In this example, the import module SimpleImport reads the same HDF file
as the external filter did.

Note: Because the import module is very simple and does not require the
traversal of input Fields, the Module Builder is not used in this example. (This C
program is also found in
/usr/lpp/dx/samples/program_guide/simpleimportfilter.c

ð1 #include <dx/dx.h>

 df.h is a necessary include file for HDF library routines.

ð2 #include <df.h>

ð3

ð4 #define MAXRANK 3

ð5

ð6 Error m_SimpleImport(Object \in, Object \out)

ð7 {

ð8 Array a=NULL;

ð9 Field f=NULL;

1ð char \filename;

11 int dims, counts[MAXRANK], numelements, i, j;

12 float deltas[MAXRANK\MAXRANK], origins[MAXRANK], \data;

Extract the file name from in[ð], and check that it is a string.

13 if (!in[ð]) {

14 DXSetError(ERROR_BAD_PARAMETER,"missing filename");

15 goto error;

16 }

17 else if (!DXExtractString(in[ð], &filename)) {

18 DXSetError(ERROR_BAD_PARAMETER, "filename must be a string");

19 goto error;

2ð }

The HDF library routine DFishdf checks the file for accessibility and for the correct
(HDF) format. If the file is not accessible or is not an HDF file, the routine
generates an error message.

21 if (DFishdf(filename) != ð) {

22 DXSetError(ERROR_BAD_PARAMETER,

23 "file \"%s\" is not accessible, or is not an hdf file",

24 filename);

25 goto error;

26 }

27

Initialize the HDF library.

28 DFSDrestart();

The HDF library routine DFSDgetdims returns the dimensionality of the grid (1D, 2D,
etc.) in dims. The number of positions in each dimension is returned in the Array
counts.

 Importing

 Chapter 7. Importing Data 51

29 DFSDgetdims(filename, &dims, counts, MAXRANK);

Make a new Array (scalar).

3ð a = DXNewArray(TYPE_FLOAT, CATEGORY_REAL, ð);

31 if (!a)

32 goto error;

Determine the number of elements in the data Array.

33 numelements=1;

34 for (i=ð; i<dims; i++) {

35 numelements= numelements \ counts[i];

36 }

Allocate space to the data Array.

37 if (!DXAddArrayData(a, ð, numelements, NULL))

38 goto error;

Get a pointer to memory for the data Array.

39 data = (float \)DXGetArrayData(a);

4ð if (!data)

41 goto error;

The HDF library routine DFSDgetdata reads the data from the HDF file to the data
Array.

42 DFSDgetdata(filename, dims, counts, data);

Create a new Field.

43 f = DXNewField();

44 if (!f)

45 goto error;

Set the dependency of the data to “positions.”

46 if (!DXSetStringAttribute((Object)a, "dep", "positions"))

47 goto error;

Set the data Array as the data component of f.

48 if (!DXSetComponentValue(f, "data", (Object)a))

49 goto error;

5ð a=NULL;

Create the connections Array. DXMakeGridConnections sets up the element type.
Place the connections in the Field.

51 a = DXMakeGridConnectionsV(dims, counts);

52 if (!a)

53 goto error;

54 if (!DXSetComponentValue(f, "connections", (Object)a))

55 goto error;

56 a=NULL;

Now create the position origin and deltas for the position (origin 0 and deltas 1 in
each dimension).

52 IBM Visualization Data Explorer: Programmer’s Reference

57 for (i=ð; i<dims; i++) {

58 origins[i] = ð.ð;

59 for (j=ð; j<dims; j++) {

6ð if (i==j)

61 deltas[i\dims + j] = 1.ð;

62 else

63 deltas[i\dims + j] = ð.ð;

64 }

65 }

Create the positions Array and place it in the Field.

66

67 a = DXMakeGridPositionsV(dims, counts, origins, deltas);

68 if (!a)

69 goto error;

7ð if (!DXSetComponentValue(f, "positions", (Object)a))

71 goto error;

72 a=NULL;

DXEndField sets default attributes and creates the bounding box.

73 if (!DXEndField(f))

74 goto error;

75

Set f as the first output of the module.

76 out[ð]=f;

77 return OK;

78

On error, delete f and a.

79 error:

8ð DXDelete((Object)f);

81 DXDelete((Object)a);

82 return ERROR;

83 }

 Importing

 Chapter 7. Importing Data 53

54 IBM Visualization Data Explorer: Programmer’s Reference

Chapter 8. Using the Pick Structure

8.1 The Pick Structure . 56
8.2 ShowPick Module Example—Using Color to Show a Picked Object 56

 Pick

 Copyright IBM Corp. 1991-1997 55

Data Explorer includes a tool for “picking” points in Objects in an image.

This tool, Pick, creates a structure that can be used to perform various functions
(e.g., to display the data value at picked points). But you can also write your own
module to perform different functions if you like.

8.1 The Pick Structure
Picking is the selection of a location on an object in an image by use of the mouse.
A straight line from the camera through the location selected constitutes a “poke,”
which may intersect the object in the image in one or more places or in none at all.
The intersections are called “picks.” For example, a poke through a spherical
isosurface results in two picks: one on the “front” surface and one on the “back”.
Picks differ from probes in that probes may be present anywhere in 3-dimensional
space, picks only on the surface of an object.

The pick structure is a Field, and the picked points are listed in its “positions”
component. A number of routines in Data Explorer allow you to query the pick
structure output by the Pick tool and to traverse a picked Object. (See 13.6,
“Pick-Assistance Routines” on page 142 for details.) The structure includes
information on how to traverse the picked Object to reach the picked element. It
also identifies:

� the connection in which the picked point resides (the element ID)
� the vertex of the picked element closest to the picked point (the vertex ID)
� the position of the picked point itself.

If the picked Object has no connections, the element ID and the vertex ID both
refer to the position closest to the picked point. Other information can be accessed
with pick-assistance routines.

Note: For a module that uses the pick structure, the Object displayed in the image
being picked must (1) be the same as the Object passed to the module or (2) have
a matching Object hierarchy. The reason for this requirement is that the output of
the Pick tool describes the location of the picked Object as it exists in the hierarchy
of the rendered Object. To use the pick structure, therefore, requires an Object
with a matching structure.

8.2 ShowPick Module Example—Using Color to Show a Picked Object
In the following example, the ShowPick module colors the entire object in white,
except for the Field, element, or vertex containing the pick point(s). The color of
the latter is specified by the user.

The module description file for ShowPick is:

56 IBM Visualization Data Explorer: Programmer’s Reference

MODULE ShowPick

CATEGORY User

DESCRIPTION sets a triangle in a picked Field to a particular color

INPUT input; object; (none); object with picked points

INPUT pickobject; field; (none); picking structure

INPUT color; string; "red"; color to set

INPUT colorwhich; integer; ð; color the element (ð), vertex (1) or entire field (2)

INPUT poke; integer; (all); poke selection

INPUT pick; integer; (all); pick selection

INPUT depth; integer; (bottom); selection depth

OUTPUT output; object; object with picked structures marked using color

As the .mdf file shows, the ShowPick module takes seven inputs and generates
one output. To create a version of Data Explorer that includes this module, copy
the following files to the directory where you want to work:

/usr/lpp/dx/samples/program_guide/Makefile_supported workstation model
/usr/lpp/dx/samples/program_guide/showpick.c
/usr/lpp/dx/samples/program_guide/showpick.mdf

Now rename the makefile to Makefile and enter: make showpick. This command
creates an executable that contains the ShowPick module.

To invoke this version (from the directory to which the files were copied), enter:

dx -mdf ./showpick.mdf -exec ./dxexec

This command starts Data Explorer (the showpick.mdf file tells the graphical user
interface about ShowPick and its inputs and outputs). With this version of Data
Explorer you can now run any visual program that uses the ShowPick module.
One such program is showpick.net in the /usr/lpp/dx/samples/program_guide
directory.

ð1 #include <dx/dx.h>

ð2 #include "pick.h"

ð3

ð4 static Error DoPick(Object, Object, RGBColor, int, int, int, int);

ð5 static Error SetColor(Object, RGBColor);

ð6

ð7 Error m_ShowPick(Object \in, Object \out)

ð8 {

ð9 Object o = NULL, pickfield;

1ð char \colorstring;

11 int colorwhich, poke, pick, depth;

12 RGBColor color;

 Copy the structure of in[ð], the object in which picking took place.

13 if (!in[ð]) {

14 DXSetError(ERROR_BAD_PARAMETER, "missing input");

15 goto error;

16 }

17 o = (Object)DXCopy(in[ð], COPY_STRUCTURE);

18 if (!o)

19 goto error;

First, set all the colors to white, to initialize. (The SetColor routine is defined
below.)

 Pick

 Chapter 8. Using the Pick Structure 57

2ð if (!SetColor(o, DXRGB(1.ð, 1.ð, 1.ð)))

21 goto error;

in[1] is the pick Field. If the pick Field is NULL or an empty Field, just return the
copy of the object.

22 if (!in[1] || DXEmptyField(in[1])) {

23 out[ð] = o;

24 return OK;

25 }

26 pickfield = in[1];

Get the color that will be used for picked Objects, which is in[2].

27 if (in[2]) {

28 if (!DXExtractString((Object)in[2], &colorstring)) {

29 DXSetError(ERROR_BAD_PARAMETER,"color must be a string");

3ð goto error;

31 }

Convert the color name to an RGB vector.

32

33 if (!DXColorNameToRGB(colorstring, &color))

34 goto error;

35 }

36 else {

If in[2] is not specified, then the default color is red.

37 color = DXRGB(1.ð, ð.ð, ð.ð);

38 }

Determine if we are to color just the picked element, just the vertex closest to the
picked point, or the entire Field. The default is to color just the picked element.

39 if (!in[3]) {

4ð colorwhich = ð;

41 }

42 else {

43 if (!DXExtractInteger(in[3], &colorwhich)) {

44 DXSetError(ERROR_BAD_PARAMETER,"colorwhich flag must be ð, 1, or 2");

45 goto error;

46 }

47 if ((colorwhich < ð)&&(colorwhich > 2)) {

48 DXSetError(ERROR_BAD_PARAMETER,"colorwhich flag must be ð, 1, or 2");

49 goto error;

5ð }

51 }

Determine if we are to select a particular poke, or all of them. The default is to
select all of them.

58 IBM Visualization Data Explorer: Programmer’s Reference

52

53 if (!in[4]) {

54 poke = -1;

55 }

56 else {

57 if (!DXExtractInteger(in[4], &poke)) {

58 DXSetError(ERROR_BAD_PARAMETER,"poke must be a nonnegative integer");

59 goto error;

6ð }

61 if (poke < ð) {

62 DXSetError(ERROR_BAD_PARAMETER,"poke must be a nonnegative integer");

63 goto error;

64 }

65 }

Determine if we are to select a particular pick, or all of them. The default is to
select all of them.

66 if (!in[5]) {

67 pick = -1;

68 }

69 else {

7ð if (!DXExtractInteger(in[5], &pick)) {

71 DXSetError(ERROR_BAD_PARAMETER,"pick must be a nonnegative integer");

72 goto error;

73 }

74 if (pick < ð) {

75 DXSetError(ERROR_BAD_PARAMETER,"pick must be a nonnegative integer");

76 goto error;

77 }

78 }

Determine if we are to select a depth. The default is to select the deepest level.

79 if (!in[6]) {

8ð depth = -1;

81 }

82 else {

83 if (!DXExtractInteger(in[6], &depth)) {

84 DXSetError(ERROR_BAD_PARAMETER,"depth must be a nonnegative integer");

85 goto error;

86 }

87 if (depth < ð) {

88 DXSetError(ERROR_BAD_PARAMETER,"depth must be a nonnegative integer");

89 goto error;

9ð }

91 }

Traverse the picked object, using the pick structure, passing the given parameters.

92 if (!DoPick(o, pickfield, color, colorwhich, poke, pick, depth))

93 goto error;

Delete the opacities component.

94 if (DXExists(o, "opacities"))

95 DXRemove(o,"opacities");

Successful return.

 Pick

 Chapter 8. Using the Pick Structure 59

96 out[ð] = o;

97 return OK;

Return on error.

98 error:

99 DXDelete(o);

1ðð return ERROR;

1ð1 }

The DoPick() routine traverses the picked object.

1ð2 static

1ð3 Error

1ð4 DoPick(Object o, Object pickfield, RGBColor color, int colorwhich,

1ð5 int pokes, int picks, int depth)

1ð6 {

1ð7 int pokecount, pickcount, poke, pick, i, pathlength;

1ð8 int vertexid, elementid, \path, numitems, index;

1ð9 Object current;

11ð Matrix matrix;

111 Array a, newcolors=NULL, oldcolors;

112 char \depatt;

113 RGBColor \newcolors_ptr, oldcolor;

114 int pokemin, pokemax;

115 int pickmin, pickmax;

116 int thisdepth;

pickfield is expected to be a Field.

117 if (!(DXGetObjectClass(pickfield)==CLASS_FIELD)) {

118 DXSetError(ERROR_INVALID_DATA,"pickfield must be a field");

119 goto error;

12ð }

Find out the number of pokes.

121 DXQueryPokeCount(pickfield, &pokecount);

The user has chosen to mark all pokes.

122 if (pokes < ð) {

123 pokemin = ð, pokemax = pokecount-1;

124 }

The user has specified a poke larger than the number present.

125 else if (pokes > pokecount-1) {

126 DXSetError(ERROR_BAD_PARAMETER,

127 "only %d pokes are present", pokecount);

128 return ERROR;

129 }

Consider only the specified poke.

13ð else

131 pokemin = pokemax = pokes;

For each poke...

132 for (poke=pokemin; poke<=pokemax; poke++) {

60 IBM Visualization Data Explorer: Programmer’s Reference

Find out how many picks there are in this poke.

133 if (!DXQueryPickCount(pickfield, poke, &pickcount))

134 goto error;

Issue warning if this particular poke does not contain as many picks as the user
has specified.

135 if (picks > pickcount-1) {

136 DXWarning("poke %d contains only %d picks", poke, pickcount);

137 }

138

139 else {

14ð if (picks < ð) {

141 pickmin = ð, pickmax = pickcount-1;

142 }

143 else {

144 pickmin = pickmax = picks;

145 }

For each pick...

146

147 for (pick=pickmin; pick<=pickmax; pick++) {

For the given pickfield, the current poke number, and the current pick number,
get the traversal path path, the length of the traversal path pathlength, and the
IDs of the picked element and the picked vertex.

148 DXQueryPickPath(pickfield, poke, pick, &pathlength, &path,

149 &elementid, &vertexid);

Initialize current to the picked object, and matrix to the identity matrix.

15ð current = o;

151 matrix = Identity;

152 if (depth != -1 && pathlength > depth)

153 thisdepth = depth;

154 else

155 thisdepth = pathlength;

Iterate through the pick path.

156 for (i=ð; i<thisdepth; i++) {

157 current = DXTraversePickPath(current, path[i], &matrix);

158 if (!current)

159 goto error;

16ð }

current is now the Field level of the picked Object, and we have the element and
vertex IDs of the picked object.

161 if (colorwhich == 2 || DXGetObjectClass(current) != CLASS_FIELD) {

We are simply to color the entire Field.

162 if (!SetColor(current, color))

163 goto error;

164 }

165 else {

 Pick

 Chapter 8. Using the Pick Structure 61

Otherwise, we want to set the indicated element or vertex to the given color. We
start by making a new colors component (not compact), but only if the input colors
component is still compact. If it is already expanded, then modify it.

First, determine the dependency of the colors.

166 if (colorwhich == ð) {

167 if (a = DXGetComponentValue(current, "connections")) {

168 index = elementid;

169 depatt = "connections";

17ð }

171 else if (a = DXGetComponentValue(current, "faces")) {

172 index = elementid;

173 depatt = "faces";

174 }

175 else {

176 a = DXGetComponentValue(current, "positions");

177 index = vertexid;

178 depatt = "positions";

179 }

18ð }

181 else {

182 a = DXGetComponentValue(current, "positions");

183 index = vertexid;

184 depatt = "positions";

185 }

Determine the number of items.

186 if (!DXGetArrayInfo(a, &numitems,NULL,NULL,NULL,NULL))

187 goto error;

If the traversal index is greater than the number of items, something is wrong.

188 if (index >= numitems) {

189 DXSetError(ERROR_INVALID_DATA,

19ð "pick structure does not correspond to picked object");

191 goto error;

192 }

Get the original colors component.

193 oldcolors = DXGetComponentValue((Field)current, "colors");

If it is a constant Array, we need to expand it so that we can set just one element
or vertex to the given color.

194 if (DXQueryConstantArray(oldcolors, NULL, &oldcolor)) {

Create a new colors Array and allocate space to it.

195 newcolors = DXNewArray(TYPE_FLOAT,CATEGORY_REAL, 1, 3);

196 if (!DXAddArrayData(newcolors, ð, numitems, NULL))

197 goto error;

Start by setting all colors to the original constant color.

198 newcolors_ptr = (RGBColor \)DXGetArrayData(newcolors);

199 for (i=ð; i<numitems; i++) {

2ðð newcolors_ptr[i] = oldcolor;

2ð1 }

62 IBM Visualization Data Explorer: Programmer’s Reference

Replace the colors in the Field with the new colors component.

2ð2 if (!DXSetComponentValue((Field)current, "colors",

2ð3 (Object)newcolors))

2ð4 goto error;

2ð5 newcolors=NULL;

2ð6

2ð7 DXSetComponentAttribute((Field)current, "colors", "dep",

2ð8 (Object)DXNewString(depatt));

2ð9 }

21ð

211

212 else {

The colors are already expanded, presumably from an earlier pick in this Field.

213 newcolors_ptr = (RGBColor \)DXGetArrayData(oldcolors);

214 }

Set the correct triangle or position to the given color.

215 newcolors_ptr[index] = color;

216 }

217 }

218 }

219 }

22ð

221 return OK;

222

223 error:

224 DXDelete((Object)newcolors);

225 return ERROR;

226 }

This routine sets all colors in object o to the given color.

227 static Error SetColor(Object o, RGBColor color)

228 {

229 Object subo;

23ð Array a, newcolors=NULL;

231 int numitems, i;

232

233

234 switch (DXGetObjectClass(o)) {

235

236

237 case (CLASS_GROUP):

238

If o is a Group, call SetColor recursively on its children.

239 for (i=ð; subo = DXGetEnumeratedMember((Group)o, i, NULL); i++))

24ð SetColor(subo, color);

241 break;

242

243

244 case (CLASS_XFORM):

If o is an Xform, call SetColor on its child.

 Pick

 Chapter 8. Using the Pick Structure 63

245 DXGetXformInfo((Xform)o, &subo, NULL);

246 SetColor(subo, color);

247 break;

248

249

25ð case (CLASS_CLIPPED):

If o is a Clipped object, call SetColor on its child.

251 DXGetClippedInfo((Clipped)o, &subo, NULL);

252 SetColor(subo, color);

253 break;

254

255

256 case (CLASS_FIELD):

If o is a Field, set the colors to the given color.

257 if (DXEmptyField((Field)o))

258 return OK;

The number of colors and the dependency of the colors will depend on whether
connections are present. If not, it is checked for the presence of faces. Otherwise,
the colors will be dependent on positions.

259 if (a = DXGetComponentValue((Field)o, "connections")) {

26ð DXGetArrayInfo(a, &numitems, NULL, NULL, NULL, NULL);

261 newcolors = (Array)DXNewConstantArray(numitems, &color,

262 TYPE_FLOAT,

263 CATEGORY_REAL, 1, 3);

264 DXSetComponentValue((Field)o, "colors", (Object)newcolors);

265 newcolors = NULL;

266 DXSetComponentAttribute((Field)o,"colors", "dep",

267 (Object)DXNewString("connections"));

268 }

269 else if (a = DXGetComponentValue((Field)o, "faces")) {

27ð DXGetArrayInfo(a, &numitems, NULL, NULL, NULL, NULL);

271 newcolors = (Array)DXNewConstantArray(numitems, &color,

272 TYPE_FLOAT,

273 CATEGORY_REAL, 1, 3);

274 DXSetComponentValue((Field)o, "colors", (Object)newcolors);

275 newcolors = NULL;

276 DXSetComponentAttribute((Field)o,"colors", "dep",

277 (Object)DXNewString("faces"));

278 }

64 IBM Visualization Data Explorer: Programmer’s Reference

279 else {

28ð a = DXGetComponentValue((Field)o, "positions");

281 DXGetArrayInfo(a, &numitems, NULL, NULL, NULL, NULL);

282 newcolors = (Array)DXNewConstantArray(numitems, &color,

283 TYPE_FLOAT,

284 CATEGORY_REAL, 1, 3);

285 DXSetComponentValue((Field)o, "colors", (Object)newcolors);

286 newcolors = NULL;

287 DXSetComponentAttribute((Field)o,"colors", "dep",

288 (Object)DXNewString("positions"));

289 }

29ð

291 break;

292 }

293

Successful return or return on error.

294

295 return OK;

296 error:

297 DXDelete((Object)newcolors);

298 return ERROR;

299 }

 Pick

 Chapter 8. Using the Pick Structure 65

66 IBM Visualization Data Explorer: Programmer’s Reference

Chapter 9. Writing Modules for a Parallel Environment

9.1 A Parallel Version of the Add Module . 68
9.2 A Parallel Version of the AverageCell Module 71

 Parallel

 Copyright IBM Corp. 1991-1997 67

Writing a “parallel” module involves considerations beyond those encountered in
using the Module Builder.

9.1 A Parallel Version of the Add Module
The Add module created in the example in 4.1, “Add Module Example—Add a
Number to Every Data Value” on page 32 would work correctly on partitioned data
because the code generated by the Module Builder automatically provides recursive
traversal. However, it would not run in parallel on a parallel-architecture machine.
To create an “addparallel” module, copy the following files to the directory you want
to work in:

/usr/lpp/dx/samples/program_guide/Makefile_workstation
/usr/lpp/dx/samples/program_guide/add_parallel.c
/usr/lpp/dx/samples/program_guide/addpar.mdf

Now rename the makefile to Makefile and enter make add_par.

To run this module in Data Explorer (from the directory to which the files were
copied), enter:

dx -mdf ./addpar.mdf -exec ./dxexec

This command starts Data Explorer (the addpar.mdf file tells the graphical user
interface about AddParallel and its inputs and outputs).

You can now run any visual program that uses the AddParallel module. One such
program is /usr/lpp/dx/samples/program_guide/add_parallel.net.

The AddParallel module:

� Encapsulates the Field-level processing in the subroutine task in this example.

� Calls DXCreateTaskGroup just before recursively traversing the Object in
m_AddParallel.

� Adds the tasks for processing the Fields during recursive traversal by calling
DXAddTask.

� Calls DXExecuteTaskGroup just after recursive traversal. At this point, the tasks
that are defined will be scheduled on multiple processors. If any of the tasks
returns an error, that error will be returned from DXExecuteTaskGroup.

ð1 #include <dx/dx.h>

ð2

ð3 static Error DoAdd(Object o, float x);

ð4

ð5 m_AddParallel(Object \in, Object \out)

ð6 {

ð7 Object o = NULL;

ð8 float x;

Copy the structure of in[ð].

ð9 if (!in[ð])

1ð DXErrorGoto(ERROR_BAD_PARAMETER, "missing object");

11 o = DXCopy(in[ð], COPY_STRUCTURE);

12 if (!o)

13 goto error;

68 IBM Visualization Data Explorer: Programmer’s Reference

Extract floating-point parameter from in[1] (default 0).

14 if (!in[1])

15 x = ð;

16 else if (!DXExtractFloat(in[1], &x))

17 DXErrorGoto(ERROR_BAD_PARAMETER, "bad addend");

Create the task Group, call DoAdd() for recursive traversal, and then execute the
task Group.

18 DXCreateTaskGroup();

19 if (!DoAdd(o, x)) {

2ð DXAbortTaskGroup()

21 goto error;

22 }

23 if (!DXExecuteTaskGroup())

24 goto error;

A successful return or return on error.

25 out[ð] = o;

26 return OK;

27

28 error:

29 DXDelete(o);

3ð return ERROR;

31 }

32

33

The argument block for passing parameters to the task routine:

34 struct arg {

35 Field field;

36 float x;

37 }

The following task routine does the actual work of processing a Field. DXAddTask
instructs the executive to call this routine once for each Field. The executive will
pass to task the argument block pointer that was specified when DXAddTask itself
was called.

ð1

ð2 static Error

ð3 task(Pointer p)

ð4 {

ð5 struct arg \arg = (struct arg \)p;

ð6 Field field;

ð7 float x, \from, \to;

ð8 int i, n;

ð9 Array a;

Extract the arguments.

1ð field = arg->field;

11 x = arg->x;

Extract, typecheck, and get the data from the “data” component.

 Parallel

 Chapter 9. Writing Modules for a Parallel Environment 69

12 a = (Array) DXGetComponentValue(field, "data");

13 if (!a)

14 DXErrorReturn(ERROR_MISSING_DATA, "field has no data");

15 if (!DXTypeCheck(a, TYPE_FLOAT, CATEGORY_REAL, ð))

16 DXErrorReturn(ERROR_BAD_TYPE, "data is not floating point");

17 from = (float \) DXGetArrayData(a);

Create a new Array, allocate space to it, and put it in the Field.

18 DXGetArrayInfo(a, &n, NULL, NULL, NULL, NULL);

19 a = DXNewArray(TYPE_FLOAT, CATEGORY_REAL, ð);

2ð if (!DXAddArrayData(a, ð, n, NULL))

21 return ERROR;

22 to = (float \) DXGetArrayData(a);

23 DXSetComponentValue(field, "data", (Object)a);

The following loop adds x to obtain the result.

24 for (i=ð; i<n; i++)

25 to[i] = from[i] + x;

Clean up the Field.

26 DXChangedComponentValues(field, "data");

27 DXEndField(field);

28

29 return OK;

3ð }

The recursive traversal routine follows. Note that at this point (and for each Field) it
does not process the Field but calls DXAddTask, specifying the routine that will be
called in parallel to do the actual work.

The Data Explorer programming interface is designed so that, in general, the
programmer does need to use explicit locks. For information about local and global
memory allocation, see 12.3, “Memory Allocation” on page 116.

ð1 static

ð2 Error

ð3 DoAdd(Object o, float x)

ð4 {

ð5 struct arg arg;

ð6 int i, n;

ð7 Object oo;

Determine the class of the object.

ð8 switch (DXGetObjectClass(o)) {

ð9

1ð case CLASS_FIELD:

Add the task for this Field.

11 arg.field = (Field)o;

12 arg.x = x;

13 if (!DXAddTask(task, &arg, sizeof arg, ð.ð))

14 return ERROR;

15 break;

16

17 case CLASS_GROUP:

70 IBM Visualization Data Explorer: Programmer’s Reference

Traverse Groups recursively.

18 for (i=ð; oo=DXGetEnumeratedMember((Group)o, i, NULL); i++)

19 if (!DoAdd(oo, x))

2ð return ERROR;

21 break;

22 }

23

24 return OK;

25 }

9.2 A Parallel Version of the AverageCell Module
Writing a version of AverageCell for a parallel environment introduces a “problem”
that does not arise with the Add module: the implementation of parallelism by
dividing Fields into spatially disjoint subsets called partitions. Each partition is
stored as a Field inside a Group Object. This Group is a special subclass of Group
objects called a “Composite Field.”

The AverageCell algorithm requires information about the neighbors of each cell.
But for cells on a partition boundary, at least some of those neighbors are in
another partition. DXGrow deals with this difficulty and obtains the needed
information by “growing” the partition by a specified number of cells. In effect it
“restores the old neighborhood.” The desired operation can then be performed on
the “grown” Field. DXShrink restores the partition to its pre-growth state by
removing the extra cells and “cleaning up.” (See 13.4, “Growing and Shrinking
Partitioned Data” on page 137.)

To create a version of Data Explorer that includes the AverageCellParallel module,
copy the following files to the directory where you want to work:

/usr/lpp/dx/samples/program_guide/Makefile_workstation
/usr/lpp/dx/samples/program_guide/averagecell_parallel.c
/usr/lpp/dx/samples/program_guide/averagecellpar.mdf

Now rename the makefile to Makefile and enter: make avgcell_par.

To run this version (from the directory to which the files were copied), enter:

dx -mdf ./averagecellpar.mdf -exec ./dxexec

You can now run any visual program that uses the AverageCellParallel module.
One such program is averagecell_parallel.net in the directory
/usr/lpp/dx/samples/program_guide.

The example AverageCellParallel code follows:

 Parallel

 Chapter 9. Writing Modules for a Parallel Environment 71

ð1 #include <dx/dx.h>

ð2

ð3 static Error DoAverageCell(Object);

ð4

ð5

ð6

ð7 Error m_AverageCellParallel(Object \in, Object \out)

ð8 {

ð9 Object o=NULL;

1ð

11 if (!in[ð]) {

12 DXSetError(ERROR_BAD_PARAMETER,"missing input");

13 goto error;

14 }

15

16 o = DXCopy(in[ð], COPY_STRUCTURE);

“Grow” the Fields so that averaging can be performed across partition boundaries.
Since it is not necessary to grow a Field beyond the original boundaries of the data,
and since only the “data” component is affected, grow the partition by one cell.
(The original components—“positions,” “data,” etc.—are copied into components
named “original positions,” “original data,” and so on.)

17 if (!DXGrow(o, 1, GROW_NONE, "data", NULL))

18 goto error;

Create the task Group.

19 if (!DXCreateTaskGroup())

2ð goto error;

The add tasks will be added in DoAverageCell().

21 if (!DoAverageCell(o)) {

22 DXAbortTaskGroup();

23 goto error;

24 }

25

26 if (!DXExecuteTaskGroup())

27 goto error;

Do not call DXShrink to shrink the grown Field until you have recursively removed
any “original data” component(s), assuming that you want to save the newly
created one(s). Otherwise the new “data” component(s) will be replaced by the
(unprocessed) “original data” components(s). Now you can call DXShrink.

72 IBM Visualization Data Explorer: Programmer’s Reference

28 if (DXExists(o, "original data"))

29 DXRemove(o,"original data");

3ð if (!DXShrink(o))

31 goto error;

32

33 out[ð] = o;

34 return OK;

35 error:

36 DXDelete((Object)o);

37 return ERROR;

38 }

39

4ð struct arg {

41 Field field;

42 };

43

44 static Error AddCellTask(Pointer p)

45 {

46 struct arg \arg = (struct arg \)p;

47 int i, j, numitems, shape, \neighbors_ptr, sum, neighbor;

48 int dim, counts[3];

49 char \attribute;

5ð float \data_ptr, \newdata_ptr, dataaverage;

51 Array connections, data, newdata=NULL, neighbors;

52 Field field;

53

54 field = arg->field;

55

Get the connections component; determine the number of connections and their
element type.

56

57 connections = (Array)DXGetComponentValue(field,"connections");

58 if (!connections) {

59 DXSetError(ERROR_MISSING_DATA,"input has no connections");

6ð goto error;

61 }

62 if (!DXGetArrayInfo(connections, &numitems, NULL, NULL, NULL, NULL)) {

63 goto error;

64 }

65 if (!(attribute=

66 (char \)DXGetString((String)DXGetComponentAttribute(field,

67 "connections",

68 "element type")))) {

69 DXSetError(ERROR_MISSING_DATA,

7ð "missing connection element type attribute");

71 goto error;

72 }

73

74

Get the data component, and get the data dependency attribute.

 Parallel

 Chapter 9. Writing Modules for a Parallel Environment 73

75 data = (Array)DXGetComponentValue(field,"data");

76 if (!data) {

77 DXSetError(ERROR_MISSING_DATA,"input has no data");

78 goto error;

79 }

8ð if (!(attribute=

81 (char \)DXGetString((String)DXGetComponentAttribute(field,

82 "data",

83 "dep")))) {

84 DXSetError(ERROR_MISSING_DATA,

85 "missing data dependency attribute");

86 goto error;

87 }

88

In this example, the data must be dependent on the connections.

89 if (strcmp(attribute,"connections")) {

9ð DXSetError(ERROR_INVALID_DATA,

91 "data must be dependent on connections");

92 goto error;

93 }

94

For this example, the data must be floating-point scalar.

95 if (!DXTypeCheck(data, TYPE_FLOAT, CATEGORY_REAL, ð, NULL)) {

96 DXSetError(ERROR_INVALID_DATA, "data must be floating point scalar");

97 goto error;

98 }

Get a pointer to the data.

99 data_ptr = (float \)DXGetArrayData(data);

1ðð

Make a new data component, allocate space in it, and get a pointer to it.

1ð1 newdata = DXNewArray(TYPE_FLOAT,CATEGORY_REAL, ð);

1ð2 if (!DXAddArrayData(newdata, ð, numitems, NULL))

1ð3 goto error;

1ð4 newdata_ptr = (float \)DXGetArrayData(newdata);

1ð5

If the data is ungridded, use the neighbors component. If it is gridded, use a
different method.

1ð6 if (!DXQueryGridConnections(connections, &dim, counts)) {

1ð7

Now the program needs the neighbors of the connections. Note that neighbors can
be obtained only for ungridded data: for gridded data there are more efficient ways
to determine neighbors.

74 IBM Visualization Data Explorer: Programmer’s Reference

1ð8 neighbors = DXNeighbors(field);

1ð9 if (!neighbors)

11ð goto error;

111 neighbors_ptr = (int \)DXGetArrayData(neighbors);

112 if (!DXGetArrayInfo(neighbors, NULL, NULL, NULL, NULL, &shape))

113 goto error;

114

115

116 for (i=ð; i<numitems; i++) {

117 dataaverage = data_ptr[i];

118 sum = 1;

shape is the number of neighbors of a connection element.

119 for (j=ð; j<shape; j++) {

12ð neighbor = neighbors_ptr[shape\i + j];

121 if (neighbor != -1) {

122 dataaverage = dataaverage + data_ptr[neighbor];

123 sum++;

124 }

125 }

126 dataaverage = dataaverage/sum;

127 newdata_ptr[i] = dataaverage;

128 }

129 }

13ð

131 else {

The connections are gridded. This example handles only 2-dimensional
connections (quads).

132

133 if (dim != 2) {

134 DXSetError(ERROR_INVALID_DATA,"connections must be 2-dimensional");

135 goto error;

136 }

137

138 for (i=ð; i< numitems; i++) {

139 dataaverage = data_ptr[i];

14ð sum = 1;

There are as many as four (4) neighbors for every quad.

141 if ((i % (counts[1]-1)) > ð) {

142 neighbor = i-1;

143 dataaverage = dataaverage + data_ptr[neighbor];

144 sum++;

145 }

146 if ((i % (counts[1]-1)) < (counts[1] - 2)) {

147 neighbor = i+1;

148 dataaverage = dataaverage + data_ptr[neighbor];

149 sum++;

15ð }

 Parallel

 Chapter 9. Writing Modules for a Parallel Environment 75

151 neighbor = i-(counts[1]-1);

152 if (neighbor>=ð && neighbor<numitems) {

153 dataaverage = dataaverage + data_ptr[neighbor];

154 sum++;

155 }

156 neighbor = i+(counts[1]-1);

157 if (neighbor>=ð && neighbor<numitems) {

158 dataaverage = dataaverage + data_ptr[neighbor];

159 sum++;

16ð }

161 dataaverage = dataaverage/sum;

162 newdata_ptr[i] = dataaverage;

163 }

164 }

Place the new data component in the Field.

165 DXSetComponentValue(field, "data", (Object)newdata);

166 newdata=NULL;

The data component has been changed (lines 162 and 165)

167 if (!DXChangedComponentValues(field,"data"))

168 goto error;

169

17ð

171 return OK;

172 error:

173 DXDelete((Object)newdata);

174 return ERROR;

175 }

176

177

178 static Error DoAverageCell(Object object)

179 {

18ð Object subo;

181 struct arg arg;

182 int i;

183

184 switch (DXGetObjectClass(object)) {

185 case (CLASS_FIELD):

186

187 arg.field = (Field)object;

188 if (!DXAddTask(AddCellTask, &arg, sizeof(arg), ð.ð))

189 goto error;

19ð break;

191

192 case (CLASS_GROUP):

If object is a Group, recursively call DoAverageCell().

76 IBM Visualization Data Explorer: Programmer’s Reference

193 for (i=ð; subo=DXGetEnumeratedMember((Group)object, i, NULL); i++) {

194 if (!DoAverageCell(subo))

195 return ERROR;

196 }

197 break;

198 }

199 return OK;

2ðð error:

2ð1 return ERROR;

2ð2 }

 Parallel

 Chapter 9. Writing Modules for a Parallel Environment 77

78 IBM Visualization Data Explorer: Programmer’s Reference

Chapter 10. Making a Module Work

10.1 Module Description Files . 80
Examples of Module Description Files . 83

10.2 Asynchronous Modules . 84
10.3 Inboard, Outboard, and Runtime-loadable Modules 85
10.4 Compiling, Linking, and Debugging an Inboard Module 85
10.5 Compiling, Linking, and Debugging an Outboard Module 86

Special Considerations for Outboard Modules 87
Asynchronous Outboard Module: An Example 89

10.6 Compiling, Linking, and Debugging a Runtime-loadable Module 91
10.7 Memory Leaks . 92

 Module Work

 Copyright IBM Corp. 1991-1997 79

This chapter discusses module description files and the compiling, linking, and
debugging of modules.

10.1 Module Description Files
A module description file (.mdf file) contains essential information about Data
Explorer modules, including their inputs and outputs. Data Explorer uses this
information for various executive and user-interface operations, among them the
creation of tool icons.

A module description file consists of one or more “definition” sections, one section
for each module described. Every section must contain the first two statements
shown here, along with INPUT and OUTPUT:

 MODULE name
CATEGORY category name
DESCRIPTION module description
FLAGS optional flags
OUTBOARD “executable”; host

 LOADABLE “executable”
INPUT name [visible]; type; default; description
OPTIONS option1; option2;...;
OUTPUT name [cache]; type; description

 REPEAT n

Note: A module description may contain an OUTBOARD or a LOADABLE statement,
but not both.

MODULE Is required and must be the first statement in the definition section.
It assigns a name to the module being described.

name must be a single alphanumeric word, with a letter for the first
character.

CATEGORY Is required. It assigns the module to a Data Explorer or user-defined
category. (Categories function as tool menus in the VPE window;
see Chapter 6, “Graphical User Interface: Important Windows” on
page 73 in IBM Visualization Data Explorer User’s Guide.)

category name may contain more than one word (e.g., “Import and
Export”).

DESCRIPTION Is optional. It serves as a help function.

module description should briefly describe the module function.
Brevity is recommended since this description shares limited space
with other information (accessed with the Description... button in
the module’s configuration dialog box).

FLAGS Is optional. Most modules do not need to set flags.

� PIN: Specifies that a module is always to execute on the same
processor. Applicable only to multiprocessor systems.

� PERSISTENT: Specifies that the outboard executable is not to be
terminated after each execution of the visual program.

� ERR_CONT: Specifies that modules downstream are to continue to
execute even when this module returns ERROR.

80 IBM Visualization Data Explorer: Programmer’s Reference

� SIDE_EFFECT: Specifies that the module has side effects and must
execute each time the visual program is executed, even if its
inputs have not changed.

� ASYNC: Identifies the module as being able to initiate execution in
response to an external event. (See also 10.2, “Asynchronous
Modules” on page 84.)

OUTBOARD Is optional. It identifies the module as a separate executable
program.

Note: If this statement is included, the module definition must not
have a LOADABLE statement (see below).

"executable" specifies the name of the executable and any
arguments to be passed. (Quotation marks are required for
executable specifications containing spaces or tabs; otherwise they
are optional.)

Note: If you are running Data Explorer on the IBM POWER
Visualization System**, the name of the executable must be
preceded by the term “os,” and the combination enclosed in
quotation marks (e.g., "os executable").

host is optional and specifies a remote machine on which the
executable is to be run. The default host is the one on which the
executive runs. (See also “...as an outboard module” on page 8 and
10.5, “Compiling, Linking, and Debugging an Outboard Module” on
page 86.)

LOADABLE Is optional. It identifies the module as being runtime loadable (i.e.,
compiled separately and loaded into Data Explorer at run time.

Note: If this statement is included, the module definition must not
have an OUTBOARD statement (see above).

"executable" specifies the name of the executable and any
arguments to be passed. (Quotation marks are required for
executable specifications containing spaces or tabs; otherwise they
are optional.)

See also “...as a runtime-loadable module” on page 8 and 10.6,
“Compiling, Linking, and Debugging a Runtime-loadable Module” on
page 91

INPUT Is required for each input parameter (i.e., two input parameters, two
statements). A statement consists of four fields separated by
semicolons:

1. name (of a parameter) must be one word and must conform to
the executive’s lexical conventions (see Chapter 10, “Data
Explorer Scripting Language” on page 187 in IBM Visualization
Data Explorer User’s Guide).

[visible] is optional. visible:n specifies the accessibility and
initial visibility of input tabs:

0: Not initially visible.
1: Initially visible (default).
2: Not available to the user interface.

 Module Work

 Chapter 10. Making a Module Work 81

A hidden parameter (visible:ð) can be exposed with the Expand
button in the module’s configuration dialog box. Less commonly
used parameters are often hidden by default.

2. type specifies the type(s) of the input and is used for type
matching in the Visual Program Editor. The valid types are:

camera integer list scalar value
field matrix scalar list value list
flag matrix list series vector
group object string vector list
integer

To specify more than one type, use the word or as a separator
(see, for example, the description file for Filter in “Examples of
Module Description Files” on page 83).

If the type of the input value is not explicit (e.g., a string without
quotation marks or a vector without brackets), the user interface
attempts to match the input against the type(s) specified in the
INPUT statement. It reads from left to right and stops at the first
successful match. For this reason, string should be specified
last, because any series of characters can always be converted
to a string by adding double-quotation marks.

3. default identifies the value to be used if none has been specified.

Note: This part of the INPUT statement is informational only: it
is the module writer’s responsibility to implement a default
value.

By convention, parentheses identify a description of default
behavior rather than an actual value. If no default is applicable,
specify (no default). If the parameter is required, specify
(none).

4. description should contain a short phrase describing the
parameter.

OPTIONS Is optional. It identifies a list of possible values for the parameter.
This list can be accessed by clicking on the ... button to the right of
the Value field in the module’s configuration dialog box.

Options in the list are separated by a semicolon (;). If the option
itself includes a semicolon, use a back slash (\) to escape it with. To
accommodate inputs that have more options than will fit on a single
line, use multiple OPTIONS statements. If the REPEAT statement
is used, the OPTIONS statement must precede it.

OUTPUT Is required for each output parameter (i.e., two output parameters,
two statements). A statement consists of three fields separated by
semicolons:

1. name (of a parameter) must be one word and must conform to
the executive’s lexical conventions (see Chapter 10, “Data
Explorer Scripting Language” on page 187 in IBM Visualization
Data Explorer User’s Guide).

[attribute] is optional. cache:n specifies the caching to be
performed by the executive:

0: Do not cache the output.
1: Cache all outputs (default).
2: Cache the output of the last execution only.

82 IBM Visualization Data Explorer: Programmer’s Reference

Output caching is similar to module caching (see “Function Call
Attributes” on page 202 in IBM Visualization Data Explorer
User’s Guide.) Cache specifications for outputs override those
for the module.

2. type specifies the type of the output and is used for type
matching in the Visual Program Editor. The valid types are:

camera integer list scalar value
field matrix scalar list value list
flag matrix list series vector
group object string vector list
integer

To specify more than one type, use the word or as a separator.
3. description should be a short phrase describing the parameter.

REPEAT Is optional. It specifies some number of INPUT or OUTPUT statements
to be repeated. The parameter n specifies the number of statements
(input or output) affected: “1” specifies the first immediately
preceding statement; “2”, the first and second preceding statements;
and so on.

REPEAT must come immediately after INPUT (after the last input
statement if there are two or more) or after OPTIONS if OPTIONS is
used. The same requirement applies to OUTPUT. That is, one REPEAT
for all inputs and another for all outputs.

The number of repetitions of a single statement is determined by the
number of corresponding tabs on the module icon (up to a maximum
of 21). Thus, REPEAT makes it possible to add input and output tabs
to (or delete them from) a module icon, thereby adding or deleting
inputs and outputs.

Examples of Module Description Files
The following examples illustrate the specification of three modules: Filter, Options,
and ShowBox.

The module description for Filter is:

 MODULE Filter

 CATEGORY Transformation

DESCRIPTION applies a filter to a field

INPUT input; field; (none); data to filter

INPUT filter; value or string; "gaussian"; filter to use

INPUT component[visible:ð]; string; "data"; component to be operated on

OPTIONS data; colors

INPUT mask[visible:ð]; value or string; “box”; rank-value filter max

OUTPUT output; field; filtered data

The Filter module is assigned to the Transformation category. It takes four inputs:

 Module Work

Module Input Type Default Description

input field none data to be filtered

filter value or string "gaussian" filter to be used

component string "data" component to be
operated on

 Chapter 10. Making a Module Work 83

All input parameters but input are assigned default values. The component and
mask parameters are hidden by default ([visible:0]).

The OPTIONS line in the module description specifies possible values for the
component parameter (two in this case). This list of values can be accessed by
clicking on the ... button to the right of the Value field in the module’s
configuration dialog box.

The module description for the ShowBox module is:

 MODULE ShowBox

 CATEGORY Realization

DESCRIPTION draws a bounding box

INPUT input; field; (none); the field of which to show the bounding box

OUTPUT box; field; renderable bounding box of input field

OUTPUT center; vector; center of bounding box

The ShowBox module is assigned to the Realization category. It takes an input,
named input, of type field. There are two outputs, named box and center, of
type field and vector respectively.

The module description for the Options module is:

 MODULE Options

 CATEGORY Structuring

DESCRIPTION associates attributes with an object

INPUT input; object; (none); object with attributes to be set

INPUT attribute; string; (no default); attribute to set

INPUT value; object; (no default); value of the attribute

 REPEAT 2

OUTPUT output; object; the object with attributes set

The Options module is assigned to the Structuring category. It has three named
parameters, none of which is given defaults. The module may take additional pairs
of input parameters, whose types are the same as the last two inputs preceding the
REPEAT statement.

Module Input Type Default Description

mask value or string "box" rank-value filter
maximum

 10.2 Asynchronous Modules
Inboard, outboard, and runtime-loadable modules can be asynchronous. That is,
depending on events external to Data Explorer, an asynchronous module can
request that it be rerun. If Data Explorer is in execute-on-change mode, the
module will reexecute immediately. If it is not, the module is called the next time
the user runs the network.

To cause executions in this fashion, the ASYNC flag must be set in the module’s
.mdf file. Then it can call the DXReadyToRun() function to request reexecution.
(For an example of how to use this function, see the sample outboard files
“async.c” and “watchfile.c” in /usr/lpp/dx/samples/outboard.) If the module is
outboard, the PERSISTENT flag must also be set, so that it does not exit after
each execution.

84 IBM Visualization Data Explorer: Programmer’s Reference

DXReadyToRun() can be called in a variety of ways: by a signal handler (signal),
after a prescribed time interval has passed (sleep, alarm), when a file appears
(stat), or when data is received across a pipe or socket from another process
(select).

If a module must wait for input associated with a file descriptor (e.g., a socket), it
should use DXRegisterInputHandler to add another file descriptor to the select list.
If data is received along with the input associated with that file descriptor, a
user-supplied routine is called to check the status and may call DXReadyToRun.
When the module is called, it can read the information in, process it, and return the
output(s).

10.3 Inboard, Outboard, and Runtime-loadable Modules
The chief differences between inboard, outboard, and runtime-loadable modules
lies in the following features:

� the module description file (.mdf)
� the compilation and linking process (i.e., the Makefile)
� the command that starts Data Explorer using the module.

Module description files are discussed in 10.1, “Module Description Files” on
page 80. The other two features are discussed in the three sections following this
brief summary.

inboard modules
Are compiled into Data Explorer. That is, the version of dxexec found
(usually) in /usr/lpp/dx/bin_architecture is replaced with your own copy (i.e., a
copy incorporating your module).

outboard modules
Run as separate processes. Linking an outboard module is quick, since it
does not involve creating an entire new version of dxexec (as the
compilation of inboard modules does). Thus an outboard module is also
easier to debug because it can be relinked more quickly.

However, outboard modules are typically less efficient than other modules,
especially if significant amounts of data must be transferred: data objects are
transferred to and from an outboard module via sockets rather than as the
pointers to shared memory that inboard and runtime-loadable modules use.

runtime-loadable modules
Can be loaded when Data Explorer is started or at any time after, and they
do not require a separate copy of dxexec, as inboard modules do. Thus
these modules have the advantage of portability without the disadvantage of
the data-transfer overhead associated with outboard modules. A single
executable can contain multiple modules that can be used like a library.

 Module Work

10.4 Compiling, Linking, and Debugging an Inboard Module
The following sample makefile templates for creating inboard modules can be found
in /usr/lpp/dx/samples/user:

� RISC System/6000* Systems: Makefile_inboard_ibm6ððð
 � Silicon Graphics**: Makefile_inboard_sgi
 � Sun Microsystems**: Makefile_inboard_solaris or Makefile_inboard_sun4

 Chapter 10. Making a Module Work 85

 � Hewlett-Packard**: Makefile_inboard_hp7ðð
� Data General AViiON**: Makefile_inboard_aviion

 � DEC Alpha**: Makefile_inboard_alphax

Replace makex.o, add.o, and hello.o with the names of your .o files. These
makefiles assume that user_inboard.mdf is the name of the module description file
that describes all your modules.

Starting Data Explorer requires specifying the module description file and a dxexec
to the user interface:

dx -mdf my.mdf -exec mydxexec

Notes:

1. You can also load a .mdf file after Data Explorer has started. Use the Load
Module Description(s) option in the File pull-down menu of the VPE window.

2. You must then restart the executive using the Disconnect from Server and
Start Server options in the Connection pull-down menu of the VPE window
(you would need to specify the dxexec, using Options in the Start Server...
dialog box).

To debug a module you must first modify the CFLAGS line of the makefile to
compile your source code as debuggable (-g) rather than optimized (-O).

Note: Data Explorer library routines are available only as optimized object code.

To debug a module:

1. Start up just the user interface: dx -uionly

2. Start a debugging session on your executable program.
3. Run the executable from the debugger with the -r (remote) flag.
4. Connect the user interface to the debugging session by selecting Connect to

already running server in the Options dialog box of the Start Server...
dialog box. You should check the port number specified when you start your
executable from the debugging session, and ensure that the port number listed
in the Options dialog box is the same.

10.5 Compiling, Linking, and Debugging an Outboard Module
The following sample makefile templates for creating outboard modules can be
found in /usr/lpp/dx/samples/user:

� RISC System/6000* Systems: Makefile_outboard_ibm6ððð
 � Silicon Graphics**: Makefile_outboard_sgi
 � Sun Microsystems**: Makefile_outboard_solaris or Makefile_outboard_sun4
 � Hewlett-Packard**: Makefile_outboard_hp7ðð
� Data General AViiON**: Makefile_outboard_aviion

 � DEC Alpha**: Makefile_outboard_alphax

Replace makex.o, add.o, and hello.o with the names of your .o files; replace
m_Hello, etc. with the names of your modules; and replace hello, etc. with the
names you want for your executables. The .mdf file for the outboard modules is
user_outboard.mdf.

86 IBM Visualization Data Explorer: Programmer’s Reference

Linking Outboard Modules

Typically outboard modules are linked to the library dxlite, which contains the
Data Explorer data model routines (see Appendix B, “Data Explorer Data Model
Library: DXlite Routines” on page 181). This library does not contain all of the
Data Explorer routines (see Appendix C, “Data Explorer Library Routines” on
page 183), and an outboard module requiring access to such “additional”
routines must be linked to the library dxcallm. However, the resulting outboard
executable will be significantly larger than it would be otherwise.

Starting Data Explorer requires specifying the .mdf file to the user interface:

dx -mdf my.mdf

Notes:

1. You can also load a .mdf. file after Data Explorer has started. Use the Load
Module Description(s) option in the File pull-down menu of the VPE window.

2. In script mode, Data Explorer does not recognize the -mdf flag, so you must
add the following commands to your script before calling the module:

Executive("mdf file", "module_name.mdf");

$sync

To debug a module you must first modify the CFLAGS line of the makefile to
compile your source code as debuggable (-g) rather than optimized (-O).

Note: Data Explorer library routines are available only as optimized object code.

To debug a module, start Data Explorer with the additional flag -outboarddebug.
Instead of automatically starting the module, Data Explorer will prompt you to start
the executable. You can then run the module from a debugger, using the flags
specified to you by Data Explorer when it prompts you to start the module.

Special Considerations for Outboard Modules

Simple outboard modules
The simplest type of outboard module does not need to save information, does not
communicate with any other process, and does not cause asynchronous
executions. It takes inputs, computes something based on them, and returns
outputs. The executable program that makes up the outboard module is run each
time the module is called, and it exits after returning the output values.

 Module Work Persistent outboard modules
To prevent the executable program of the outboard module from exiting after each
execution, set the PERSISTENT flag on the FLAGS line in its .mdf file. This setting
may be necessary so that the module can save information from one execution to
another, or because repeated exits and restarts take too much time.

A persistent outboard module is started from the user interface the first time the
module is called and does not exit until its icon is deleted from the network
(program), the entire network is deleted, or the Reset Server option is selected
from the Connection pull-down menu.

 Chapter 10. Making a Module Work 87

In script mode, persistent outboard modules are loaded the first time they are called
and they do not exit until the executive exits or the command

Executive ("flush dictionary");

is run.

Global variables can be safely used to save information between executions of an
outboard module. If the same outboard module occurs in a network more than
once, a different process is started for each occurrence.

Note that the module may not be called at every execution: If the inputs are
changed from their original values and then back again, Data Explorer saves the
previous results and uses them without recalling the module. The “cache none”
option prevents previous results from being saved, but you also need to set “cache
none” for all downstream modules that process the outputs. Otherwise, caching at
the lower levels will still prevent the module from being called each time. The
SIDE_EFFECT flag specifies that the module is to be called each time, the
performance penalty being that the module continues to execute even if the inputs
remain unchanged.

Modules that can cause executions:
An asynchronous module can request that it be rerun. See 10.2, “Asynchronous
Modules” on page 84.

Running an outboard on another machine:
If an outboard module should be run on one particular machine (perhaps because it
is compute intensive and needs to run on a fast machine, or because it needs to
access a peripheral that is connected to only one machine), the OUTBOARD line
can specify a host name as well as an executable name. The Data Explorer
libraries will take care of establishing a connection between where the main Data
Explorer executive is running and the outboard host machine. The DXMODULES
environment variable or the -modules flag can be used to specify a search path for
outboard module executables, or the OUTBOARD line can specify a fully qualified
path name.

A valid .rhosts file must be present to allow Data Explorer to use the “rsh”
command to start a process on another machine. (See the UNIX manual page for
“rsh” or “remsh” for more information.)

 Miscellaneous information
DXReadyToRun cannot be called from the time a module receives its inputs until
after it returns its outputs. To trigger another execution immediately, it can do so
after the call to DXCallOutboard() in the outboard.c file.

Outboard modules cannot be written in coroutine style. They cannot produce
outputs without being called by Data Explorer and thereby receiving new inputs
(which can be ignored), and they must return something - the main Data Explorer
executive will wait for the module to return before continuing.

An asynchronous module cannot be run in distributed mode, but it can be executed
on another machine by setting the host name on the OUTBOARD line.

88 IBM Visualization Data Explorer: Programmer’s Reference

Asynchronous Outboard Module: An Example
The function of this example module is to monitor the status of a given file.
Whenever the file is modified, its data are reimported. For example, this program
could be used to monitor the output of a simulation program. The data can be
plotted as they are created.

This sample program is /usr/lpp/dx/samples/outboard/watchfile.c. The same
directory also holds the associated .mdf file (watchfile.mdf) and an example
(watchsocket.c) that listens for input over a socket. See
/usr/lpp/dx/samples/Outboard/Readme for more information abut sample modules.

/\

 \ sample asynchronous outboard module.

 \

 \ uses a signal to ask to be woken after a certain delay.

 \ if a given file has been changed, re-import the data.

 \

 \ see watchfile.mdf, which must be loaded before this can be run.

 \ also see Makefile_architecture.name for how to compile this.

 \/

#include <dx/dx.h>

#include <unistd.h>

#include <signal.h>

#include <stdio.h>

#include <sys/stat.h>

static Pointer id = NULL;

static time_t lastchanged;

static int seconds;

static char filename[1ð24];

/\

 \ this routine is called each time the alarm signal is

 \ issued.

 \/

void signalcatch()

{

struct stat Buffer;

 time_t changed;

/\ stat the file to find out its last modification time \/

if (stat(filename, &Buffer) == ð)

 {

/\ the last time the file was changed \/

changed = Buffer.st_mtime;

/\ compare to the last time the file was checked \/

if (lastchanged != changed)

 {

/\ the file has changed. Rerun the main program. \/

 DXReadyToRun(id);

 }

 Module Work

 Chapter 10. Making a Module Work 89

/\ else the file hasn't changed since last time we checked \/

 else

 {

/\ go back to sleep for some seconds, but first reset the

\ alarm \/

 signal(SIGALRM, signalcatch);

 alarm(seconds);

 }

 }

}

Error

m_WatchFile(Object \in, Object \out)

{

struct stat Buffer;

 char \file;

/\ the first input is the filename to check \/

 if (!in[ð])

 {

 DXSetError(ERROR_MISSING_DATA,"missing filename");

 return ERROR;

 }

if (!DXExtractString(in[ð], &file))

 {

DXSetError(ERROR_BAD_PARAMETER,"filename must be a string");

 return ERROR;

 }

/\ put the filename into a static global variable \/

 strcpy(filename,file);

/\ the second input is the number of seconds to wait between checks \/

/\ the default is 1ð seconds \/

 if (!in[1])

seconds = 1ð;

 else

 {

if (!DXExtractInteger(in[1], &seconds))

 {

DXSetError(ERROR_BAD_PARAMETER,"seconds must be an integer");

 return ERROR;

 }

 }

90 IBM Visualization Data Explorer: Programmer’s Reference

/\ the first time through, get the module id for the DXReadyToRun call \/

if (!id) {

id = DXGetModuleId();

if (!id) {

out[ð] = NULL;

 return ERROR;

 }

 }

/\ get the last modification time of the file \/

if (stat(filename, &Buffer) != ð) {

DXSetError(ERROR_BAD_PARAMETER,"file %s not found");

 return ERROR;

 }

lastchanged = Buffer.st_mtime;

/\ import the data from the file \/

out[ð] = DXImportDX(filename, NULL, NULL, NULL, NULL);

/\ set the alarm for the next wakeup \/

 signal(SIGALRM, signalcatch);

 alarm(seconds);

 return OK;

}

Note: If this program were compiled and linked as an inboard module, the global
variables would have to be stored in the cache and associated with the module ID.
Otherwise, the global variables would be shared among all calls to the module.

10.6 Compiling, Linking, and Debugging a Runtime-loadable Module
The following sample makefile templates for creating runtime-loadable modules can
be found in /usr/lpp/dx/samples/user:

� RISC System/6000* Systems: Makefile_loadable_ibm6ððð
 � Silicon Graphics**: Makefile_loadable_sgi
 � Sun Microsystems**: Makefile_loadable_solaris
 � Hewlett-Packard**: Makefile_loadable_hp7ðð
 � DEC Alpha**: Makefile_loadable_alphax

The makefile target “loadablelib” is an example of how to make a “library” of
runtime-loadable modules. Replace makex.o, add.o, and hello.o with the names
of your modules. The makefile target hello is an example of how to make an
executable containing a single module. See also the files hello_loadable.mdf and
user_loadable.mdf. Starting Data Explorer requires specifying the module
description file to the user interface:

dx -mdf my.mdf

Note: You can also load a .mdf file after Data Explorer has started. Use the Load
Module Description(s) option in the File pull-down menu of the VPE window.

 Module Work

 Chapter 10. Making a Module Work 91

To debug a module you must first modify the CFLAGS line of the makefile to
compile your source code as debuggable (-g) rather than optimized (-O).

Note: Data Explorer library routines are available only as optimized object code.

To debug a module:

1. Start up just the user interface:

dx -uionly -mdf yourmdf.mdf

2. Start a debugging session with the -r (remote) flag on
/usr/lpp/dx/bin_workstation/dxexec.

3. Connect the user interface to the debugging session by selecting Connect to
already running server in the Options dialog box of the Start Server...
dialog box. You should check the port number specified when you start your
executable from the debugging session, and ensure that the port number listed
in the Options dialog box is the same.

4. Set your breakpoints in the debugger and continue.

Note: On some architectures it may be necessary to build a module as
inboard in order to debug it.

 10.7 Memory Leaks
A memory leak will occur if the memory allocated by a module is not freed before
that module returns its output(s). (See “Allocating and Freeing Memory” on
page 13 for a list of Objects that typically need freeing.) Typically, if there is a
memory leak, Data Explorer runs for some time. Then, after allocating all available
memory, it stops executing and generates an error message that it is out of
memory. It can resume execution only after the server has been disconnected and
restarted.

You can check a module for a memory leak by running it several times, together
with the Usage module. If the memory managed by the executive is flushed after
each execution, memory that is allocated by a module and not freed before
returning will cause the Usage module to report an increase in memory. The
following Data Explorer script checks for a leak:

macro showleak()

{

output = YourModule(input, ...);

 Print(output);

}
...

(any modules necessary to produce input for your module)
...

showleak();

showleak();

Executive(“flush cache”);

Usage(“memory”, ð);

showleak();

Executive(“flush cache”);

Usage(“memory”, ð);

showleak();

Executive(“flush cache”);

Usage(“memory”, ð);

92 IBM Visualization Data Explorer: Programmer’s Reference

Each call to Usage prints out the amount of memory used in both the small and the
large arena. Unless there is a memory leak in the module, these amounts will
remain constant.

Note: It is important to run the executable in “readahead off” mode. The amounts
reported by Usage will be distorted if the Data Explorer executive reads the
script ahead of execution. Specify:

dx -exec your_directory/your_executable -readahead off -script

 Module Work

 Chapter 10. Making a Module Work 93

94 IBM Visualization Data Explorer: Programmer’s Reference

Chapter 11. Working with Data Model Objects

11.1 Field Class . 97
11.2 Group Class . 98

Generic Operations . 98
Series Groups . 99
MultiGrid Groups . 99
Composite Fields . 100
Parts . 100

11.3 Array Class . 101
Generic Operations . 101
Irregular Arrays . 101
String List Routines . 102
Array Handling . 102
Creating Positions and Connections Grids 103
Regular Arrays . 104
Path Arrays . 104
Product Arrays . 105
Mesh Arrays . 105
Constant Arrays . 105

11.4 String Class . 106
11.5 Private Class . 106
11.6 Printing Objects . 106
11.7 Field Construction . 106

Points and Dependent Data . 106
Connections . 107
Standard Components . 107

11.8 Extracting Module Parameters . 108
11.9 Creating Simple Data Explorer Objects 109
11.10 Component Manipulation . 110
11.11 Data Import and Export . 110

Data Explorer Format Files . 110
netCDF Data . 111

 Data Model

 Copyright IBM Corp. 1991-1997 95

This chapter describes the programming interface for creating and manipulating the
basic Objects of the Data Explorer data model (some Objects are discussed in later
chapters). For a brief summary of the data model, see Chapter 1, “Overview” on
page 1. For a detailed description, see Chapter 3, “Understanding the Data
Model” on page 15 in IBM Visualization Data Explorer User’s Guide.

Data Explorer is an object-oriented graphical application. Its objects are data
structures in global memory, they are passed by reference, and their contents are
private to the implementation. See Table 1.

Table 1. Data Explorer Objects. The first column shows the hierarchical relationship of
the Objects to one another. For subclasses Field through Private, see 11.1, “Field
Class” on page 97 through 11.5, “Private Class” on page 106 in this chapter; for
Interpolator, see Chapter 13, “Data Processing” on page 131; and for the remainder,
see Chapter 15, “Rendering” on page 149.

Type Description Class

Object Object Class CLASS_OBJECT

 Field Data sampled on a regular or
irregular grid

CLASS_FIELD

 Group Collections of Objects CLASS_GROUP

 Series Time (or other) series CLASS_SERIES

 Multigrid Group of Fields to be treated
as one Field

CLASS_MULTIGRID

 Composite Field Group of Fields to be treated
as one Field

CLASS_COMPOSITEFIELD

 Array Dynamic Arrays of data such
as points

CLASS_ARRAY

 Regular Array One-dimensional series of
evenly spaced points

CLASS_REGULARARRAY

 Path Array One-dimensional series of
connected line segments

CLASS_PATHARRAY

 Product Array Regular or semi-regular grid
positions

CLASS_PRODUCTARRAY

 Mesh Array Regular or semi-regular grid
connections

CLASS_MESHARRAY

 Constant Array Array with a constant value CLASS_CONSTANTARRAY

 String Object containing a string CLASS_STRING

 Private Object pointing to private user
data

CLASS_PRIVATE

 Interpolator Used to query Fields for data
values

CLASS_INTERPOLATOR

 Xform Transformation matrix applied
to an Object

CLASS_FORM

 Screen Object aligned to the screen CLASS_SCREEN

 Clipped One Object clipped by
another

CLASS_CLIPPED

 Camera Viewpoint, viewport, resolution CLASS_CAMERA

 Light Lights CLASS_LIGHT

Note: Any Group other than the three types listed here is a generic Group.
Any Array other than the five types listed here is an irregular Array.

96 IBM Visualization Data Explorer: Programmer’s Reference

 11.1 Field Class
Each Field has some number of named components. Each component has a value
(usually an Array) and some number of attributes, whose values are often strings or
numbers. However, in the data model both components and attributes can be any
Object. The defined components and attributes are listed in Chapter 3,
“Understanding the Data Model” on page 15 in IBM Visualization Data Explorer
User’s Guide.

Field DXNewField()
Creates a new Field Object. See Note on Use on page 97, and page 303.

Field DXSetComponentValue()
Adds a component to a Field. See Note on Use on page 97, and page 348.

Field DXSetComponentAttribute()
Adds or removes a named attribute from a component of a Field. See page
347.

Object DXGetComponentValue()
Returns a specified component of a Field. See Note on Use See page 243.

Note on Use

The following code segment illustrates how to make a component of one Field
also a component of another Field:

f = DXNewField();

 if (!f)

 return ERROR;

c = DXGetComponentValue(oldfield, "positions");

if (!DXSetComponentValue(f, "positions", c))

 return ERROR;

Object DXGetComponentAttribute()
Returns a named attribute of a specified component of a Field. See page 242.

Object DXGetEnumeratedComponentValue()
Object DXGetEnumeratedComponentAttribute()

Return a component or component attribute by index. These routines can be
used to retrieve the components or component attributes when their names are
not known. See page 246 and page 245.

Field DXDeleteComponent()
Deletes a named component from a Field. See page 221.

Less Commonly Used Routines

Error DXComponentReq()
Error DXComponentOpt();
Error DXComponentReqLoc();
Error DXComponentOptLoc();

Access or type-check a component in a Field. See Note on Use on page 98.
See also page 209.

 Data Model

 Chapter 11. Working with Data Model Objects 97

Note on Use

An example of the expected use of DXComponentReq() follows:

a = DXGetComponentValue(f, "positions");

if (!DXComponentReq(a, &points, &npoints, ð, TYPE_FLOAT, 3))

 return NULL;

a = DXGetComponentValue(f, "colors");

if (!DXComponentOpt(a, &colors, NULL, npoints, TYPE_FLOAT, 3))

 return NULL;

if (colors) ...

The first two statements check and retrieve a required “positions” component,
while the next two check and retrieve an optional “colors” component that must
have the same number of elements. Since the second call uses
DXComponentOpt(), the program must check colors for NULL to determine
whether the colors were present.

 11.2 Group Class
This section summarizes the routines used with Groups, including those that
manipulate members, Series Groups, MultiGrid Groups, Composite Field Groups,
and parts of a Group. For a detailed description of Groups, see Chapter 3,
“Understanding the Data Model” on page 15 in IBM Visualization Data Explorer
User’s Guide.

 Generic Operations
This section describes routines used to manipulate the members of a Group.

Group DXNewGroup()
Creates a new generic Group Object. See page 304.

Group DXSetMember()
Adds a member to a Group. See page 355.

Object DXGetMember()
Gets a named member of a Group. See page 255.

Group DXGetMemberCount()
Retrieves the number of members in a group. See page 256.

Object DXGetEnumeratedMember()
Returns the members of a Group by index. See page 247.

Group DXSetEnumeratedMember()
Adds a member to a Group by index. See page 350.

Group DXSetGroupType()
Group DXSetGroupTypeV();

Associates a type with a Group. See page 353.

Group DXUnsetGroupType()
Unsets the type associated with a Group. See page 371.

Class DXGetGroupClass()
Returns the subclass of a Group Object. See Note on Use. See page 251.

98 IBM Visualization Data Explorer: Programmer’s Reference

Note on Use

The following is an example of how this routine is used:

switch (DXGetGroupClass(g)) {

 case CLASS_COMPOSITEFIELD

 ...

 break;

 case CLASS_SERIES

 ...

 break;

 }

 Series Groups
Series Groups are a subclass of Group. A Series represents a single Field
sampled across some parameter (e.g., a simulation of a CMOS device across a
temperature range). Members of a Series have a position. A copy of the position
is found in the “series position” attribute.

Every member of the Series must have the same dimensionality, the same data
type, and the same connections element type. Members are stored in and
retrieved from a Series Group by index rather than by name. Members cannot be
retrieved by Series value.

DXSeries NewSeries()
Creates a new Series Object. See page 312.

Series DXSetSeriesMember()
Adds an indexed member to a Series Object. See page 361.

Note: DXSetMember() and DXSetEnumeratedMember() can also be used: the
position is assumed to be the same as the sequence number of the
member.

Object DXGetSeriesMember()
Returns an indexed member from a Series Object. See page 267.

Note: DXGetMember() and DXGetEnumeratedMember() can also be used for this
purpose, but they do not return the position value.

 MultiGrid Groups
A MultiGrid is a Group of Fields that is treated as a single entity. It is useful, for
example, for holding certain kinds of simulation data represented by disjoint grids.
All the members of a MultiGrid Group must have the same type of data and the
same type of connection. However, unlike members of a Composite Field, Multigrid
members are not required to be disjoint and abutting. The invalid-positions and
invalid-connections components can be used to define which points of a grid are
valid in a region of grid overlap.

MultiGrid DXNewMultiGrid()
Creates a new MultiGrid Object. See page 306.

 Data Model

 Chapter 11. Working with Data Model Objects 99

 Composite Fields
A Composite Field is a Group of Fields treated as a single entity. Parallelism in
Data Explorer is achieved by explicitly partitioning Fields into a Composite Field.
Composite Fields are typically created with the DXPartition routine (see page
316).

The connections component of each member must be of the same type, and the
members are expected to be disjoint and abutting (i.e., sharing positions, data, etc.,
at the boundary).

CompositeField DXNewCompositeField()
Creates a new Composite Field Object. See page 301.

 Parts
The Parts routines are provided to allow easier manipulation of all Fields in a Group
Object without having to explicitly traverse the Object.

Group

Group

Group

........

.

.

.

Group

.

.

.

Members

Members

Members, PartsField Field................

Figure 8. Parts of a Group

Object DXProcessParts()
Applies a function to every constituent Field (part) of a given Object. See page
320.

Note: DXGetPart(), DXGetPartClass(), and DXSetPart() are useful for prototyping
and in cases where convenience outweighs efficiency. DXProcessParts()
can often be used for the same purposes, and with greater efficiency.

Field DXGetPart()
Returns the parts of an Object by index. See page 261.

Object DXGetPartClass()
Returns by index only those sub-members of the given Group that are parts of
a specified class. Note that DXGetPart(o, n) is equivalent to
DXGetPartClass(o, n, CLASS_FIELD). See page 262.

Object DXSetPart()
Sets a Field as a part of an Object. See page 357.

100 IBM Visualization Data Explorer: Programmer’s Reference

 11.3 Array Class
Array Objects store user data, positions, connections, and photometric information
(e.g., color or opacity).

Arrays may use explicit lists or one of several compact-coding schemes to store
information. This section first describes the generic operations that are applicable
to all Arrays, then operations specific to irregular Arrays, and finally operations
specific to compact Arrays (i.e., regular, path, product, mesh, constant). For more
information about Arrays, see Chapter 3, “Understanding the Data Model” on
page 15 in IBM Visualization Data Explorer User’s Guide.

 Generic Operations
Each Array a contains some number of items n (numbered 0 to n-1). Each item
consists of a fixed number of elements of one type, specified when the array is
created (see page 120 for the constants used to specify types).

Note: The routines listed in this subsection apply to both compact and irregular
Arrays.

Class DXGetArrayClass()
Returns the subclass of an Array Object. See page 236.

Array DXGetArrayInfo()
Returns the number of items, type, category, rank, and shape of an Array.
See page 239. (For information on rank and shape, see “Arrays” on page 28
in IBM Visualization Data Explorer User’s Guide.)

Array DXTypeCheck()
Array DXTypeCheckV();

Check that an Array matches a set of specifications. See page 369.

Pointer DXGetArrayData()
Returns a pointer to the start of a global memory area containing the items
constituting the data stored in an Array. See page 237.

Note: To reduce memory requirements, it is preferable, where possible, to
recognize compact arrays with DXGetArrayClass(), and not to expand
them by calling DXGetArrayData(). An alternative is the set of
Array-handling routines described in “Array Handling” on page 102.

int DXGetItemSize()
Returns the size in bytes of each individual item of an Array. See page 255.

Pointer DXGetArrayDataLocal()
Returns a pointer to the start of memory of a local copy of the data stored in
an Array. See page 237.

Array DXFreeArrayDataLocal()
Frees space allocated by DXGetArrayDataLocal(). See page 233.

 Data Model Irregular Arrays
Irregular Arrays are used for data that exhibit no particular regularity. They may
also be used to manage dynamically growing collections of data whose size is not
known in advance. DXNewArray() creates an irregular Array with no items;
DXAddArrayData() adds data to an irregular Array; and DXGetArrayData() returns a
pointer to an irregular Array.

 Chapter 11. Working with Data Model Objects 101

Note: The routines listed in this subsection apply only to irregular arrays.

Array DXNewArray()
Array DXNewArrayV();

Create an irregular Array Object. See page 298.

Array DXAddArrayData()
Adds items to an Array. See Note on Use. See page 190.

Array DXAllocateArray()
Allocates space for the data items of an Array. Although this routine is not
required, its use will make for more efficient management of memory. See
page 197.

Array DXTrim()
Frees space previously allocated to an Array but not needed for the number of
items in that Array. See page 368.

Note on Use

There are four ways to add data to irregular arrays.

1. Add the items one at a time: DXAddArrayData(a, i, 1, item);
2. Add the items in batches: DXAddArrayData(a, i, n, items);
3. Add the items all at once: DXAddArrayData(a, ð, n, items);
4. Allocate the memory as follows:

a. call DXAddArrayData(a, ð, n, NULL)
b. get a pointer to the memory:

ptr = DXGetArrayData(a)
c. put the items directly into global memory “by hand”: set the contents

(pointed to by the pointer obtained in the preceding step) to the data
value.

ptr[i] = itemvalue;

In the examples shown here:
a is the array.
i is the position at which to add an item.
n is the number of items to be added.
item(s) is the address of the item(s) to be added.

String List Routines
String lists are implemented as arrays of type TYPE_STRING, rank 1, and shape
max_string_length+1. Each item should be a NULL-terminated character string.

Array DXMakeStringList()
Array DXMakeStringListV();

Create a String list from a given list of strings. See page 292.

 Array Handling
Modules may have to handle a variety of different types of Arrays, such as
constant, compact (e.g., regular or product), and irregular. DXGetArrayData() can
be used on any of these types. However, if the original Array was compact,
memory use is increased, sometimes dramatically.

102 IBM Visualization Data Explorer: Programmer’s Reference

The Array-handling routines simplify the task of dealing with the different types of
Arrays at a cost in efficiency. Because it operates on a case-by-case basis,
incremental methods available to DXGetArrayData() cannot be used. In addition,
each element must be recomputed for each reference to that element. Therefore,
multiple references to the same element will pay a penalty in execution time.
However, if the array is irregular or constant, this interface can be substituted for
the standard DXGetArrayData() with little degradation of performance.

The basic approach is to use DXCreateArrayHandle() for a given array, and then to
retrieve the values of elements in that array, using either DXIterateArray(),
DXGetArrayEntry(), or DXGetArrayEntries().

DXCreateArrayHandle()
Creates a “handle” to allow convenient access to the items in any Array class.
See page 214.

Error DXFreeArrayHandle()
Frees the memory allocated for an Array handle. See page 234.

Pointer DXGetArrayEntry()
Returns a specified item from an Array. See page 238.

void DXGetArrayEntries()
Returns specified items from an Array. See page 238.

Pointer DXIterateArray()
Iterates through an Array. See page 285.

Creating Positions and Connections Grids
Compact Arrays allow compact encoding of positions and connections. Four
subclasses of Arrays represent 1- and multidimensional regular positions and
connections:

In addition, the subclass Constant Array allows compact encoding of a constant
value of any type, category, rank, or shape.

For more information about compact Array Objects, see Chapter 3, “Understanding
the Data Model” on page 15 in IBM Visualization Data Explorer User’s Guide.

Note on Use

The generic routine DXGetArrayData() expands the data of a compact Array into
an explicitly indexed array and is the preferred means for this purpose.
However, it is better still to code your algorithm so that no expansion of the
Array is performed.

In addition to the low-level routines for creating various compact Arrays (described
later), Data Explorer provides the following higher-level routines for creating a
regular grid of positions or connections. These routines are to be preferred when

 positions connections

One-dimensional RegularArray PathArray

n-dimensional ProductArray MeshArray

 Data Model

 Chapter 11. Working with Data Model Objects 103

there is a choice, because most Data Explorer functions support regular grids of
positions or connections efficiently.

Array DXMakeGridPositions()
Array DXMakeGridPositionsV();

Create an n-dimensional grid of regularly spaced positions. See page 290.

Array DXQueryGridPositions()
Returns information about a regular positions grid. See page 327.

Array DXMakeGridConnections()
Array DXMakeGridConnectionsV();

Construct a grid of regular connections. See page 289.

Array DXQueryGridConnections()
Returns information about a regular connections grid. See page 327.

 Regular Arrays
Regular Arrays encode linear regularity. A regular array is a set of n points lying
on a line with a constant spacing between them, representing 1-dimensional regular
positions. (The points themselves may be in a higher-dimensional space, but they
must lie on a line.) All regular Arrays must be category real (as opposed to
complex) and rank 1; the shape is then the dimensionality of the space in which the
points are imbedded. (For information on rank and shape, see Chapter 3,
“Understanding the Data Model” on page 15 in IBM Visualization Data Explorer
User’s Guide.

RegularArray DXNewRegularArray()
Creates an Array containing evenly spaced data. See page 309.

RegularArray DXGetRegularArrayInfo()
Returns the number of items, the origin, and the delta of a regular Array. See
page 266.

 Path Arrays
Path arrays encode linear regularity of connections. A path array is a set of n-1
line segments, where the ith line segment joins points i and i+1. All path arrays
have type integer, category real, rank 1, and shape 2.

PathArray DXNewPathArray()
Creates an Array describing the connections between a set of points. See
page 307.

PathArray DXGetPathArrayInfo()
Returns the number of points referred to in a path Array. See page 262.

Less Commonly Used Routines

PathArray DXSetPathOffset()
PathArray DXGetPathOffset();

Set and retrieve the offset value for the direction of the grid represented by this
path. In the case where a path Array is used to define a regular grid of
connections that is a part of a partitioned Field, it is useful to know the offset of
the partition within the original Field. See page 357 and page 263.

104 IBM Visualization Data Explorer: Programmer’s Reference

 Product Arrays
A product Array encodes higher-dimension Arrays as a Cartesian product of
lower-dimension Arrays. The resulting set of positions constitutes an n-dimensional
“grid” (i.e., a Cartesian product) derived from combining n Arrays.

Since each term is either regular or explicitly indexed, the resulting
multidimensional positions are either completely or partially regular.

ProductArray DXNewProductArray()
ProductArray DXNewProductArrayV();

Create an Array that is the Cartesian product of a set of regular or irregular
position Arrays. See page 308.

ProductArray DXGetProductArrayInfo()
Returns the number of terms and the terms of a product Array. See page 265.

 Mesh Arrays
Mesh Arrays encode multidimensional regularity of connections. A mesh Array is a
product of a set of connections Arrays. The product is a set of interpolation
elements where the product has one interpolation element for each pair of
interpolation elements in the two multiplicands, and the number of sample points in
each interpolation element is the product of the number of sample points in each of
the multiplicands’ interpolation elements. This represents multidimensional regular
connections. Each term may be either regular or not, resulting in either completely
regular (for example, cubes) or partially regular (for example, prisms)
multidimensional connections.

MeshArray DXNewMeshArray()
MeshArray DXNewMeshArrayV();

Create an Array that is the product of a set of regular or irregular connection
Arrays. See page 306.

MeshArray DXGetMeshArrayInfo()
Returns the number of terms and the terms of a mesh Array. See page 256.

Less Commonly Used Routines

MeshArray DXSetMeshOffsets()
MeshArray DXGetMeshOffsets();

Set and retrieve the offset values along each dimension of a mesh. When a
Mesh Array is used to define a regular grid of connections that is a part of a
partitioned Field, it is useful to know the offset of the partition within the original
Field. See page 355 and page 257.

 Constant Arrays Data Model

Constant Arrays define Arrays that contain a number of items with the same value.
These items may be of any type, category, rank, and shape.

ConstantArray DXNewConstantArray()
ConstantArray DXNewConstantArrayV();

Create an Array containing constant data. See page 302.

Array DXQueryConstantArray()
Determines if an Array contains constant data and, if so, returns number of
items and data value. See page 325.

 Chapter 11. Working with Data Model Objects 105

Pointer DXGetConstantArrayData()
Returns a pointer to the value stored in a Constant Array. See page 244.

 11.4 String Class
String Objects encapsulate a NULL-terminated character string as an Object. For
example, they can be used to associate a string-valued attribute with an Object.
Since the value of an attribute must be an Object, a string-valued attribute is stored
as a String Object. See “String List Routines” on page 102.

String DXNewString()
Creates a new String Object and initializes it with a copy of the specified
NULL-terminated string. See page 312.

char \DXGetString()
Gets a pointer to the contents of a String Object. See page 268.

 11.5 Private Class
Private Objects are an extension mechanism for storing data in the form of Objects.
They are useful, for example, in the cache interface, where cached items must be
Objects. The user is responsible for maintaining the data. In particular, the code
creating a Private Object should also specify a deletion routine that will be called by
the executive when the Object is deleted (to free, for example, any allocated private
memory).

Private DXNewPrivate()
Creates an Object that contains private data. See page 308.

Pointer DXGetPrivateData()
Returns the private data pointer associated with a Private Object. See page
265.

 11.6 Printing Objects
These routines show the hierarchy of the Object.

Error DXPrint()
Error DXPrintV();

Print an Object according to specified formatting options. See page 316.

 11.7 Field Construction
This section describes routines that aid in the construction of fields.

Points and Dependent Data
Some Field components are often in one-to-one correspondence with the
“positions” component (e.g., “data,” “colors,” “opacities,” and surface “normals”).
(Alternatively, any of these components may be in one-to-one correspondence with
the “connections” component.) If they are in one-to-one correspondence with
positions (indicated by a “dep” attribute of “positions”), then they are also expected
to be the same size as the positions component. The following routines aid in
constructing such components.

106 IBM Visualization Data Explorer: Programmer’s Reference

Field DXAddPoint()
Field DXAddColor();
Field DXAddFrontColor();
Field DXAddBackColor();
Field DXAddOpacity();
Field DXAddNormal();

Field DXAddPoints();
Field DXAddColors();
Field DXAddFrontColors();
Field DXAddBackColors();
Field DXAddOpacities();
Field DXAddNormals();

Add points or point-dependent data to a Field. See page 194.

Field DXAddFaceNormal()
Field DXAddFaceNormals();

Add connection-dependent normals to a Field. See page 191.

Note on Use

The fourteen routines listed above are all suitable for adding a small number of
points or for rapid prototyping; but for better performance, see
DXAddArrayData() in “Irregular Arrays” on page 101.

 Connections
The routines listed here define the interpolation elements of a Field, creating a
“connections” component with an appropriate “element type” attribute.

Field DXAddLine()
Field DXAddTriangle();
Field DXAddQuad();
Field DXAddTetrahedron();

Add a single interpolation element to a Field. See page 192.

Field DXAddLines()
Field DXAddTriangles();
Field DXAddQuads();
Field DXAddTetrahedra();

Add interpolation element(s) to a Field. See page 192.

Field DXSetConnections()
Sets the “connections” component of a Field as a specified Array with a
specified element type. See page 349.

Array DXGetConnections()
Gets the “connections” component of a Field and checks to see if it has a
specified “element type” attribute. See page 244.

 Data Model Standard Components
The following routines create and manipulate standard components of a Field.

Field DXEndField()
Creates the standard components that a Field is expected to contain if they do
not already exist. See page 224.

 Chapter 11. Working with Data Model Objects 107

Error DXEndObject()
Creates the standard components that Fields are expected to contain, sharing
the results when components are shared between Fields. See page 226.

int DXEmptyField()
Determines whether a Field contains information. See page 224.

Field DXChangedComponentValues()
Field DXChangedComponentStructure();

Both routines delete all components of a Field that are derived from a specified
component. DXChangedComponentStructure() also deletes all Field
components that are dependent on or refer to a specified component. See
Note on Use. See page 204.

Note on Use

This example illustrates one use of DXChangedComponentValues():

g = DXCopy(f, COPY_STRUCTURE);

a = DXGetComponentValue(g, "positions");

b = ... modification of a ...

DXSetComponentValue(g, "positions", b);

 DXChangedComponentValues(g, "positions");

Object DXBoundingBox()
Computes the bounding box of an Object. See page 201.

Array DXNeighbors()
Returns the neighbors Array of a Field. See page 297.

Error DXStatistics()
Returns statistical information for an Object. See page 365.

Object DXValidPositionsBoundingBox()
Computes the bounding box of the valid positions of an Object. See page 373.

11.8 Extracting Module Parameters
This section describes routines that aid in the parsing of parameters to modules.
Inputs to modules that are simple items such as integers, floats, and character
strings are packaged as Array Objects. The following routines simplify the
extraction of such values. If the Object does not match (even if promoted as
described in the following material), the routines return NULL but do not set the error
code. Otherwise they return the original Object and fill in the pointer to the item.

If a float is expected, a byte, short, int, or long can be promoted to float. If an
integer is expected, a byte or short can be promoted. If a float vector is expected,
a byte, short, or integer vector can be promoted. If a string is expected, either a
String Object or an Array of characters is accepted.

Object DXExtractInteger()
Determines whether an Object can be converted to an integer and, if so,
extracts it. See Note on Use. See page 230.

Object DXExtractFloat()
Determines whether an Object can be converted to a floating-point value and,
if so, extracts it. See page 229.

108 IBM Visualization Data Explorer: Programmer’s Reference

Object DXExtractString()
Determines whether an Object can be converted to a string and, if so, extracts
it. See Note on Use. See page 232.

Object DXExtractNthString()
Determines whether an Object can be converted to a list of strings and, if so,
extracts the nth one from it. See page 230.

Object DXQueryParameter()
Determines whether an Object can be converted to a specific value type. See
page 330.

Object DXExtractParameter()
Determines whether an Object can be converted to a specific value type and, if
so, returns the value in the user-provided buffer. See page 231.

Error DXQueryArrayConvert()
Error DXQueryArrayConvertV();

Determine if the given Array can be converted to an Array with the given type,
category, rank, and shape. See page 325.

Error DXQueryArrayCommon()
Error DXQueryArrayCommonV();

Return a type, category, rank, and shape to which all of the arrays can be
converted. See page 323.

Error DXArrayConvert()
Error DXArrayConvertV();

Create a new Array with a given type, category, rank, and shape from the data
in the given Array. See page 199.

Array DXScalarConvert()
Converts the contents of an Array into scalar floating-point values. See page
342.

Note on Use

If a routine expects either a character string or an integer, the following code
would determine the case and return the value.

Object o = input_object_to_check;

 char \cp;

 int i;

if (DXExtractInteger(o, &i))

x = i;

else if (DXExtractString(o, &cp))

 strcpy(buffer, cp);

 else

 DXSetError(...);

 Data Model

11.9 Creating Simple Data Explorer Objects
The following routines can be used to create a particular type of Data Explorer
Object: integer, float, or string.

 Chapter 11. Working with Data Model Objects 109

Array DXMakeFloat()
Returns a floating-point array containing a single floating-point value. See
page 289.

Array DXMakeInteger()
Returns an integer array containing a single integer. See page 291.

String DXMakeString()
Returns a string object. See page 292.

 11.10 Component Manipulation
This section describes advanced routines for explicitly manipulating Field
components. Since these routines expect the input to be a copy of the Object, they
operate directly on the input without making another copy. For additional
information on components, see Chapter 3, “Understanding the Data Model” on
page 15 in IBM Visualization Data Explorer User’s Guide.

Object DXRename()
Renames a component in a Field. See page 337.

Object DXSwap()
Exchanges two components in a Field. See page 365.

Object DXExtract()
Extracts a component from a Field. See page 228.

Object DXInsert()
Adds a component to a Field. See page 278.

Object DXReplace()
Adds a component from one Field to another. See page 338.

Object DXRemove()
Deletes components from a Field. See page 336.

Object DXExists()
Determines whether if a component exists in a Field. See page 227.

11.11 Data Import and Export
This section describes routines for importing and exporting data into and out of
Data Explorer. This includes support for Data Explorer (.dx) files, as well as
industry-standard netCDF files.

Data Explorer Format Files
Files in the Data Explorer format (see Chapter 3, “Understanding the Data Model”
on page 15 in IBM Visualization Data Explorer User’s Guide) can be imported by
the DXImportDX() routine and exported by the DXExportDX() routine.

Object DXImportDX()
Imports data from a Data Explorer file. See page 275.

Object DXExportDX()
Writes an Object to a specified file in a specified Data Explorer format. See
page 228.

110 IBM Visualization Data Explorer: Programmer’s Reference

 netCDF Data
Data Explorer can accept industry-standard netCDF files, which describe only a
subset of the Data Explorer data model capabilities. For example, netCDF files are
limited to regular data. This routine is provided for compatibility with other systems
that use netCDF.

Object DXImportNetCDF()
Imports data from a netCDF file. See page 276.

 Data Model

 Chapter 11. Working with Data Model Objects 111

112 IBM Visualization Data Explorer: Programmer’s Reference

 Chapter 12. System Services

12.1 Error Handling and Messages . 114
12.2 Timing . 116
12.3 Memory Allocation . 116
12.4 Object Class . 117

Type Definitions . 117
Classes and Subclasses . 118
Object Routines . 119
Setting Data Types . 120

12.5 Cache . 121
12.6 Pending Commands . 122
12.7 Looping Support . 122
12.8 Parallelism . 123
12.9 Basic Data Types . 123

Points and Vectors . 124
Lines, Triangles, Quadrilaterals, Tetrahedra, and Cubes 124
Colors . 125
Angles . 125
Transformation Matrices . 126
Basic Operations . 126

12.10 Module Access . 127
12.11 Asynchronous Services . 129

 System Services

 Copyright IBM Corp. 1991-1997 113

This chapter describes the programming interface to basic system services: error
handling and messages, timing, memory allocation, basic object services, types,
Private Objects, String Objects, the cache, parallel programming, some basic
convenience types and operations, module access, and asynchronous services.

For detailed descriptions of library routines see Appendix C, “Data Explorer Library
Routines” on page 183.

12.1 Error Handling and Messages
Most Data Explorer library routines return either a pointer or an integer error code.
A non-NULL pointer or the nonzero integer constant OK indicates success. NULL or
ERROR (defined as zero) indicates failure.

If a library routine fails, it may use DXSetError() to set an error code. If it does, the
(user-written) calling routine should return NULL or ERROR to propagate the error
back to the user.

However, if the library routine does not set an error code, the calling routine should
determine whether the NULL return indicates an error:

� If an error is indicated, the calling routine should set an error code (by calling
DXSetError()) and return NULL or ERROR.

� If no error is indicated, the calling routine should proceed.

For example, DXGetComponentValue() returns NULL if the specified component does
not exist, but it does not set an error code: the calling routine must determine
whether the absence of that component is an error.

How any one Data Explorer routine handles error codes is described in the relevant
entry in Appendix C, “Data Explorer Library Routines” on page 183.

The error codes are defined as follows:

typedef enum errorcode {

 ERROR_MIN,

 ERROR_NONE,

 ERROR_INTERNAL,

 ERROR_UNEXPECTED,

 ERROR_ASSERTION,

 ERROR_NOT_IMPLEMENTED,

 ERROR_NO_MEMORY,

 ERROR_BAD_CLASS,

 ERROR_BAD_TYPE,

 ERROR_NO_CAMERA,

 ERROR_MISSING_DATA,

 ERROR_INVALID_DATA,

 ERROR_BAD_PARAMETER,

 ERROR_MAX

} ErrorCode;

typedef int Error;

#define ERROR ð

#define OK 1

typedef void \Pointer;

#undef NULL

#define NULL ð

114 IBM Visualization Data Explorer: Programmer’s Reference

Error DXSetError()
#define DXErrorReturn()
#define DXErrorGoto()
#define DXASSERT()

Set an error code and an explanatory message. See Note on Use on
page 115 and page 351.

Error DXAddMessage()
#define DXMessageReturn()
#define DXMessageGoto()

Append a message to the current error message. See Note on Use on
page 115 and page 193.

void DXWarning()
Presents a warning message to the user. See page 374.

void DXMessage()
Presents an informational message to the user. See page 296.

Note on Use

When a function signals an error by returning NULL, it should also set an error
code and an error message, using one of the following error routines:

1. DXErrorReturn(errorcode, message); Sets an error code and an error
message, then returns NULL; this function should be invoked by the
lowest-level routine that detects the error.

2. DXMessageReturn(message); Appends its own message to the message
already recorded; this should be done by routines that:
� Detect an error returned by a lower-level routine that has already set an

error code.
� Contain useful information to add to the message.

3. return ERROR; Is used when an error return is detected from a lower-level
routine and the current routine has nothing useful to add to the message.

If cleanup is required before return, DXErrorGoto() or DXMessageGoto() may be
used instead. Both routines require an error: label, after which cleanup is
performed and either NULL (as shown here) or ERROR is returned.

 error:

... cleanup goes here ...

 return NULL;

Less Commonly Used Routines

ErrorCode DXGetError()
Returns an error code for the last error that occurred. See page 247.

char \DXGetErrorMessage()
Returns the current error message. See page 249.

void DXResetError()
Resets the error state. See page 339.

void DXBeginLongMessage()
void DXEndLongMessage();

Together create a single “long” message from multiple calls to DXMessage().
See page 201.

 System Services

 Chapter 12. System Services 115

void DXDebug()
void DXEnableDebug();
int DXQueryDebug();

Operate on global debug keys. See page 219.

DXDebug() compares an Array of keys to the global debug keys and calls
DXMessage() if any are common to both.

DXEnableDebug() enables or disables one or more global debug keys.
DXQueryDebug() compares an Array of keys to the global debug keys and

 returns “1” if any are common to both.

 12.2 Timing
The following routines involve “time marks,” used as the basis for measuring
performance characteristics of the system.

DXMarkTime()
void DXMarkTimeLocal();

Record the times of various events in system operation (e.g., the beginning
and the end of module execution). Time marks are batched until
DXPrintTimes() is called. See page 295.

void DXPrintTimes()
Prints time marks. The accumulation and printing of timing messages must be
enabled by DXTraceTime(). See page 318.

void DXTraceTime()
Enables or disables the accumulation of time marks. See page 367.

Note: For modules linked to Data Explorer, the Trace module enables the
recording and printing of times (see Chapter 1, “Data Explorer Tools” on
page 1 in IBM Visualization Data Explorer User’s Reference).

double DXGetTime()
Returns the elapsed time (in seconds) since system initialization. See page
269.

 12.3 Memory Allocation
Data Explorer recognizes two kinds of memory—local and global. Stack variables
and memory allocated by DXAllocateLocal() are local to the processor. Memory
allocated by DXAllocate() (including all Objects) is global and may or may not
reside in the processor. (On some platforms, such as those without per-processor
local memory, there is no distinction between global and local.)

Data Explorer’s memory-allocation routines, which provide hooks for debugging,
also distinguish between local and global allocation. These, rather than the
standard system memory-allocation routines (such as malloc()), are recommended,
to ensure consistent management of memory.

Pointer DXAllocate()
Pointer DXAllocateZero();

Allocate global memory. See page 196.

Pointer DXAllocateLocal()
Pointer DXAllocateLocalZero();

Allocate local memory if available; otherwise, global memory. See page 196.

116 IBM Visualization Data Explorer: Programmer’s Reference

Pointer DXAllocateLocalOnly()
Pointer DXAllocateLocalOnlyZero();

Allocate local memory. See page 196.

Pointer DXReAllocate()
Changes the size of a previously allocated block of memory. See page 334.

Error DXFree()
Frees a previously allocated block of memory. See page 233.

Less Commonly Used Routines

void DXPrintAlloc()
Prints out a summary of memory use. See page 317.

 12.4 Object Class
The next four subsections summarize the type definitions and routines that apply to
the Object class.

 Type Definitions
An Object is represented by a pointer to a C structure stored in global memory.
The content of the structure is private to the implementation. A typedef is provided
for each class of Object:

typedef struct object \Object;

typedef struct string \String;

typedef struct private \Private;

typedef struct field \Field;

typedef struct group \Group;

typedef struct multigrid \Multigrid

typedef struct series \Series;

typedef struct compositefield \CompositeField;

typedef struct array \Array;

typedef struct regulararray \RegularArray;

typedef struct patharray \PathArray;

typedef struct productarray \ProductArray;

typedef struct mesharray \MeshArray;

typedef struct interpolator \Interpolator;

typedef struct xform \Xform;

typedef struct screen \Screen;

typedef struct clipped \Clipped;

typedef struct camera \Camera;

typedef struct light \Light;

An enum provides a number for each class and subclass:

typedef enum {

 CLASS_MIN,

 CLASS_OBJECT,

 CLASS_PRIVATE,

 CLASS_STRING,

 CLASS_FIELD,

 System Services

 Chapter 12. System Services 117

 CLASS_GROUP,

 CLASS_MULTIGRID,

 CLASS_SERIES,

 CLASS_COMPOSITEFIELD,

 CLASS_ARRAY,

 CLASS_REGULARARRAY,

 CLASS_PATHARRAY,

 CLASS_PRODUCTARRAY,

 CLASS_MESHARRAY,

 CLASS_INTERPOLATOR,

 CLASS_FIELDINTERPOLATOR,

 CLASS_GROUPINTERPOLATOR,

 CLASS_LINESRR1DINTERPOLATOR,

 CLASS_LINESRI1DINTERPOLATOR,

 CLASS_QUADSRR2DINTERPOLATOR,

 CLASS_QUADSII2DINTERPOLATOR,

 CLASS_TRISRI2DINTERPOLATOR,

 CLASS_CUBESRRINTERPOLATOR,

 CLASS_CUBESIIINTERPOLATOR,

 CLASS_TETRASINTERPOLATOR,

 CLASS_GROUPITERATOR,

 CLASS_ITEMITERATOR,

 CLASS_XFORM,

 CLASS_SCREEN,

 CLASS_CLIPPED,

 CLASS_CAMERA,

 CLASS_LIGHT,

 CLASS_MAX,

 CLASS_DELETED

} Class;

Classes and Subclasses
Every Data Explorer Object is a member of CLASS_OBJECT and thus can be
manipulated with generic-Object-class routines like DXDelete() and
DXGetObjectClass(). Each Data Explorer Object is also a member of one of the
subclasses of CLASS_OBJECT (e.g., CLASS_FIELD, CLASS_GROUP, and so on). Two of
these subclasses (CLASS_GROUP and CLASS_ARRAY) themselves have subclasses (see
Table 1 on page 96).

For any Object, DXGetObjectClass() returns the name of the “lowest” subclass to
which that Object belongs. If an operation does not require a particular subclass of
Object, it will not be affected if the Object is a not a member. If an operation does
require a particular subclass, however, DXGetGroupClass() or DXGetArrayClass()
can be used to identify it.

� For Groups, DXGetGroupClass() returns one of its three subclasses or (if the
Group is generic) CLASS_GROUP.

� For Arrays, DXGetArrayClass() returns one of its five subclasses or (if the Array
is generic) CLASS_ARRAY.

Any member of (superclass) CLASS_ARRAY or CLASS_GROUP can be manipulated with
generic superclass routines such as DXGetGroupType() and DXGetArrayInfo().

118 IBM Visualization Data Explorer: Programmer’s Reference

 Object Routines
A number of routines can operate on any Object.

Class DXGetObjectClass()
Returns the class of an Object. See page 260.

Error DXDelete()
Deletes a reference to an Object. See page 220.

Object DXSetAttribute()
Object DXDeleteAttribute();

Add or remove a named attribute from an Object. See page 344.

Object DXGetAttribute()
Object DXGetEnumeratedAttribute();

Retrieve an attribute from an Object. See page 240 and page 245.

The first retrieves a named attribute from an Object; the second, the nth
attribute.

Object DXGetFloatAttribute()
Retrieves a named attribute from an Object, verifies that its contents are a
floating-point number, and returns that number. See page 249.

Object DXGetIntegerAttribute()
Retrieves a named attribute from an Object, verifies that it contains an integer
number, and returns that number. See page 253.

Object DXGetStringAttribute()
Retrieves a named attribute from an Object, verifies that it contains a string,
and returns a pointer to that string. See page 269.

Object DXSetFloatAttribute()
Object DXSetIntegerAttribute();
Object DXSetStringAttribute();

Associate a floating-point, integer, or string attribute with an Object. See page
353, page 354, and page 362.

Objects can also be copied:

enum copy {

 COPY_ATTRIBUTES,

 COPY_HEADER,

 COPY_STRUCTURE

};

Object DXCopy()
Copies the structure of an object. The COPY_ parameter determines the depth
to which an Object is copied:

� COPY_ATTRIBUTES Creates a new Object of the same type as the old and
copies all attributes and type information. It does not put references to
members, components, etc. into the new object.

� COPY_HEADER Copies only the header of the immediate Object. It does not
copy the attributes, members, etc.; instead it puts references to them into
the new Object.

� COPY_STRUCTURE Is the parameter most frequently used with this routine.
– For Groups: copies the Group header and recursively copies all Group

members.

 System Services

 Chapter 12. System Services 119

– For Fields: copies the Field header. It does not copy the components
(which are usually Arrays); instead it puts references to the
components into the resulting Field.

– For Arrays: passes back a pointer to the Array and makes no copy.

On error, the routine returns NULL and sets an error code. See “DXCopy” on
page 211. See also Chapter 5, “Working with Positions” on page 37,
Chapter 6, “Working with Connections” on page 43, and Chapter 7, “Importing
Data” on page 47 for examples of this routine’s use.

Less Commonly Used Routines

Object DXReference()
Increments the reference count of a specified Object. See page 335.

Error DXUnreference()
Removes a reference from an Object without deleting it. See page 371.

int DXGetObjectTag()
Object DXSetObjectTag();

Manipulate unique Object identifiers. See page 260.

Object DXCopyAttributes()
Copies attributes from one Object to another. See page 212.

Setting Data Types
The data type of Arrays, Fields, and Groups are determined as follows.

� Arrays: The data type is set when the Array is created. (See 11.3, “Array
Class” on page 101.)

� Fields: The data type is that of the “data” component, if there is one.
� Groups: The data type is set explicitly by DXSetGroupType(); it is set implicitly

for Series and Composite Groups (because members of these Groups must be
of the same type).

typedef enum {
 TYPE_BYTE (1 byte)

 TYPE_UBYTE (2 bytes)

 TYPE_SHORT (2 bytes)

 TYPE_USHORT (2 bytes)

 TYPE_FLOAT (4 bytes)

 TYPE_INT (4 bytes)

 TYPE_UINT (4 bytes)

 TYPE_DOUBLE (8 bytes)

 TYPE_HYPER (8 bytes)

 TYPE_STRING (dynamic)

} Type;

typedef enum {
 CATEGORY_REAL
 CATEGORY_COMPLEX
} Category;

Object DXGetType()
Returns the type, category, rank, and shape of an Object. See page 271.

120 IBM Visualization Data Explorer: Programmer’s Reference

int DXTypeSize()
int DXCategorySize();

The first returns the size (in bytes) of a variable of a given type; the second,
the size multiplier for a given category. See page 370.

 12.5 Cache
The look-aside cache service stores the results of computations for later use. Each
cache entry is uniquely identified by a string function name, an integer key (which
the executive uses to store multiple outputs for a single module), the number of
input parameters, and the set of input parameter values.

The input parameters and the Object to be cached must be Data Explorer Objects.

Associating data with a cache entry. User data not already in the form of an
Object can be associated with a cache entry by means of a Private Object (see
11.5, “Private Class” on page 106), encapsulating the data in an object. To
associate more than one Object with a cache entry, use a Group to contain the
Objects.

Losing a cache entry. Cache entries are subject to deletion without notice (e.g.,
when the system reclaims memory). The relative cost of creating an entry (which
must be specified when the entry is created) may be taken into account when
deleting Objects from the cache. If an estimate is not readily available, specify zero
(0). Specifying CACHE_PERMANENT as the cost prevents the entry from being deleted
during memory reclamation.

Object reference counts and the cache. It is important to be aware of the
following: The system uses the cache to store intermediate results from modules.
Thus inputs to modules often come from the cache. However:

� Once you have a pointer to a module’s input, you can be sure it will not be
deleted while you are processing it.

� If the input is a Group and you extract a member, that member will not be
deleted while you are using it (because the Group will not be deleted).

However, Objects other than module inputs that are put into or retrieved from the
cache behave differently: Once an Object is put in the cache, the system may
delete it at any time to reclaim memory. This last has two consequences.

1. DXGetCacheEntry() returns an Object that is referenced so that it will not be
deleted. Thus, you must delete the Object when you are finished using it:

o = DXGetCacheEntry(...);

... use o ...

 DXDelete(o);

Failure to do so will result in a memory leak, because the Object will always
have an extra reference.

2. To continue using an Object after putting it in the cache, you must reference it
before putting it there, and delete it when it is no longer needed:

o = New...;

 DXReference(o);

DXSetCacheEntry(..., o, ...);

... use o ...

 DXDelete(o);

 System Services

 Chapter 12. System Services 121

Conversely, if putting the Object in the cache is the last operation before the
return, and if o is not visible outside the scope of the routine, no reference is
necessary:

o = New...;

... use o ...

DXSetCacheEntry(..., o, ...);

 return ...;

where the return statement does not return o.

Cache Routines

#define CACHE_PERMANENT 1e32

Object DXGetCacheEntry()
Object DXGetCacheEntryV()

Retrieve a cache entry. See page 240.

Error DXSetCacheEntry()
Error DXSetCacheEntryV()

Set a cache entry. See page 345.

Error DXFreeModuleId()
Pointer DXGetModuleId()

Get a unique identifier for each instance of a module. See page 235 and page
258.

Error DXCompareModuleId()
Returns OK if the two specified module identifiers are the same; otherwise
returns ERROR. See page 209.

Pointer DXCopyModuleId()
Returns a pointer to a copy of the specified module identifier. See page 213.

 12.6 Pending Commands
In some cases, the module writer will want a particular task to be executed after the
execution of a graph (visual program). This pending task can be specified and set
for execution with DXSetPendingCmd.

DXSetPendingCmd()
Enters a task into a list of tasks to be run at the end of each graph
execution. See page 358.

 12.7 Looping Support
Two routines are supplied which affect the behavior of loops within Data Explorer.
Loops are typically initiated with the ForEachMember or ForEachN modules. From
within a user-written module, you could terminate a loop by calling DXLoopDone.

void DXLoopDone()
Terminates a loop. See page 287.

int DXLoopFirst()
Indicates whether it is the first time through a loop. See page 288.

122 IBM Visualization Data Explorer: Programmer’s Reference

 12.8 Parallelism
Note on Use

Modules used exclusively in a uniprocessor environment do not require any of
the routines described in this section. However, modules that use these
routines on a parallel processor can also be run on a uniprocessor without
changing any code.

Task Groups constitute a mechanism for specifying a collection of tasks to be
performed in parallel on a multiprocessor. The task model provides simple fork/join
semantics, suitable for coarse-grain parallelism:

1. Begin a collection of tasks to be executed in parallel (with
DXCreateTaskGroup())

2. Specify each task (with DXAddTask())
3. Complete the task Group and begin execution (with DXExecuteTaskGroup()).

Creating all the tasks first simplifies the model and allows optimal scheduling on
the basis of estimated task-completion times.

Notes on Use

� It is important that all information required by parallel tasks be in global
memory. This condition is generally met by passing Objects to tasks, since
all Objects are in global memory.

� Tasks must not attempt to modify the same data structures simultaneously,
with the exception of adding members to an existing Group (using
DXSetGroupMember()).

Error DXCreateTaskGroup()
Starts a new Group of tasks to be run in parallel. See page 216.

Error DXAddTask()
Adds a task to be run later, in parallel if possible. See page 195.

Error DXAbortTaskGroup()
Aborts a task group without executing it. See page 189.

Error DXExecuteTaskGroup()
Runs the Group of tasks in the current Group in parallel, if possible. See page
226.

int DXProcessors()
Returns the number of processors. See page 320.

int DXProcessorId()
Returns the current processor identifier. See page 319.

12.9 Basic Data Types
This section describes some basic data types used by the system, including points,
vectors, triangles, colors, and matrices.

 System Services

 Chapter 12. System Services 123

Points and Vectors
Points are represented by the Point structure. Data Explorer provides a routine
that constructs a point structure. Vectors are represented by the same structure as
points, but for the sake of clarity they are defined as a separate type.

typedef struct point {

float x, y, z;

} Point, Vector;

typedef int PointId;

Point DXPt()
Point DXVec();

Construct a Point or a Vector with the given coordinates. See page 322.

Lines, Triangles, Quadrilaterals, Tetrahedra, and Cubes
These data structures define the interpolation elements of an Object. They refer to
points by point identifiers.

typedef struct line {
PointId p, q;

} Line;

typedef struct triangle {
PointId p, q, r;

} Triangle;

typedef struct quadrilateral {
PointId p, q, r, s;

} Quadrilateral;

typedef struct tetrahedron {
PointId p, q, r, s;

} Tetrahedron;

typedef struct cube {
PointId p, q, r, s, t, u, v, w;

} Cube;

Figure 9 on page 125 shows the order of vertices in each structure. For more
information about connections and the order of vertices, see Chapter 3,
“Understanding the Data Model” on page 15 in IBM Visualization Data Explorer
User’s Guide.

Line DXLn()
Triangle DXTri();
Quadrilateral DXQuad();
Tetrahedron DXTetra();

Construct a line, triangle, quadrilateral, and tetrahedron respectively, given the
appropriate point identifiers. See page 286.

124 IBM Visualization Data Explorer: Programmer’s Reference

Figure 9. Order of Vertices in Connection Elements. In the tetrahedron at right, s is the
point nearest the viewer; in the tetrahedron at center, the point furthest from the viewer.

 Colors
Colors define the photometric characteristics of an Object; they may be associated
with points, triangles, or lights, and may be used to define its reflectance or opacity.
In Data Explorer, colors are floating-point numbers and therefore open ended, as is
light intensity in the real world. However, real output devices can display only a
limited range of intensities. In general, the range from 0.0 to 1.0 is by default
mapped onto the range of displayable intensities of the output device, so colors
should normally be specified in this range. Data Explorer provides a routine that
constructs an RGB color structure.

typedef struct rgbcolor {

float r, g, b;

} RGBColor;

RGBColor DXRGB()
Constructs an RGB color structure with the given components. See page 339.

Error DXColorNameToRGB()
Gets the RGB values for a specified colorname string. See page 208.

 Angles System Services

Angles are expressed as floating-point numbers in radians. The following macros
express angles in units that might be more convenient. For example, 5\DEG is 5
degrees in radians.

 Chapter 12. System Services 125

typedef double Angle;

#define DEG (6.2831853ð7179586476925287/36ð)

#define RAD (1)

 Transformation Matrices
Transformation matrices (or transforms) specify the relationship between Objects.
For example, when a renderable object is included in a model, a transformation
matrix specifies its placement. In Data Explorer, a transform is a 4×3 matrix
specifying rotation and translation. This is a homogeneous matrix without the part
that computes the w component of the result. (The w component is used for
perspective, which is specified by a camera and is not needed here.)

typedef struct matrix {

/\ xA + b \/

 float A[3][3];

 float b[3];

} Matrix;

static Matrix mdentity = {

1, ð, ð,

ð, 1, ð,

ð, ð, 1,

ð, ð, ð

};

Transforms can be specified in a number of ways:

Matrix DXRotateX()
Matrix DXRotateY();
Matrix DXRotateZ();

Return a Matrix that specifies a rotation (in radians) about the x, y or z axis by
angle angle. See page 340.

Matrix DXScale()
Returns a Matrix that specifies a scaling by amounts x, y, and z along the x, y
and z axes. See page 340.

Matrix DXTranslate()
Returns a Matrix that specifies a translation by vector v. See page 340.

Matrix DXMat()
Returns a Matrix with the specified components. See page 340.

 Basic Operations
A number of basic operations on the Matrix, Point, and Vector types are defined
here. Operations declared as operating on type Vector also work on Point
because both are type-defined for structure. These operations all take their
arguments by value and return the result.

Vector DXNeg()
Vector DXNormalize();
double DXLength();

Perform unary operations of negation, normalization, and length. See page
189.

Vector DXAdd()
Vector DXSub();
Vector DXMin();

126 IBM Visualization Data Explorer: Programmer’s Reference

Vector DXMax();
Perform vector operations of addition, subtraction, min, and max. Min and max
operations are performed on each component of a vector. See page 189.

Vector DXMul();
Vector DXDiv();

Multiply or divide a vector by a floating-point number. See page 189.

float DXDot()
Vector DXCross();

Form the dot product or cross-product of two vectors. See page 189.

Matrix DXConcatenate()
Returns a Matrix equivalent to the concatenation of two matrices. See page
210.

Matrix DXInvert()
Matrix DXTranspose();
Matrix DXAdjointTranspose();
float DXDeterminant();

Compute, respectively, the inverse, transpose, adjoint transpose, and
determinant of a matrix. See page 210.

Vector DXApply()
Forms the product of a vector (interpreted as a row vector) and a matrix. See
page 210.

 12.10 Module Access
The module-access routines listed here enable the programmer to call other
modules through an interface similar to the scripting language.

Modules are called by name, and parameters are specified as name-value pairs,
freeing the programmer from having to supply values for all possible parameters.
Optional parameters use the same defaults as they would if being executed directly
by the executive. (If other parameters are added in subsequent releases, the call
remains upwardly compatible.)

Note: The following modules cannot be called by DXCallModule:

 � Interactors

 � Flow Control

 � Interface Control

 � Special

FileSelector Integer IntegerList Reset
Scalar ScalarList Selector SelectorList
String StringList Toggle Value
ValueList Vector VectorList

Done Execute First ForEachMember
ForEachN GetGlobal GetLocal Route
SetGlobal SetLocal Switch

 System Services

ManageColormapEditor ManageControlPanel ManageImageWindow ManageSequencer

 Chapter 12. System Services 127

 � DXLink

Data Explorer modules can be called by inboard, outboard, and runtime-loadable
modules linked to Data Explorer. They can also be called by stand-alone programs
(for examples, see /usr/lpp/dx/samples/callmodule).

Note: Use of DXCallModule in a stand-alone program or outboard module
requires linking to the library libDXcallm.a.

 Error DXCallModule();
object DXModSetFloatInput();
object DXModSetIntegerInput();
 void DXModSetObjectInput();
 void DXModSetObjectOutput();
object DXModSetStringInput();
 DXSetModuleInput();
 DXSetModuleOutput();

Allow a module to call another module (see Note on Use). See page 203.

Void DXInitModules()
Must be called when using DXCallModule in a stand-alone program or
outboard module. See page 277.

Void DXSetErrorExit()
Determines the action taken when DXSetError is called by a stand-alone
program. See page 352.

Void DXGetErrorExit()
Returns the current error-handling level as set by DXSetErrorExit. See page
248.

Error DXCheckRIH()
Checks registered input handlers. See page 205.

Colormap Sequencer

DXLInput DXLInputNamed DXLOutput

128 IBM Visualization Data Explorer: Programmer’s Reference

Note on Use

This example calls the Slab module.

Error Slab1(Object toBeSlabbed, int dimension, int position

 Object \slabbedObject)

{

 ModuleInput in[3];

 ModuleOutput out[1];

 Error result;

DXModSetObjectInput(&in[ð], "input", toBeSlabbed);

DXModSetIntegerInput(&in[1], "dimension", dimension);

DXModSetIntegerInput(&in[2], "position", position);

DXModSetObjectOutput(&out[ð], "output", SlabbedObject);

result = DXCallModule("Slab", 3, in, 1, out);

 return result;

}

 12.11 Asynchronous Services
The asynchronous services routines enable a module with an external interface
(e.g., to another application through a socket) to signal the executive that it is ready
to run again.

If the module has signaled its readiness to run again, and Data Explorer is in
Execute on Change mode, the system reexecutes the module immediately (and any
modules downstream as well). Otherwise, it does not run until the next time the
user initiates an execution.

Error DXReadyToRun()
Enables an asynchronous module to signal that it is ready to execute again.
See page 334.

Error DXRegisterInputHandler()
Assigns a handler routine for input coming from an open file descriptor. See
page 336.

Error DXFreeModuleId()
Pointer DXGetModuleId()

Get a unique identifier for each instance of a module. See page 235 and page
258.

Error DXCompareModuleId()
Returns OK if the two specified module identifiers are the same; otherwise
returns ERROR. See page 209.

Pointer DXCopyModuleId()
Returns a pointer to a copy of the specified module identifier. See page 213.

 System Services

 Chapter 12. System Services 129

130 IBM Visualization Data Explorer: Programmer’s Reference

 Data Processing

 Chapter 13. Data Processing

13.1 Data Partitioning . 132
13.2 Interpolation and Mapping . 132
13.3 Invalid Data . 133

Examples . 136
13.4 Growing and Shrinking Partitioned Data 137
13.5 Hashing . 139

Examples . 140
13.6 Pick-Assistance Routines . 142

Example . 143

 Copyright IBM Corp. 1991-1997 131

The higher-level processing functions available in Data Explorer include: data
partitioning, interpolation and mapping, invalid-data handling, growing and shrinking
partitioned data, hashing, and picking.

 13.1 Data Partitioning
Partitioning is the process of dividing a Field into spatially disjoint subsets called
“partitions.” The result is a Composite Field, whose members are partitions.
Partitioning is particularly useful for parallel processing.

Since each interpolation element of an input Field is assigned to one and only one
partition, the resulting partitions cover precisely the same region of space as the
original input Field did without overlap. However, because the input elements cover
the same region of space, the bounding boxes of the resulting partitions may
overlap.

Group DXPartition()
Divides a Field into partitions. See page 316.

13.2 Interpolation and Mapping
The interpolation service described here performs linear interpolations on the
values of a Field or Composite Field. The values are those of a function y(x)
defined in terms of points xi (“positions”), values yi (“data”), and basis functions bi
(x) (implicitly defined by the element type or by the faces).

Interpolator Objects are the interface to calling applications. They:

� Provide interpolation methods that are appropriate to the values in the Field
Object operated on. The choice of method is based on factors such as the
hierarchical structure of the data model, data formats, primitive types, and
interpolation model.

� Contain data structures that facilitate interpolation. These structures are
initialized either:

– immediately, when the interpolator is created, or
– on demand, during the interpolation process. This delayed initialization is

especially useful when the data being interpolated is partitioned and only
some of the partitions require interpolation. However, if the interpolator is
intended for sharing, it must be fully initialized before it is copied. This
initialization can be done in parallel prior to the creation of subtasks.

� Use information gathered in previous interpolations to speed subsequent
interpolations. For that reason, Interpolator Objects contain data specific to the
process that uses the interpolator. Consequently, each parallel process must
be provided with its own interpolator. The most efficient way of creating such
“individualized” interpolators is to generate a single, fully initialized interpolator;
pass it to the parallel subtasks that need to use it; and have the subtasks then
copy that interpolator for local operation. When this approach is used, the
parent interpolator cannot delay initialization: it must be fully initialized before it
is copied.

Note: Fields interpolated through this interface must have the same dimensionality
as the space in which they are embedded. For example, triangles embedded in a
2-dimensional plane can be interpolated; triangles in 3-dimensional space cannot.
For interpolation, faces must link 2-dimensional positions, and data must be
dependent on “faces.”

132 IBM Visualization Data Explorer: Programmer’s Reference

 Data Processing

enum interp_init {

 INTERP_INIT_DELAY,

 INTERP_INIT_IMMEDIATE,

 INTERP_INIT_PARALLEL

};

Interpolator DXNewInterpolator()
Creates an Interpolator Object. See page 305.

Interpolator DXInterpolate()
Interpolates data values in a Field. See page 280.

Interpolator DXLocalizeInterpolator()
Copies the interpolator structures into local memory. See page 287.

Object DXMap()
Interpolates data values at sample points. See page 293.

Array DXMapArray()
Provides an intermediate-level mapping function. See page 294.

Object DXMapCheck()
Verifies that Objects are valid for mapping. See page 294.

 13.3 Invalid Data
In order to support the elimination of unwanted items from a data set, positions,
connections, faces, or polylines in a Field can be “invalidated” by placing a
corresponding “invalid positions,” “invalid connections,” “invalid faces,” or “invalid
polylines” component in that Field. An “invalid” component lists the individual data
items of the positions, connections, faces, or polylines component that are invalid.

In position-, connection-, face-, and polyline-dependent components, data items that
correspond to invalid elements are themselves invalid. Data may be invalidated by
modifying (or creating, if necessary) these invalid components. If no invalid
component exists, all data items are assumed to be valid.

An invalid component is represented by one of two types of Array:

1. An Array of length equal to the length of the “positions,” “connections,” “faces,”
or “polylines” component. This component has the “dep” attribute of “positions,”
“connections,” “faces,” or “polylines” (i.e., the elements correspond one-to-one
with the elements in the applicable Array). The Array is either TYPE_BYTE or
TYPE_UBYTE; its valid elements have a value of DATA_VALID (0), invalid elements
a value of DATA_INVALID (1).

2. An Array of length equal to the number of invalid members of the applicable
component. This component has the “ref” attribute of “positions,” “connections,”
“faces,” or “polylines.” The Array is either TYPE_INT or TYPE_UINT, and the
indices of the invalid members are listed.

If many elements of the component are invalid, the first type of Array is preferable.
If only a few elements are invalid, the second is preferable.

The routines described here simplify the handling of both types of invalid
component.

 Chapter 13. Data Processing 133

Once positions have been invalidated, their immediate connections, faces, or
polylines can also be invalidated by calling DXInvalidateConnections(), which will
create an “invalid connections,” “invalid faces,” or “invalid polylines” component if
necessary. (Note that this component cannot be assumed to be up-to-date unless
this routine is called.)

Invalid positions, connections, faces, and polylines (and their dependent
information) can be removed from the data set by calling DXCull(). This routine:

� Removes all invalidated elements and the corresponding elements of
components that are dependent on invalidated elements.

� Renumbers components that reference positions, connections, faces, and
polylines (inserting a -1 for indices that refer to removed positions, connections,
faces, and polylines).

� Removes invalid positions, invalid connections, invalid faces, and invalid
polylines components.

Removal of invalid components may affect system performance significantly if it
requires the conversion of regular positions and connections components to
irregular form (i.e., by greatly increasing the memory used for these components).
For example, DXCreateInvalidComponentHandle() creates a “handle” for a specified
invalid component. Other routines set particular elements as valid or invalid or they
determine the validity of a given element. The module writer can set up a handle
to mark elements as either valid or invalid (e.g., initializing all elements to invalid
and validating the appropriate elements or vice versa).

When the time comes to create an invalid-component Array, the information stored
in the handle is used to create one of the two kinds of Array just described,
depending on the relative number of invalid elements.

Note: Before adding a new invalid component to a Field, it is important to explicitly
remove any invalid component having the same name. The reason for this
requirement is that the attributes of an existing component will be copied to the new
component. Overwriting a “dep” invalid component with a “ref” invalid component
will result in a component with both attributes, which is self-contradictory.

#define DATA_VALID ð

#define DATA_INVALID 1

Object DXInvalidateConnections()
Propagates the invalidity of positions. See page 280.

Object DXInvalidateDupBoundary()
Invalidates all but one of the positions shared between partitions in a
Composite Field. See page 281.

Object DXInvalidateUnreferencedPositions()
Determines which positions in the Fields of the input Object are not referenced
by any connections element and invalidates them. See page 281.

Object DXCull()
Removes invalid positions and connections (and their dependent information)
from an Object. See page 217.

InvalidComponentHandle DXCreateInvalidComponentHandle()
Creates an invalid-component handle. See “Examples” on page 136. See
page 215.

134 IBM Visualization Data Explorer: Programmer’s Reference

 Data Processing

Error DXFreeInvalidComponentHandle()
Frees all memory associated with an invalid-component handle. See page
234.

Error DXSaveInvalidComponent()
Creates a new invalid-component Array containing the information stored in an
invalid-component handle and stores it in a given Field. See “Examples” on
page 136. See page 342.

Array DXGetInvalidComponentArray()
Returns an Array containing the information stored in an invalid-component
handle. See page 254.

Error DXSetElementValid()
Sets the validity state of a specified element in an invalid-component handle to
DATA_VALID. See page 350.

Error DXSetElementInvalid()
Sets the validity state of a specified element in an invalid-component handle to
DATA_INVALID. See “Examples” on page 136. See page 349.

int DXIsElementValid()
int DXIsElementInvalid();

Return the validity state of a specified element of an invalid-component handle.
See “Examples” on page 136. See page 283.

int DXIsElementValidSequential()
int DXIsElementInvalidSequential();

Return the validity state of a specified element of an invalid-component handle
when the queries come in sequential order. See page 283.

int DXGetValidCount()
Returns the number of valid elements in an invalid-component handle. See
page 271.

int DXGetInvalidCount()
Returns the number of invalid elements in an invalid-component handle. See
page 254.

Error DXSetAllValid()
Sets all elements valid. See page 343.

Error DXSetAllInvalid()
Sets all elements invalid. See “Examples” on page 136. See page 343.

Error DXInvertValidity()
Reverses the validity state of every element in a specified invalid-component
handle. See page 282.

Error DXInitGetNextInvalidElementIndex()
Error DXInitGetNextValidElementIndex();

Prepare an invalid-component handle for iteration through the invalid or valid
elements. See page 278.

int DXGetNextInvalidElementIndex()
Returns the index of the next invalid element after the index returned on the
previous call. See page 259.

int DXGetNextValidElementIndex()
Returns the index of the next valid element after the index returned on the
previous call. See page 259.

 Chapter 13. Data Processing 135

 Examples
Invalid-component handles have a variety of uses, as shown in these examples.

� The call to DXCreate... creates an invalid-component handle that stores the
validity state of the data associated with the positions. If there is an initial
“invalid positions” component, its contents initialize the handle.

handle = DXCreateInvalidComponentHandle(field, NULL, “positions”)

� Here the call to DXCreate... creates an invalid-component handle associated
with array (in this case a connections component). No initialization takes
place; the handle is initialized to “all valid.”

array = (Array)DXGetComponentValue(field, NULL, “connections”);

handle = DXCreateInvalidComponentHandle(array, NULL, NULL);

Note that in this example DXCreate... has no way of determining the
component name of array and, when the handle is converted to an Array,
cannot attach a “dep” or “ref” attribute. It is therefore the caller’s responsibility
to attach the appropriate attribute before placing the Array in a Field. You can
determine whether a “dep” or “ref” attribute is needed by examining the type of
the invalid Array: TYPE_INT or TYPE_UINT implies references. As noted earlier,
if this component is added to a Field, any previous component of the same
name must be explicitly deleted.

Since it is easier to create an invalid-component handle from a Field and
component name (as in the first example), DXSaveInvalidComponent() can be
used to add the modified validity information to the Field.

� Here the call to DXCreate... creates an invalid-component handle associated
with the positions component and initializes it with the invalid-positions Array.

array = (Array)DXGetComponentValue(field, “positions”);

iarray = (Array)DXGetComponentValue(field, “invalid positions”);

handle = DXCreateInvalidComponentHandle(array, iarray, NULL);

This example is similar in concept to the first except that it prevents the user
from calling DXSaveInvalidComponent().

� This example performs part of the Include operation: it invalidates all
connections that reference an invalid position. Any invalid connections remain.

inv_pos_h = DXCreateInvalidComponentHandle(field, NULL, “positions”);

inv_con_h = DXCreateInvalidComponentHandle(field, NULL, “connections”);

if (!inv_pos_h || !inv_con_h)

 goto error;

for (i = ð; i < nConnections; i++)

 {

elt = (int \) DXCalculateArrayEntry(array_handle, i, scratch);

for (j=ð; j < vertsPerElement; j++)

if (DXIsElementInvalid(inv_pos_h, elt[j]))

 {

 DXSetElementInvalid(inv_con_h, i);

 break;

 }

 }

if (!DXSaveInvalidComponent(field, inv_con_h))

 goto error:

136 IBM Visualization Data Explorer: Programmer’s Reference

 Data Processing

� The following example initially invalidates all connections, and then, for each
point, validates the connection that contains it.
“IndexOfElementContainingPoint” is a user-supplied routine.

inv_con_h = DXCreateInvalidComponentHandle(field, NULL, “connections”);

 if (!inv_con_h)

 goto error;

 DXSetAllInvalid(inv_con_h);

for (i=ð; i < nPoints; i++)

 {

j = IndexOfElementContainingPoint(field, point[i]);

 DXSetElementInvalid(inv_con_h, j);

 break;

 }

if (!DXSaveInvalidComponent(field, inv_con_h))

 goto error:

13.4 Growing and Shrinking Partitioned Data
The routines listed at the end of this section are necessary for processing
Composite Fields.

Some modules (e.g., filters) require information from the neighborhood of each
point. Since partitioning divides data into spatially disjoint subsets for independent
processing, a neighborhood may be divided among different partitions: for example,
a filter kernel may overlap the boundary between two partitions. In such cases,
processing one partition requires information that resides in the other.

In order to facilitate such information sharing, Data Explorer includes routines that
support temporarily overlapping partitions. DXGrow() modifies its input Field and
adds to each partition information from the partition’s neighbor(s).

Because DXGrow() modifies its input, the calling routine must use DXCopy() to copy
the input structure if that structure is not to be modified. After this boundary
information has been accrued, the processing of the partition may be handled
independently since all information required to produce correct results for the
original partition is available in it. For example, in the case of filtering, boundary
information is added so that wherever a filter kernel is placed in the original
partition, the kernel does not extend outside the grown partition, producing correct
results in the original partition. After processing the Field produced by DXGrow(),
DXShrink() must be called to shrink any components that have not been shrunk by
the caller, and to remove extra references to the original components that were put
in the Field by DXGrow().

When DXGrow() is called, the depth of an overlap region is specified by specifying
the number of rings to be accrued. An element is said to be in the kth ring if it has
at least one vertex in the kth ring. A vertex is in the 0th ring if it exists both in the
partition and the neighbor, and is in the kth ring if it is not in a lower ring and an
element in ring k-1 is incident upon it. Most frequently, such modules produce
results for each vertex on the basis of the elements incident on that vertex; this is
achieved by requesting that DXGrow() include 1 ring: those elements from
neighboring partitions that are incident on vertices that exist in both partitions.

 Chapter 13. Data Processing 137

The treatment of the exterior boundary of regular grid data is specified by a
parameter to DXGrow(). You may specify that the Field not be expanded beyond its
boundary (i.e., that the exterior partitions not be expanded except on the sides that
border other partitions). Alternatively you may specify that the Field be expanded
beyond its original boundaries, with the new data being filled in one of three ways:
with a constant value; with the replicated value from the nearest edge point in the
original Field; or with nothing, only reserving space for the new data but leaving its
contents undefined.

While it is necessary that the footprint of a filter kernel, placed anywhere in the
original partition, not extend past the grown partition boundary, it is probably not
necessary to apply the filter in the boundary regions accrued from neighbors; these
regions are properly handled during the processing of the neighboring partition.
Data Explorer also includes routines that query the original number of positions and
connections (in the case of irregular grids) or the offset relative to the grown
partition and size of the original partition.

Frequently, modules do not require all components of a Field that are dependent on
the positions to be grown. To avoid accruing information that will not be required
during processing, DXGrow() requires the calling application to specify which
components, in addition to positions and connections, will be required.

Modules using DXGrow() have the option of producing results corresponding to the
positions of the larger grown Field or, more efficiently, producing results
corresponding only to positions of the original smaller Field. Even though the
former method is less efficient, involving more data movement and perhaps more
calculation, it is sometimes more convenient. Therefore, the DXShrink() function is
provided to shrink all components that depend on or reference positions or
connections back to their original size. If the user has already shrunk the positions,
DXShrink() will leave them unmodified. In any case, the DXShrink() function must
be called after operating on a grown Field in order to remove references to the
“original” components that were placed in the Field by DXGrow() for later use by
DXShrink().

For each component specified in the component list passed to DXGrow(), a
component named “original componentname” is created. DXShrink() will rename
each of these to its original name. Therefore, for components you have modified
(e.g., data), you should remove the corresponding original component (“original
data” in this example) before calling DXShrink().

Both DXGrow() and DXShrink() operate in parallel on Composite Fields. For that
reason, DXGrow() must be called prior to any subtasking invoked explicitly by the
calling application; DXShrink() must be called after any such subtasking has been
completed.

#define GROW_NONE NULL

#define GROW_REPLICATE ((Pointer)1)

#define GROW_NOFILL ((Pointer)2)

Object DXGrow()
Object DXGrowV();

Add information from neighboring partitions to a Composite Field. See page
273.

138 IBM Visualization Data Explorer: Programmer’s Reference

 Data Processing

Field DXQueryOriginalSizes()
Field DXQueryOriginalMeshExtents();

Return information about the size of the original Field used as the input to
DXGrow(). See page 329.

Object DXShrink()
Removes information added to an Object by DXGrow(). See page 364.

 13.5 Hashing
This section describes a set of routines for storing an arbitrary number of elements
with a fixed access time. This implementation is designed for general-purpose use
in many applications. Copies of the elements are stored in a hash table.

The elements may be of any fixed size, set at the time that the hash table is
created. Each element contains a key identifying the element, along with whatever
data you choose to associate with that key. For example, a key might be an x, y, z
point, with an associated data value for that point.

Elements are stored in the table using long integer pseudokeys. These
pseudokeys should be uniformly distributed in any range beginning at zero.

Note: Pseudokey 0xFFFFFFFF is reserved. Items cannot not be placed in the
hash table using this pseudokey value.

The elements themselves may contain the pseudokey as their first long integer
word. Alternatively, the pseudokey may be derived from the element through a
call-back function provided at the time the hash table is created.

More than one element may be stored under the same pseudokey if a compare
function is provided at the time the hash table was created. Whenever the hash
table query function is called with the same search key, the hash table is searched
for an element whose pseudokey matches the key either in or derived from the
search key. If no compare function has been provided, the found element is
returned. However, if a compare function has been provided, it is called by the
hash table query routine to match the search key against each element in the hash
table that matches the pseudokey. When the compare function succeeds (returns
a 0), the element is returned.

A similar sequence is used to either insert a unique element (if a compare function
was provided) or to overwrite a previously inserted element of the same key (if a
compare function was not provided).

Note: Only 16 elements may be stored using the same pseudokey.

HashTable DXCreateHash()
Creates a hash table. See “Examples” on page 140. See page 214.

Element DXQueryHashElement()
Searches a hash table for an element matching a specified key. See
“Examples” on page 140. See page 328.

Error DXInsertHashElement()
Inserts an element into a hash table. See “Examples” on page 140. See
page 279.

 Chapter 13. Data Processing 139

Error DXDeleteHashElement()
Removes any element that matches a search key. See page 221.

Error DXInitGetNextHashElement()
Initializes the pointer to the next element for GetNextHashElement. See page
277.

Error DXGetNextHashElement()
Returns the next element in a hash table. See page 258.

Error DXDestroyHash()
Deletes a hash table. See page 222.

Optional routines provided by the caller at the time of creation of the hash table
follow:

hashFunc()
Converts a search key to a long integer pseudokey. Called on insertion and
query.

cmpFunc()
Determines whether elements with the same pseudokey are unique. Called on
insertion and query.

 Examples
In the following examples, underscored items are supplied by the user.

(1) No hash or compare function is provided at the time the hash table is created.
Stored elements are x, y, z points, along with associated data values.

Note: Because no hash function is provided, the pseudokey must be stored as the
first long integer word of the element.

 typedef struct

 {

 long pseudokey;

 Point pt;

 float data;

 } hashelement;

 HashTable hashtable;

hashtable = DXCreateHash(sizeof(element), NULL, NULL);

for (i=ð; i < number of points to insert; i++){

element.pseudokey = GetKey(¤t_point);

element.pt = current_point;

element.data = current_data;

 DXInsertHashElement(hashtable, (Element)&element);

 }

(2) If GetKey returns the same pseudokey for two different points, the second will
overwrite the first because no compare function was provided to DXCreateHash().

To extract elements from the hash table:

 PseudoKey pkey;

 hashelement \element_ptr;

pkey = GetKey(&point_to_search_for);

element_ptr = DXQueryHashElement(hashtable, (Key)&pkey);

140 IBM Visualization Data Explorer: Programmer’s Reference

 Data Processing

GetKey that returns a pseudokey given a point x, y, z:

PseudoKey GetKey(Key key)

 {

 Point \pt;

pt = (Point \)key;

return pt->x + 17\pt->y + 23\pt->z;

 }

Alternatively, the hash function GetKey can be provided at the time the hash table
is created. In that case the pseudokey does not need to be part of the element.

 typedef struct

 {

 Point pt;

 float data;

 } hashelement;

 HashTable hashtable;

 hashelement element;

hashtable = DXCreateHash(sizeof(element), GetKey, NULL);

for (i=ð; i < number_of_points_to_insert; i++){

element.pt = current_point;

element.data = current_data;

 DXInsertHashElement(hashtable, (Element)&element);

where:

PseudoKey GetKey(Key key)

 {

 Point \pt;

pt = (Point \)key;

return pt->x + 17\pt->y + 23\pt->z;

 }

To extract elements from the hash table:

 hashelement \element_ptr;

element.pt = point_to_search_for;

element_ptr = DXQueryHashElement(hashtable, (Key)&element);

(3) This example uses a compare function.

 typedef struct

 {

 Point pt;

 float data;

 } hashelement;

 HashTable hashtable;

 hashelement element;

hashtable = DXCreateHash(sizeof(element), GetKey, CompareFunc);

 Chapter 13. Data Processing 141

for (i=ð; i < number of points to insert; i++){

element.pt = current_point;

element.data = current_data;

 DXInsertHashElement(hashtable, (Element)&element);

 }

where the compare function may be:

int CompareFunc(Key searchkey, Element element)

 {

Point \p, p1, p2;

 hashelement \h;

p = (Point \)searchkey;

p1 = \p;

h = (hashelement \)element;

p2 = h->pt;

 if ((pl.x==p2.x)&&(p1.y==p2.y)&&(p1.z==p2.z))

 return ð;

 else

 return 1;

 }

 13.6 Pick-Assistance Routines
The pick structure output of the Pick tool is a Field and the picked points are listed
in the “positions” component of that Field. Other information may be accessed
using the pick-assistance routines listed here. These allow you to query the pick
structure and to traverse a picked Object. (See 8.2, “ShowPick Module
Example—Using Color to Show a Picked Object” on page 56.)

It is recommended that you use the pick-assistance routines to manipulate picked
Objects and pick structures, since the pick structure is undefined internally and may
change in future.

Error DXGetPickPoint()
Returns the pick point in world coordinates. See page 264.

Error DXQueryPickCount()
Returns the number of picks resulting from a poke. See “Example” on
page 143. See page 331.

Error DXQueryPickPath()
Returns information about the pick path. See “Example” on page 143. See
page 332.

Error DXQueryPokeCount()
Returns the number of pokes. See “Example” on page 143. See page 332.

Error DXTraversePickPath()
Returns the subObject of the current Object selected by a pick path. See
“Example” on page 143. See page 367.

142 IBM Visualization Data Explorer: Programmer’s Reference

 Data Processing

 Example
The following code segment finds every picked vertex. (The comment at bottom is
left as an exercise for the user.)

 DXQueryPokeCount(pickField, &nPokes);

for (poke = ð; poke < nPokes; poke++)

 {

DXQueryPickCount(pickField, poke, &nPicks);

for (pick = ð; pick < nPicks; pick++)

 {

DXQueryPickPath(pickField, poke, pick,

&pathLen, &path, &elementId, &vertexId);

current = dataObject;

 matrix = Identity;

for (i = ð; i < pathLen; i++)

 {

current = DXTraversePickPath(current, path[i], &matrix);

if (current == NULL)

 goto error;

 }

/\ now manipulate vertex #vertexId in field current. \/

 }

 }

 Chapter 13. Data Processing 143

144 IBM Visualization Data Explorer: Programmer’s Reference

 Chapter 14. Geometric Objects

 Geometric Objects

14.1 Text . 146
14.2 Clipping . 146
14.3 Path Operations . 146

 Copyright IBM Corp. 1991-1997 145

The routines listed here create geometric Objects such as ribbons, tubes, glyphs,
backgrounds, and geometric text. They are implemented by creating Field or
Group Objects that can then be rendered.

For detailed descriptions of these routines, see Appendix C, “Data Explorer Library
Routines” on page 183.

 14.1 Text
Data Explorer supports two varieties of text: geometric and annotation. Geometric
text is implemented by stroke and area fonts that can be arbitrarily rotated and
scaled before rendering. Annotation text is geometric text that has been
transformed so that it always faces the screen. It is supported by a combination of
a text routine listed below and the Screen Object described in Chapter 15,
“Rendering” on page 149.

Object DXGetFont()
Returns a Group containing the specified font. See page 251.

Object DXGeometricText()
Produces an Object consisting of the given String. See page 236.

 14.2 Clipping
Two higher-level routines that use the Render module’s clipping capability are listed
here. These routines do not themselves clip an Object to a plane or to a box, but
rather construct an Object (Clipped Object) that describes to the renderer what
clipping is to be done. (The renderer does not support nested clipping, and all
translucent objects in a scene must be clipped by the same clipping Object.)

Object DXClipPlane()
Creates a clipping Object defined by a clipping plane. See page 208.

Object DXClipBox()
Creates a clipping Object defined by a clipping box. See page 206.

 14.3 Path Operations
The following operations produce a geometric Object from a path. In addition to
the functions noted here, the Render module is capable of directly rendering a path
as a series of one-pixel lines. A path is a Field with 1-dimensional regular
connections. A path can be created by, for example:

f = DXNewField();

DXSetComponentValue(f, "positions", ...);

DXSetConnections(f, "lines", DXMakeGridConnections(1, n));

 DXEndField(f);

where n is the number of points.

Both of the operations listed here use “normals” and “tangent” components if they
are present; otherwise, they compute approximations to the normals and tangents,
as follows: the tangent is the first derivative of the path; the normal is
perpendicular to the tangent and lies in the plane formed by the tangent and the
second derivative of the path. In each case, appropriate normals are associated
with the result for shading.

146 IBM Visualization Data Explorer: Programmer’s Reference

Object DXRibbon()
Produces a ribbon of the given width from a path or group of paths. See page
340.

Object DXTube()
Produces a tube of a given diameter from a path or group of paths. See page
368.

 Geometric Objects

 Chapter 14. Geometric Objects 147

148 IBM Visualization Data Explorer: Programmer’s Reference

 Chapter 15. Rendering

15.1 Transformation . 150
15.2 Surface Shading . 151
15.3 Tiling . 152

Rendering Model . 153
Tiling Options . 153

15.4 Xform Class . 154
15.5 Screen Class . 154
15.6 Clipped Class . 155
15.7 Camera Class . 155
15.8 Light Class . 156
15.9 Image Fields . 156

 Rendering

 Copyright IBM Corp. 1991-1997 149

This chapter describes the Data Explorer rendering model, introduces additional
elements of the data model relevant only to rendering, and describes routines for
manipulating data structures for rendering. (For descriptions of these routines, see
Appendix C, “Data Explorer Library Routines” on page 183.)

The Data Explorer renderer is designed for data visualization. For example, it
directly renders scenes described by the Data Explorer data model (see Chapter 3,
“Understanding the Data Model” on page 15). The renderer handles all
combinations of Groups and Fields as input Objects. The members of a Group or
of a subclass of a Group (e.g., Series and Composite Fields) are combined into
one image by the renderer.

Rendering a scene involves fours steps:

1. Transformation to world coordinates—Applying transforms specified by
transform nodes in the Object.

2. Shading—Assigning colors to the vertices, using the intrinsic surface colors,
surface normals, surface properties specified by Field components, and lights
specified by Light Objects.

3. Transformation to image coordinates—Applying transforms specified by a
camera Object.

4. Tiling—Generating an image by interpolating point colors and opacities across
faces, and rendering volumes with a rendering algorithm.

 15.1 Transformation
Transformation is the process of computing pixel coordinates from model
coordinates (i.e., the coordinates of the Object). Because DXRender() performs
necessary transformations, most applications do not need DXTransform() .

Transformation is essentially a two-step operation: (1) transform the model
coordinates of an Object into world coordinates; and (2) transform the world
coordinates into image coordinates (see Figure 10).

Figure 10. Transformation of Coordinates

The transformation from model to world coordinates is specified by transform nodes
(see 15.4, “Xform Class” on page 154) in the description of the input Object. The

150 IBM Visualization Data Explorer: Programmer’s Reference

transformation from world coordinates to image coordinates is specified by a
camera Object.

Object DXApplyTransform()
Recursively applies a transform to an Object. See page 198.

 15.2 Surface Shading
Shading is the process of applying lights to a surface according to shading
parameters specified for the surface and the scene.

The shading process described here is performed by the DXRender() function for
surface objects only; volumes are rendered directly, using the colors and opacities
specified. Lights are specified by light Objects (see 15.8, “Light Class” on
page 156) contained in the input Object. Shading is defined only for 2-dimensional
connections (lines, triangles, and quads) and is applied only if normals are present.
The shading process uses the following Field components:

A Field may have both “colors” and “front colors” or both “colors” and “back colors,”
in which case the “front colors” or “back colors” component overrides the “colors”
component for the specified side of the object. The front and back of a surface are
defined in Chapter 3, “Understanding the Data Model” on page 15 in IBM
Visualization Data Explorer User’s Guide.

Shading parameters are specified by a set of attributes of an input Object:

These parameters apply to both the front and back of an object. In addition, for
each shading parameter “x,” there is also a “front x” and a “back x” parameter that
apply only to the front and back of a surface respectively. These parameters are
used in the following shading model:

 Rendering

Component Meaning

“positions” points

“colors” front and back
colors

“front
colors”

colors of front of
face

“back
colors”

colors of back of
face

“normals” surface normals

Attribute Meaning

“ambient” ambient lighting
coefficient ka

“diffuse” diffuse lighting
coefficient kd

“specular” specular lighting
coefficient ks

“shininess” specular lighting
exponent sp

 Chapter 15. Rendering 151

I = kaAC + kdLC (n . l) + ksL (n . h)sp

where:

 I = apparent intensity of the object k = a lighting coefficient
A = an ambient light n = the surface normal
C = the color of the object l = the direction to the light
L = a point or distant light sp = specular lighting exponent
h = a unit vector halfway between the direction to the camera

and the direction to the light.

Color, Opacity, and Normals Dependencies

Colors, opacities, and normals may be dependent on the positions (when the
corresponding components have a “dep” attribute of “positions”) or on
connections or faces (when the corresponding components have a “dep”
attribute of “connections” or “faces”).

Opacities and normals, if present, must depend on the same component that
the colors depend upon, with one exception: if the colors are dependent on the
positions and the normals are dependent on the connections, the face will be
flat-shaded with the average color of the face vertices.

If the colors, opacities, and normals are dependent on the positions, the color
and opacity of each face is linearly interpolated between the vertices (Gouraud
shading). If they are dependent on the connections or faces, the color and
opacity of each face is constant (flat shading).

 15.3 Tiling
Tiling is the process of combining shaded surface and volume interpolation
elements to produce an image. The following table lists elements that are defined
and implemented (“yes”). A dash identifies a meaningless combination.

Lines may be irregular unconnected vectors or paths having regular 1-dimensional
connections. Surfaces and volumes may be (1) completely irregular, (2) regular in
connections but irregular in positions, or (3) regular in both connections and
positions (Figure 11 on page 153).

Component irregular regular opaque translucent

“lines” yes yes yes yes

“triangles” yes — yes yes

“quads” yes yes yes yes

“tetrahedra” yes — — yes

“cubes” yes yes — yes

“faces,” “loops,” “edges” yes — yes yes

152 IBM Visualization Data Explorer: Programmer’s Reference

Figure 11. Types of Connections and Positions

 Rendering

 Rendering Model
The interpretation of “colors” and “opacities” differs between surfaces and volumes.
For surfaces, a surface of color cf and opacity o are combined with the color cb of
the objects behind it, resulting in a combined color cfo + cb (1 − o).

For volumes, the “dense emitter” model is used, in which the opacity represents the
instantaneous rate of absorption of light passing through the volume per unit
thickness, and the color represents the instantaneous rate of light emission per unit
thickness. If c(z) represents the color of the object at z and o(z) represents its
opacity at z, the total color c of a ray passing through the volume is given by:

c = ∫
∞

−∞
c(z) exp (− ∫

z

−∞
o(ζ)dζ) dz

 Tiling Options
Tiling options are controlled by a set of Object attributes. These attributes may be
associated with Objects at any level of a Field/Group hierarchy. The attributes may
be set by using the DXSetAttribute() function, or by using the Options module.
The attributes are:

Object fuzz is a method of resolving conflicts between objects at the same distance
from the camera. For example, it may be desirable to define a set of lines
coincident with a plane. Normally it will be unclear which object is to be displayed
in front. In addition, single-pixel lines are inherently inaccurate (i.e. they deviate
from the actual geometric line) by as much as one-half pixel; when displayed
against a sloping surface, this x or y inaccuracy is equivalent to a z inaccuracy
related to the slope of the surface. The “fuzz” attribute specifies a z value that will

Attribute Meaning

“fuzz” object fuzz

 Chapter 15. Rendering 153

be added to the object before it is compared with other objects in the scene, thus
resolving this problem. The fuzz value is specified in pixels. For example, a fuzz
value of one pixel can compensate for the described half-pixel inaccuracy when the
line is displayed against a surface with a slope of two.

 15.4 Xform Class
An Xform, or transform Object, is a renderable Object that specifies a modeling
transformation matrix applied to another renderable Object. It is included in Groups
that are input to the renderer to specify the transformation from model coordinates
to world coordinates. See the description of the DXApplyTransform() routine in
15.1, “Transformation” on page 150.

Xform DXNewXform()
Creates a new transform Object. See page 313.

Xform DXGetXformInfo()
Extracts information from a transform Object. See page 272.

Xform DXSetXformObject()
Sets the Object to which a transform is applied. See page 363.

 15.5 Screen Class
A Screen Object is an Object that maintains a size and alignment with the screen
(output image) independent of the camera view and scaling transformations applied
to it.

Three options are provided for the interpretation of translations applied to a Screen
Object. First, a translation applied to the Screen Object may specify a new position
for the origin of the Screen Object in world space (SCREEN_WORLD). Second, a
translation applied to the Screen Object may specify a new location for the Screen
Object in the image, measured in pixels, where (0,0) refers to the lower-left corner
of the image (SCREEN_PIXEL). Third, a translation applied to the Screen Object may
specify a new location for the Screen Object in the image, measured in
viewport-relative coordinates, where (0,0) refers to the lower-left corner of the
image and (1,1) refers to the upper-right corner of the image (SCREEN_VIEWPORT).

In addition, with regard to z, the object may be displayed either in place in the
scene, in front of all objects, or behind all objects, according to whether the z
parameter to DXNewScreen() is 0, +1, or -1 respectively.

#define SCREEN_WORLD ð
#define SCREEN_VIEWPORT 1
#define SCREEN_PIXEL 2

Screen DXNewScreen()
Creates a new Object aligned to the final screen. See page 311.

Screen DXGetScreenInfo()
Returns information about a Screen Object. See page 267.

Screen DXSetScreenObject()
Sets the Object to which a screen transform is to be applied. See page 361.

154 IBM Visualization Data Explorer: Programmer’s Reference

 15.6 Clipped Class
A Clipped Object is one Object clipped by another. The first Object is actually
rendered; the second represents a region to which the first Object is clipped. The
clipping Object is expected to be a closed convex surface. The portion of the first
Object that is within the clipping Object is rendered. If the clipping Object is not a
closed convex surface, the results are undefined. The clipping is performed by the
renderer during the rendering process. Thus clipping is provided as a data
structure for representing the Clipped Object to the renderer, rather than as an
explicit operation.

Clipped DXNewClipped()
Creates a new Clipped Object. See page 300.

Clipped DXGetClippedInfo()
Returns the Object to be rendered and the clipping Object. See page 242.

Clipped DXSetClippedObjects()
Sets the Object to be rendered and the Object to clip it with during the
rendering process. See page 347.

 Rendering

 15.7 Camera Class
A Camera Object stores parameters that relate a scene to an image of the scene,
including camera position and orientation, field of view, type of projection, and
resolution. It specifies the transformation from world coordinates to image
coordinates.

Camera DXNewCamera()
Creates a new Camera. See page 299.

Camera DXSetView()
Specifies the Camera position, a point on the line of sight of the Camera, and
the Camera orientation. See page 363.

Camera DXSetOrthographic()
Specifies an orthographic view. The width of the viewport in the world
coordinates and the aspect ratio are specified. See page 356.

Camera DXSetPerspective()
Specifies a perspective view. The field of view specifies the tangent of half the
angle of the field of view. The height of the view is the specified aspect times
the width. See page 359.

Camera DXSetBackgroundColor()
Specifies the background color of a scene. See page 345.

Camera DXSetResolution()
Specifies the resolution of a Camera. See page 360.

Camera DXGetView()
Returns the camera view parameters. See page 363.

Camera DXGetOrthographic()
Returns the orthographic camera parameter. See page 356.

Camera DXGetPerspective()
Returns the perspective camera parameters. See page 359.

 Chapter 15. Rendering 155

Camera DXGetBackgroundColor()
Extracts a scene background color associated with a camera. See page 345.

Camera DXGetCameraResolution()
Returns the camera resolution. See page 360.

Matrix DXGetCameraMatrix()
Matrix DXGetCameraMatrixWithFuzz();
Matrix DXGetCameraRotation();

Return matrices that represent stages of the viewing operation. See page 241.

 15.8 Light Class
Light Objects specify lights for shading. They may be placed in a scene and
transformed along with other Objects in the scene (e.g, by changing their positions).

Light DXNewDistantLight()
Creates a distant Light Object. See page 302.

Light DXQueryDistantLight()
Returns information about a Distant Light. See page 326.

Light DXNewAmbientLight()
Creates a Light Object representing an ambient light source. See page 297.

Light DXQueryAmbientLight()
Returns the color of an Ambient Light. See page 323.

 15.9 Image Fields
An image Field is a Field with regular positions and with regular quadrilateral
connections. Images also contain a “colors” component. The sign of the deltas of
the “positions” component determines the orientation of the image.

Functions of the routines listed here include creating a field image, returning a
pointer to the data in an image field, and returning information about an image.

Field DXMakeImage()
Creates a new empty image Field. See page 291.

RGBColor \DXGetPixels()
Returns a pointer to the data in an image Field. See page 264.

Field DXGetImageSize()
Object DXGetImageBounds();

Return information about image Fields. See page 252.

Field DXOutputRGB()
Writes an image to a file in RGB format. See page 315.

Object DXDisplayX()
Object DXDisplayX8();
Object DXDisplayX12();
Object DXDisplayX24();

Display an image on an X window. See page 222.

156 IBM Visualization Data Explorer: Programmer’s Reference

Chapter 16. DXLink Developer's Toolkit

16.1 Introduction . 158
16.2 Example 1: sealevel.c . 159
16.3 Example 2: maptoplane.c . 161
16.4 Example 3: xapp.c . 164
16.5 Initialization and Exit . 169
16.6 Messaging System . 170

Sending Messages to the Server . 171
Receiving Messages from the Server . 171
Messaging Routines . 172

16.7 Execution Control . 173
16.8 Program Control . 174

Loading programs and macros . 175
Setting Variables . 175
Retrieving Values Sent From Data Explorer 177

16.9 Window Control . 178

 DXLink

 Copyright IBM Corp. 1991-1997 157

 16.1 Introduction
DXLink is a C programming interface that can be used to communicate with the
Data Explorer user interface (dxui) or the Data Explorer executive (dxexec).
Functions are provided to load programs, enable the setting and retrieval of named
variables, control execution, handle errors, and define application-specific
messaging. For the user interface, functions are also available to control window
visibility and to load configuration files. For the executive, a function is provided to
send arbitrary scripting-language commands. Support for X windows is built in but
is not required.

The kinds of application that can be written with DXLink include:

� A graphical user interface and demonstration utility that controls the execution
of the Data Explorer user interface to start selected demos, flip through images,
and remove and place windows on the display.

� A graphical user interface that communicates with the executive, replacing the
Data Explorer user interface.

� A shell-like scripting language to control the user interface (and that might also
be useful for a demonstration utility).

A majority of DXLink functions have names that begin with the prefix “DXL.” These
functions can be used in communicating with either the user interface or the
executive. The prefix “uiDXL” identifies a function intended for use only with the
interface; the prefix “exDXL,” a function for use only with the executive.

Note: In the remainder of this document, references to “the server” apply to the
user interface and the executive equally.

All applications that use the DXLink facilities must link with the library libDXL.a and
include the header file dxl.h in the source code.

The functions provided by DXLink are described in more detail in the following
sections. They have been divided into four groups:

1. 16.5, “Initialization and Exit” on page 169,
2. 16.6, “Messaging System” on page 170,,
3. 16.7, “Execution Control” on page 173, and
4. 16.8, “Program Control” on page 174.

The declarations for these functions are found in the C include file dxl.h, which
should be included in any C file that uses them. The following sections describe
three simple DXLink programs. All of these examples and necessary Makefiles can
be found in /usr/lpp/dx/samples/dxlink. It is recommended that you create these
programs and run them before studying the C code which follows. See the Readme
file in /usr/lpp/dx/samples/dxlink for instructions on how to create them.

158 IBM Visualization Data Explorer: Programmer’s Reference

 Stand-alone Programs

1. Stand-alone programs may access the Data Explorer data model by linking
to the library DXlite. The file libDXlite.a contains a subset of Data Explorer
routines (see Appendix B, “Data Explorer Data Model Library: DXlite
Routines” on page 181).

2. Stand-alone programs may also access almost all Data Explorer data
modules and all Data Explorer library routines by linking to the library
libDXcallm.a. (The exceptions are such user-interface features as
interactors, the Colormap Editor, the Image tool, and Get and Set.) The file
libDXcallm.a contains all the Data Explorer library routines listed in
Appendix C, “Data Explorer Library Routines” on page 183. See also
12.10, “Module Access” on page 127.

3. When starting Data Explorer from an external program, certain command
line options may be useful to disable portions of the user interface that the
external program is intended to control. See Table 6 on page 297 in IBM
Visualization Data Explorer User’s Guide.

 DXLink

16.2 Example 1: sealevel.c
The first example which we will discuss is sealevel.c. This sample program starts
the Data Explorer user interface in -image mode, and then loads a visual program
(see Figure 12).

Figure 12. sealevel.net

 Chapter 16. DXLink Developer's Toolkit 159

The visual program contains a DXLInput tool which can receive values from the
DXLink program. It is named contour_line_value. The DXLink program sends
several different values to this DXLInput tool, and the resulting image is displayed
to the user.

#include <stdio.h>

#include "dx/dxl.h"

#ifndef BASE

#define BASE "/usr/lpp/dx"

#endif

/\

 \ define an error handler

 \/

void ErrorHandler(DXLConnection \conn, const char \msg, void \data)

{

printf("DXL Error: %s\n", msg);

}

main(int argc, char \argv[])

{

DXLConnection \conn = NULL;

 char result[1ðð];

 /\

\ Start Data Explorer in -image mode with certain menus disabled.

 \/

conn = DXLStartDX(

"dx -image -noExitOptions -noExecuteMenus -noConnectionMenus",

 NULL);

if (conn == NULL)

 {

fprintf(stderr,"Could not connect\n");

 perror("DXLStartDX");

 exit(1);

 }

 /\

\ Set the error handler

 \/

DXLSetErrorHandler(conn, ErrorHandler, NULL);

 /\

\ Load the visual program to run

 \/

 DXLLoadVisualProgram(conn, BASE"/samples/dxlink/sealevel.net");

 /\

\ Set the value of the DXLInput tool which is labelled

160 IBM Visualization Data Explorer: Programmer’s Reference

\ "contour_line_value" and execute.

 \/

DXLSetValue(conn, "contour_line_value", "ð");

 DXLExecuteOnce(conn);

 /\

\ Set the value of the DXLInput tool which is labelled

\ "contour_line_value" and execute.

 \/

DXLSetValue(conn, "contour_line_value", "2");

 DXLExecuteOnce(conn);

 /\

\ Set the value of the DXLInput tool which is labelled

\ "contour_line_value" and execute.

 \/

DXLSetValue(conn, "contour_line_value", "5");

 DXLExecuteOnce(conn);

 /\

\ Set the value of the DXLInput tool which is labelled

\ "contour_line_value" and execute.

 \/

DXLSetValue(conn, "contour_line_value", "2ð");

 DXLExecuteOnce(conn);

 /\

\ Set the value of the DXLInput tool which is labelled

\ "contour_line_value" and execute.

 \/

DXLSetValue(conn, "contour_line_value", "5ð");

 DXLExecuteOnce(conn);

printf("An image window will appear\n");

printf("and a sequence of images will be created.\n");

printf("When you are finished, hit return to quit:");

 gets(result);

 DXLExitDX(conn);

}

 DXLink

16.3 Example 2: maptoplane.c
The second example which we will discuss is maptoplane.c. This sample program
starts the Data Explorer user interface in -edit mode, and then loads a visual
program (see Figure 13 on page 162).

 Chapter 16. DXLink Developer's Toolkit 161

Figure 13. maptoplane.net

The visual program contains two DXLInput tool which can receive values from the
DXLink program. One is named file_to_import, and the other is named
maptoplane_point. The DXLink program sends the filename to file_to_import,
and then sends several different values to maptoplane_point. The program is run
and for each execution, statistics are computed on the resulting MapToPlane. The
maximum value on the plane is passed to a DXLOutput tool labeled
maptoplane_max. In maptoplane.c, a handler has been installed for output coming
from maptoplane_max, and the handler simply prints the value to the terminal.

#include <stdio.h>

#include "dx/dxl.h"

#ifndef BASE

#define BASE "/usr/lpp/dx"

#endif

void SyncAfterExecute(DXLConnection \conn)

{

 int status=1;

while (status) {

 sleep(1);

 if (DXLIsMessagePending(conn))

 DXLHandlePendingMessages(conn);

 DXLGetExecutionStatus(conn, &status);

162 IBM Visualization Data Explorer: Programmer’s Reference

 }

}

/\

 \ this routine simply prints the maximum value as received from the

 \ DXLOutput tool

 \/

void max_handler(DXLConnection \conn, const char \name, const char \value,

 void \data)

{

printf("max value = %s\n", value);

}

main(int argc, char \argv[])

{

DXLConnection \conn = NULL;

 char result[1ðð];

 int status;

 /\

\ Start Data explorer user interface in -edit mode, with certain

\ in -edit mode, with certain menus turned off.

 \/

conn = DXLStartDX("dx -edit -noExitOptions -noExecuteMenus -noConnectionMenus",

 NULL);

if (conn == NULL)

 {

fprintf(stderr,"Could not connect\n");

 perror("DXLStartDX");

 exit(1);

 }

 /\

\ Set the handler for the DXLOutput tool which is labelled

 \ "maptoplane_max"

 \/

DXLSetValueHandler(conn, "maptoplane_max", max_handler, NULL);

 /\

\ Load the visual program to run. Set the value of the DXLInput

\ tool which is labelled "file_to_import".

\ Also set the value of the DXLInput tool which is labelled

 \ "maptoplane_point".

 \/

 DXLLoadVisualProgram(conn, BASE"/samples/dxlink/maptoplane.net");

 DXLSetString(conn, "file_to_import","/usr/lpp/dx/samples/data/temperature");

DXLSetValue(conn, "maptoplane_point", "[ð 5ððð 5ððð]");

 /\

\ Execute the visual program and check for input from maptoplane_max.

 \/

 DXLExecuteOnce(conn);

 DXLink

 Chapter 16. DXLink Developer's Toolkit 163

 SyncAfterExecute(conn);

/\ Change the value for the DXLInput tool labelled "maptoplane_point

\ and execute again.

 \/

DXLSetValue(conn, "maptoplane_point", "[1ðððð 5ððð 5ððð]");

 DXLExecuteOnce(conn);

 SyncAfterExecute(conn);

/\ Change the value for the DXLInput tool labelled "maptoplane_point

\ and execute again.

 \/

DXLSetValue(conn, "maptoplane_point", "[2ðððð 5ððð 5ððð]");

 DXLExecuteOnce(conn);

 SyncAfterExecute(conn);

/\ Change the value for the DXLInput tool labelled "maptoplane_point

\ and execute again.

 \/

DXLSetValue(conn, "maptoplane_point", "[3ðððð 5ððð 5ððð]");

 DXLExecuteOnce(conn);

 SyncAfterExecute(conn);

/\ Change the value for the DXLInput tool labelled "maptoplane_point

\ and execute again.

 \/

DXLSetValue(conn, "maptoplane_point", "[5ðððð 5ððð 5ððð]");

 DXLExecuteOnce(conn);

 SyncAfterExecute(conn);

printf("Hit return to quit:");

 gets(result);

 DXLExitDX(conn);

}

16.4 Example 3: xapp.c
The third example which we will discuss is xapp.c. This sample program does not
use the Data Explorer user interface at all; rather it creates its own (simple) user
interface. The program communicates with Data Explorer entirely through the
scripting language.

The interface presents the user with four buttons. Depending on which button is
pressed, a different data file is imported. The maximum value in the data set is then
computed and sent back to the DXLink application using a DXLOutput tool. The
result is then displayed in a text widget created by the DXLink program.

164 IBM Visualization Data Explorer: Programmer’s Reference

#include <Xm/Xm.h>

#include <Xm/Form.h>

#include <Xm/Label.h>

#include <Xm/PushB.h>

#include <Xm/ToggleB.h>

#include <Xm/Text.h>

#include "dx/dxl.h"

void radio_cloudCB(Widget, XtPointer, XtPointer);

void radio_rainCB(Widget, XtPointer, XtPointer);

void radio_windCB(Widget, XtPointer, XtPointer);

void radio_tempCB(Widget, XtPointer, XtPointer);

void cloudhandler(DXLConnection \, const char \, const char \, void \);

void rainhandler(DXLConnection \, const char \, const char \, void \);

void windhandler(DXLConnection \, const char \, const char \, void \);

void temphandler(DXLConnection \, const char \, const char \, void \);

static String DefaultResources[] =

{

 "\background: #b4b4b4b4b4b4",

 "\foreground: black",

#ifdef sgi

 "\fontList: -adobe-helvetica\bold-r\14\=bold\n\

 -adobe-helvetica\medium-r\14\=normal\n\

 -adobe-helvetica\medium-o\14\=oblique",

#else

 "\fontList: -adobe-helvetica\bold-r\14\=bold\

 -adobe-helvetica\medium-r\14\=normal\

 -adobe-helvetica\medium-o\14\=oblique",

#endif

 "\XmToggleButton.selectColor: CadetBlue",

 "\XmText.shadowThickness: 1",

 NULL

};

main(argc, argv)

int argc;

char \argv[];

{

Widget toplevel, main_w, label, textfield, radio_box;

Widget radio_cloud, radio_rain, radio_temp, radio_wind;

 XtAppContext app;

 XmString xms;

 DXLConnection \conn;

 int n;

 Arg wargs[5ð];

 /\

\ Start the Data Explorer executive.

 \/

conn = DXLStartDX("dx -exonly",NULL);

 if (!conn)

 {

printf("could not start dx");

 exit(ð);

 DXLink

 Chapter 16. DXLink Developer's Toolkit 165

 }

XtSetLanguageProc (NULL, NULL, NULL);

toplevel = XtVaAppInitialize (&app, "Demos",

NULL, ð, &argc, argv,

 DefaultResources, NULL);

 DXLInitializeXMainLoop(app, conn);

 /\

\ Create the user interface for this application

 \/

main_w = XtVaCreateManagedWidget("form",

 xmFormWidgetClass, toplevel,

 XmNwidth, 4ðð,

 XmNheight, 18ð,

 XmNfractionBase, 5,

 NULL);

n = ð;

XtSetArg(wargs[n], XmNtopAttachment, XmATTACH_FORM); n++;

XtSetArg(wargs[n], XmNleftAttachment, XmATTACH_FORM); n++;

XtSetArg(wargs[n], XmNleftOffset, 3ð); n++;

radio_box = (Widget)XmCreateRadioBox(main_w, "choice", wargs, n);

 XtManageChild(radio_box);

xms = XmStringCreateSimple("cloudwater");

radio_cloud = XtVaCreateManagedWidget("radio_cloud",

 xmToggleButtonWidgetClass, radio_box,

 XmNlabelString, xms,

 NULL);

 XmStringFree(xms);

 XtAddCallback(radio_cloud, XmNvalueChangedCallback,

 (XtCallbackProc)radio_cloudCB,

 (XtPointer)conn);

xms = XmStringCreateSimple("rainwater");

radio_rain = XtVaCreateManagedWidget("radio_rain",

 xmToggleButtonWidgetClass, radio_box,

 XmNlabelString, xms,

 NULL);

 XmStringFree(xms);

 XtAddCallback(radio_rain, XmNvalueChangedCallback,

 (XtCallbackProc)radio_rainCB,

 (XtPointer)conn);

xms = XmStringCreateSimple("temperature");

radio_temp = XtVaCreateManagedWidget("radio_temp",

 xmToggleButtonWidgetClass, radio_box,

 XmNlabelString, xms,

 NULL);

 XmStringFree(xms);

 XtAddCallback(radio_temp, XmNvalueChangedCallback,

 (XtCallbackProc)radio_tempCB,

 (XtPointer)conn);

166 IBM Visualization Data Explorer: Programmer’s Reference

xms = XmStringCreateSimple("wind");

radio_wind = XtVaCreateManagedWidget("radio_wind",

 xmToggleButtonWidgetClass, radio_box,

 XmNlabelString, xms,

 NULL);

 XmStringFree(xms);

 XtAddCallback(radio_wind, XmNvalueChangedCallback,

 (XtCallbackProc)radio_windCB,

 (XtPointer)conn);

xms = XmStringCreateSimple("returned value:");

label = XtVaCreateManagedWidget("label",

 xmLabelWidgetClass,

 main_w,

 XmNtopAttachment, XmATTACH_WIDGET,

 XmNtopWidget, radio_box,

 XmNbottomAttachment, XmATTACH_FORM,

 XmNleftAttachment, XmATTACH_FORM,

 XmNlabelString, xms,

 NULL);

 XmStringFree(xms);

textfield = XtVaCreateManagedWidget("text",

 xmTextWidgetClass,

 main_w,

 XmNtopAttachment, XmATTACH_OPPOSITE_WIDGET,

 XmNtopWidget, label,

 XmNleftAttachment, XmATTACH_WIDGET,

 XmNleftWidget, label,

 XmNrightAttachment, XmATTACH_FORM,

 XmNbottomAttachment, XmATTACH_FORM,

 NULL);

 /\

\ Set the handlers for the various parameters

 \/

DXLSetValueHandler(conn,"cloudmax", cloudhandler, textfield);

DXLSetValueHandler(conn,"rainmax", rainhandler, textfield);

DXLSetValueHandler(conn,"windmax", windhandler, textfield);

DXLSetValueHandler(conn,"tempmax", temphandler, textfield);

 XtRealizeWidget (toplevel);

 XtAppMainLoop (app);

}

/\

 \ The following are the handlers for data coming from DXLOutput. If

 \ data is received by the handler, it is presented in a text widget.

 \/

void rainhandler(DXLConnection \conn, const char \name, const char \value,

 DXLink

 Chapter 16. DXLink Developer's Toolkit 167

 void \data)

{

 char string[1ðð];

Widget text_widget = (Widget)data;

sprintf(string,"rainwater max value = %s", value);

 XmTextSetString(text_widget, string);

}

void cloudhandler(DXLConnection \conn, const char \name, const char \value,

 void \data)

{

 char string[1ðð];

Widget text_widget = (Widget)data;

sprintf(string,"cloudwater max value = %s", value);

 XmTextSetString(text_widget, string);

}

void temphandler(DXLConnection \conn, const char \name, const char \value,

 void \data)

{

 char string[1ðð];

Widget text_widget = (Widget)data;

sprintf(string,"temperature max value = %s", value);

 XmTextSetString(text_widget, string);

}

void windhandler(DXLConnection \conn, const char \name, const char \value,

 void \data)

{

 char string[1ðð];

Widget text_widget = (Widget)data;

sprintf(string,"wind max value = %s", value);

 XmTextSetString(text_widget, string);

}

/\

 \ The following are the callbacks for the buttons in the

 \ user interface created above. In each case, some simple

 \ script language commands are sent to the Data Explorer

 \ executive. The maximum as computed by the Statistics

 \ module is then input to the DXLOutput tool. The handlers

 \ defined above wait for values to be received from

 \ DXLOutput, and then present the result in the text widget.

 \/

void radio_cloudCB(Widget w, XtPointer xp1, XtPointer xp2)

{

DXLConnection \conn = (DXLConnection \)xp1;

DXLSend(conn, "g = Import(\"/usr/lpp/dx/samples/data/cloudwater\");");

DXLSend(conn, "mean,sd,var,min,max = Statistics(g);");

DXLSend(conn, "DXLOutput(\"cloudmax\", max);");

}

void radio_rainCB(Widget w, XtPointer xp1, XtPointer xp2)

{

DXLConnection \conn = (DXLConnection \)xp1;

DXLSend(conn, "g = Import(\"/usr/lpp/dx/samples/data/rainwater\");");

DXLSend(conn, "mean,sd,var,min,max = Statistics(g);");

168 IBM Visualization Data Explorer: Programmer’s Reference

DXLSend(conn, "DXLOutput(\"rainmax\", max);");

}

void radio_tempCB(Widget w, XtPointer xp1, XtPointer xp2)

{

DXLConnection \conn = (DXLConnection \)xp1;

DXLSend(conn, "g = Import(\"/usr/lpp/dx/samples/data/temperature\");");

DXLSend(conn, "mean,sd,var,min,max = Statistics(g);");

DXLSend(conn, "DXLOutput(\"tempmax\", max);");

}

void radio_windCB(Widget w, XtPointer xp1, XtPointer xp2)

{

DXLConnection \conn = (DXLConnection \)xp1;

DXLSend(conn, "g = Import(\"/usr/lpp/dx/samples/data/wind\");");

DXLSend(conn, "mean,sd,var,min,max = Statistics(g);");

DXLSend(conn, "DXLOutput(\"windmax\", max);");

} DXLink 16.5 Initialization and Exit
These routines enable an application to initiate and terminate connections with Data
Explorer. DXLStartDX establishes a connection \conn for a Data Explorer instance.
It is through this connection that information is sent and received during a Data
Explorer session.

void DXLCloseConnection(DXLConnection \conn)
Closes the connection to Data Explorer (\conn) and frees the memory
allocated to \conn but does not terminate the Data Explorer session.

DXLConnection \DXLConnectToRunningServer(int port, const char \host)
This routine is used primarily for debugging purposes, to connect to a server
(i.e., dxexec or dxui) that has already been started externally and is waiting
for a connection (see -exonly and -appPort options). The routine creates a
connection between the calling application and Data Explorer at the specified
port on the specified host.

The parameter port must be greater than or equal to zero. If host is
specified as NULL, the function uses “localhost”.

DXLError DXLExitDX(DXLConnection \conn)
Closes the connection to Data Explorer (\conn) and terminates the Data
Explorer session. Returns OK or ERROR.

int DXLGetSocket(DXLConnection \conn)
Returns the socket number associated with connection \conn.

DXLError DXLInitializeXMainLoop(XtAppContext app, DXLConnection \conn)
Initializes the X11 window system so that calls to XtAppMainLoop will cause
messages to be processed. (See 16.6, “Messaging System” on page 170.)

int DXLSetMessageDebugging(DXLConnection \c, int on)
Specifies the on-off status of message debugging. If it is enabled, messages
are printed to the terminal window as they are sent or received. The return
value identifies the previous state of message debugging.

void DXLSetSynchronization(DXLConnection \conn, const int onoff)
Sets the synchronization status of the connection to Data Explorer. When
onoff is set to 1, the connection is synchronized; when set to 0, it is not.
With the connection synchronized, routines wait for a response from the
“server” (i.e., UI or exec) after a message is sent. For example, if

 Chapter 16. DXLink Developer's Toolkit 169

synchronization has been turned on, a call to DXLSetValue will not return
until the server has processed the set value.

DXLConnection \DXLStartDX(const char \string, char \host)
Starts Data Explorer and creates a connection to it. The parameter \string
is the command that would be used to start Data Explorer at the command
line. For example, string could be:

dx -image -mdf user.mdf

Note that you must specify either -image, -edit, or -menubar in order to
bypass the Data Explorer Startup window. It is not possible to use
DXLStartDX to start Data Explorer via the Startup window. The parameter
\host is the name of the host on which Data Explorer is to be run. If
specified as NULL, the local host is assumed.

The routine returns a pointer to a DXLConnection on success or it returns
NULL and sets an error code (available in the global variable errno). The
connection structure, specified by

typedef struct DXLConnection DXLConnection;

is the primary structure used by DXLink for maintaining information about the
connection to the server. This DXLConnection is passed to most DXLink
routines to indicate the relevant server connection.

To start the Data Explorer executive and connect DXLink to it, you might
issue the following call:

DXLStartDX("dx -cache off -exonly");

The -exonly flag causes the executive to start up and to wait for a
connection from DXLink. It is therefore required when connecting to the
executive. Note that the “-script” option should not be used, as it causes the
executive to start up in script mode, which requires commands typed directly
at a prompt, bypassing the message system.

Similarly, a connection to the Data Explorer user interface can be initiated
with the command:

DXLStartDX("dx -mdf my.mdf -image");

void DXLSetBrokenConnectionCallback(DXLConnection \conn,
void (\proc)(DXLConnection \, void \), void \data);

Allows the application to install a routine to be called when the connection to
Data Explorer is broken.

 16.6 Messaging System
The primary functionality provided by DXLink is the sending of messages to the
server and the handling of messages from the server. Messages sent to the server
include the setting of variable values and the initiation or termination of execution.
Messages sent from the server and handled by the DXLink library include errors,
warnings, variable values, and execution state. For the most part, the message
format is hidden in the programming interface.

170 IBM Visualization Data Explorer: Programmer’s Reference

Sending Messages to the Server
The function DXLSend (see “Messaging Routines” on page 172) sends specific
messages directly to the server. In general, one needs to be sure that the server
will either handle the message properly or ignore it. The user interface will ignore
most unrecognized messages, while the executive will accept most legal
scripting-language commands.“Setting Variables” on page 175 discusses how an
application program can set the value of variables in a visual program.

Other functions may also result in messages to the server. For example,
DXLStartDX initiates the connection to the server and manages all the messaging
associated with establishing the connection to Data Explorer.

When a function call results in sending a message to the server, DXLink can either
synchronize with the server to ensure that the message has been accepted or it
can return without receiving an acknowledgment. By default, DXLink is configured
to use the latter (asynchronous) method. DXLSetSynchronous sets the
synchronization method to be used. DXLSync allows synchronization at specified
points in an application that does not use synchronous mode.

 DXLink

Receiving Messages from the Server
DXLink always uses an asynchronous method of handling messages sent from the
server to the DXLink application.

DXLHandlePendingMessages must be called when messages are pending and
ready to be processed. This function arranges for message handlers to be called
for pending messages and it discards any messages that do not have handlers
installed. The function DXLIsMessagePending determines whether
DXLHandlePendingMessages needs to be called and allows an application to poll
the connection to the server for messages that need to be processed.

The function DXLGetSocket is provided for systems with socket support. The
returned socket can be used to arrange for the operating system to perform a
blocking select() command on the socket to determine when there are messages
available. This might be used in a scripting application that uses select() on
both the DXLink socket and the file descriptor corresponding to the input device.

The DXLOutput module can be used to send Data Explorer values from Data
Explorer to a DXLink application. For descriptions of both routines, see IBM
Visualization Data Explorer User’s Reference. For a discussion of Data Explorer
values, see “Setting Variables” on page 175.

X11 Windows: The function DXLInitForXMainLoop provides support for applications
built under the X window system. This function should be called before entering
the X main event loop; it arranges for DXLHandlePendingMessages to be called
automatically when messages are available. See 16.5, “Initialization and Exit” on
page 169.

Message handlers are called from DXLHandlePendingMessages when the
indicated message is encountered. DXLink installs a number of its own message
handlers.

The message handler structure is specified by:

typedef void (\DXLMessageHandler)(DXLConnection \conn, const char \msg, void \data);

 Chapter 16. DXLink Developer's Toolkit 171

The packet types for messages are defined as follows:

enum DXLPacketType {
 PACK_INTERRUPT = 1,
 PACK_MACRODEF = 4,
 PACK_FOREGROUND = 5,
 PACK_BACKGROUND = 6,
 PACK_ERROR = 7,
 PACK_MESSAGE = 8,
 PACK_INFO = 9,
 PACK_LINQUIRY = 1ð,
 PACK_LRESPONSE = 11,
 PACK_COMPLETE = 19,
 PACK_LINK = 22
};
typedef enum DXLPacketType DXLPacketTypeEnum;

 Messaging Routines
DXLError DXLSetMessageHandler(DXLConnection \conn,

DXLPacketTypeEnum type, const char \matchstr,
DXLMessageHandler h, const void \data);

Sets a message handler. This routine allows the user to install a message
handler for messages of any type. The handler “h” will be called, receiving
the pointer “data”, whenever the message handling infrastructure receives a
message of type “type” containing a message that matches “matchstr”.

DXLError DXLRemoveMessageHandler(DXLConnection \conn,
DXLPacketTypeEnum type, const char \matchstr,

 DXLMessageHandler h);
Removes a message handler. The “h” argument is ignored.

int DXLIsMessagePending(DXLConnection \conn)
Can be used by applications that need to poll the DXLConnection to
determine whether there are messages from the server that should be
processed with DXLHandlePendingMessages. It returns zero (0) if there are
no messages to handle, and a nonzero value otherwise.

Note: In windowing applications that use DXLInitializeXMainLoop, this
function is not needed.

DXLError DXLHandlePendingMessages(DXLConnection \conn)
Parses a message that is waiting to be processed. The result is a call to the
installed message handlers. This routine is called automatically if
DXLInitializeXmainLoop is used.

DXLError DXLSend(DXLConnection \conn, const char \msg)
When the server is the executive, it will accept most one-line
scripting-language commands, including assignments and module calls. For
example, the following command makes a compound assignment (1.23 to
the variable “foo” and [1 2 3] to the vector “bar”):

DXLSend(conn, "foo, bar = 1.23, [1 2 3]; \n");

172 IBM Visualization Data Explorer: Programmer’s Reference

Notes:

1. Multiline scripting-language commands (e.g., macro definitions) cannot
be sent with this function. Instead see the two ...MacroDefinition
routines in 16.8, “Program Control” on page 174.

2. When the server is the user interface, it will ignore most commands, and
this function should be avoided. Instead see the DXLSetValue functions
in “Setting Variables” on page 175.

DXLError DXLSetErrorHandler(DXLConnection \conn, DXLMessageHandler h,
const void \data);

Sets the message handler (h), which is called when an error occurs. The
specified data is passed to the handler. If no error handler is specified, a
default handler that prints a message and exits will be used. Returns OK or
ERROR. The message handler is defined by

typedef void
(\DXLMessageHandler)(DXLConnection \conn, const char \msg,

 void \data);

 DXLink

 16.7 Execution Control
These routines allow an application program to control the execution of an instance
of Data Explorer (represented by \conn).

DXLError DXLEndExecution(DXLConnection \conn)
Terminates execution of a program running in Data Explorer. Returns OK or
ERROR.

DXLError DXLEndExecuteOnChange(DXLConnection \conn)
Takes Data Explorer out of Execute on Change mode, but does not
terminate the current execution.

DXLError DXLExecuteOnChange(DXLConnection \conn)
Puts Data Explorer into execute-on-change mode: the main macro
reexecutes each time any of its inputs or referenced global variables
changes value. Returns OK or ERROR.

DXLError DXLEndExecuteOnChange(DXLConnection \conn);
ends execute-on-change mode.

DXLError DXLExecuteOnce(DXLConnection \conn)
Initiates a single execution of the macro called main. Returns OK or
ERROR.

DXLError DXLGetExecutionStatus(DXLConnection \conn, int \state)
Gets the execution status of Data Explorer. The parameter state is returned
with a nonzero value if the executive is currently executing.

DXLError DXLSequencerCtl(DXLConnection \conn, DXLSequencerCtlEnum action)
Causes the specified action to occur. Valid arguments for action are:

SeqLoopOff
SeqLoopOn
SeqPalindromeOff
SeqPalindromeOn
SeqPause
SeqPlayBackward

 Chapter 16. DXLink Developer's Toolkit 173

SeqPlayForward
SeqStep
SeqStop

DXLError DXLSync(DXLConnection \conn)
Sends a message to the server and does not return until an
acknowledgment is received. (This is a one-time synchronization. Compare
with DXLSetSynchronization in 16.5, “Initialization and Exit” on page 169.

DXLError uiDXLSyncExecutive(DXLConnection \conn)
Sends a message through the user interface to the executive and does not
return until the executive has acknowledged the message.

DXLError uiDXLSetRenderMode(DXLConnection \conn, char \title, int rmode)
lets you set the rendering mode of a window specified by title. The title of
the window (accessible through the Image Name option in the Options
pull-down menu of the Image window, the title parameter of the Image
tool, or the where parameter of the Display module. rmode must be either 0
(for software) or 1 (for hardware).

DXLError uiDXLResetServer()
effectively does a “reset server”. That is, it flushes the Data Explorer
software cache.

DXLError exDXLExecuteOnceNamed(DXLConnection \conn, char \name);

DXLError exDXLExecuteOnceNamedWithArgs(DXLConnection \conn, char \name, .
..);

DXLError exDXLExecuteOnceNamedWithArgsV(DXLConnection \conn, char \name,
char \\args);

DXLError exDXLExecuteOnChangeNamed(DXLConnection \conn, char \name);

DXLError exDXLExecuteOnChangeNamedWithArgs(DXLConnection \conn, char
\name, ...);

DXLError exDXLExecuteOnChangeNamedWithArgsV(DXLConnection \conn, char \name
, char \\args);

These routines, used ONLY when the application is connected directly to the
Data Explorer executive, allow the application to execute macros by name.
The application can cause the named macro to be executed once or to be
executed whenever a macro global input changes (such as when a value is
sent to a DXLInput or DXLInputNamed module). The macro may be given a
NULL-terminated list of arguments (the ...WithArgs form) or a
NULL-terminated vector of arguments (the ...WithArgsV form).

 16.8 Program Control
The following routines allow an application program to open visual programs and
configuration files, set inputs and outputs of tools, and set up handlers for objects
and values sent by the server to the calling program.

174 IBM Visualization Data Explorer: Programmer’s Reference

Loading programs and macros
DXLError exDXLBeginMacroDefinition(DXLConnection \conn, const char \mhdr)

Defines the beginning of a macro definition. The macro header \mhdr
specifies the macro name, inputs, and outputs. For example:

mhdr = "macro SUM(arg1, arg2) → (sum)"

This routine should be followed by a series of DXLSend commands that
send the macro definition, and finally by exDXLEndMacroDefinition (see
following).

DXLError exDXLEndMacroDefinition(DXLConnection \conn)
Defines the end of a macro definition.

DXLError DXLLoadVisualProgram(DXLConnection \conn, const char \file)
Loads the visual program specified by the file name \file. The path to this
file is relative to the startup directory of the server. Returns OK or ERROR.

If this routine is called when the application is communicating directly with
the executive, an execution will occur after the visual program is loaded,
because visual programs saved by the user interface include a call to the
main macro.

DXLError DXLLoadMacroFile(DXLConnection \conn, const char \file);
Causes Data Explorer to load the macro contained in file 'file'.

DXLError DXLLoadMacroDirectory(DXLConnection \conn, const char \dir);
Causes Data Explorer to load all macros contained in directory 'dir'.

DXLError exDXLLoadScript(DXLConnection \conn, const char \file)
Loads the specified script (\file) and executes it immediately. The path to
this file is relative to the startup directory of the server. Returns OK or
ERROR.

DXLError uiDXLLoadConfig(DXLConnection \conn, const char \file)
Opens the configuration file specified by its file name (\file). The path to
this file is relative to the startup directory of the user interface. Returns OK
or ERROR.

 DXLink

 Setting Variables
DXLink enables a program to set (and retrieve) Data Explorer values in a visual
program or macro. It is important to understand the distinction between a Data
Explorer object and a Data Explorer value. A Data Explorer object is the basic data
structure of the Data Explorer data model (see Chapter 3, “Understanding the Data
Model” on page 15 in IBM Visualization Data Explorer User’s Guide). A Data
Explorer value is a character representation of a Data Explorer object (as would be
used in the scripting language). The following are common examples of Data
Explorer values:

 string: "123"

 integer: 123

 scalar: 1.23

vector: [1 2 3]

 string list: { "123", "456" }

integer list: { 123, 456 }

 scalar list: { 1.23, 4.56 }

 vector list: { [1 2 3], [4 5 6] }

 Chapter 16. DXLink Developer's Toolkit 175

Not all Data Explorer objects can be represented by strings (e.g., fields and
groups).

DXLError DXLSetValue(DXLConnection \conn, const char \varname,
const char \value)

Sets the global variable specified by \varname to the value given in \value
(double quotation marks—for strings and string lists— must be escaped with
a backslash (\), as in the example below.) Returns OK or ERROR.

This function is used primarily to set global variables in a macro and is the
mechanism to set “inputs” to a module in a program.

Global variables are variables that have been assigned or referenced outside a
macro (the global scope) or are defined by a reference in a nested scope.
Variables assigned with a nested scope are considered local. For example, in the
following macro, the variables a and b are local to the macro (their first occurrence
is an assignment), while c is a global variable (its first occurrence is a reference).

macro foo() → ()

 {

a = "1";

b = c;

. . . .

 }

 foo();

See “Variables Used in Macros” on page 208 in IBM Visualization Data Explorer
User’s Guide for the rules of scoping variables.

You might use DXLSetValue to control the name of a data set imported with the
Import tool, as in the following Data Explorer macro:

macro main()

 {

object = Import(MyFileNameHere);

 Display(...)

 }

The following C code invokes the main macro to import data from the file foobar.dx
and render it:

. . .

DXLSetValue(conn, "MyFileNameHere", "\"foobar.dx\"");

 DXLExecuteOnce(conn);

. . .

The Data Explorer user interface provides a convenient mechanism for placing
global variables in a visual program. The DXLInput tool (see “DXLInput” on
page 102 in IBM Visualization Data Explorer User’s Reference) implements a
global variable inside the macro main(). By changing the label in the Notation
field of the DXLInput tool’s configuration dialog box, you can change the name of
the global variable. This mechanism provides a clean interface between the visual
program and the DXLink application. Named DXLInput tools are simply placed in
the program and connected to the module input that needs to be controlled from
the application. In the preceding example, a DXLInput tool named

176 IBM Visualization Data Explorer: Programmer’s Reference

MyFileNameHere would be connected to the first input of the Import tool. Then, the
same piece of C code could be used to control the program.

DXLError DXLSetInteger(DXLConnection \conn, const char \varname, int value)
DXLError DXLSetScalar(DXLConnection \conn, const char \varname,

const double value)
DXLError DXLSetString(DXLConnection \conn, const char \varname,

const char \value)

Set the variable specified by \varname to value (or \value). These are
convenience functions that use DXLSetValue. They return OK or ERROR.

Retrieving Values Sent From Data Explorer
The DXLOutput tool provides the means to retrieve values from Data Explorer
asynchronously. This tool is used much like the macro Output tool in the Data
Explorer user interface. It has two inputs: the first associates a label with an object
or value (much like the name of a global variable); the second is the input object to
be sent to the DXLink application. Currently, DXLOutput sends only those values
that can be represented as strings.

When the module is executed, it communicates its input values to the DXLink
application.

In order to retrieve the values in the application, a function must be defined and
installed to accept them when they are available. A function is installed as follows:

DXLError DXLSetValueHandler(DXLConnection \c, const char \label,
DXLValueHandler h, const void \data);

where \label is the value of the first input to the corresponding DXLOutput for
which the function is being installed. (In the user interface, the label corresponds to
the Notation field in the configuration dialog box.) When the labeled value is
received, the function, or handler h, is called as follows:

(\h) (c, label, value, data)

where label and data are the values that were passed to DXLSetValueHandler();
data is a user-defined value, and value is the value being received for the
corresponding label. The handler (like message handlers in general) is called when
DXLHandlePendingMessages() is called and a corresponding message is pending.

The definition of the value-handler function is:

typedef void (\DXLValueHandler)(DXLConnection \conn, const char \label,
const char \value, void \data);

Note: The same handler can be installed for values with different labels. See also
DXLRemoveValueHandler().

DXLError DXLRemoveValueHandler(DXLConnection \c, const char \label);

specifies that the value handler (h) for the value \label is to be removed (\label is
the name associated with the value that is to be passed to DXLink). Returns OK or
ERROR.

 DXLink

 Chapter 16. DXLink Developer's Toolkit 177

 16.9 Window Control
The following routines allow an application to control the behavior of user interface
windows.

DXLError uiDXLOpenVPE(DXLConnection \conn);

DXLError uiDXLCloseVPE(DXLConnection \conn);

DXLError uiDXLOpenSequencer(DXLConnection \conn);

DXLError uiDXLCloseSequencer(DXLConnection \conn);

DXLError uiDXLOpenAllImages(DXLConnection \conn);

DXLError uiDXLCloseAllImages(DXLConnection \conn);

DXLError uiDXLOpenColorMapEditorByTitle(DXLConnection \conn, char \title);

DXLError uiDXLCloseAllColorMapEditors(DXLConnection \conn);

DXLError uiDXLCloseColorMapEditorByLabel(DXLConnection \conn, char \label);

DXLError uiDXLCloseColorMapEditorByTitle(DXLConnection \conn, char \title);

When the application is connected to the Data Explorer user interface, these
routines allow control over DXUI windows. See “ManageImageWindow” on
page 206 and and “ManageColormapEditor” on page 203 in IBM Visualization
Data Explorer User’s Reference for a description of the difference between “title”
and “label”.

178 IBM Visualization Data Explorer: Programmer’s Reference

Appendix A. Data Explorer Libraries

The most common use of the Data Explorer development libraries is to create your
own modules, but there are several other ways they can be used.

 A.1 libDXlite.a
To create your own data filters or stand alone data processing programs, as shown
by the “DX Data Model” layer in Figure 1 on page 2, link your programs with the
libDXlite.a library. This is the appropriate layer to use if your program wants to
create, manipulate, import or export Data Explorer objects. None of the module
routines nor any of the functions supplied by the Data Explorer Executive are
included at this level.

If you are building a module to use with Data Explorer, you typically link with this
library.

The routines contained in libDXlite.a are listed in Appendix B, “Data Explorer Data
Model Library: DXlite Routines” on page 181.

 Libraries

 A.2 libDXcallm.a
To create your own stand-alone programs which call DX modules, as shown by the
“DX Modules” layer in Figure 1 on page 2, link your programs with the
libDXcallm.a library. Because your program is the main routine and does not
include any of the functions which are supplied by the Data Explorer Executive, you
must do all object management, flow control (which modules to call when), any
looping or conditional execution, and object deletion and reference count
management. See “DXCallModule, DXModSet..., DXSetModule...” on page 203 for
more information.

If you are building a module to use with Data Explorer, you would link with this
library if you wanted to use DXCallModule to use some of the Data Explorer
modules from within your own program. In addition, some higher level processing
functions such as interpolation support, is available only in libDXcallm.a.

The routines contained in libDXcallm.a are listed in Appendix C, “Data Explorer
Library Routines” on page 183.

 A.3 libDXL.a
You can control the Data Explorer Executive from another program using the
DXLink library libDXL.a. At this level, you can create visual programs using the DX
VPE ahead of time and run them using only the DX Executive while providing your
own user interface using any third party GUI builder or X library code. With
“SuperviseWindow” on page 336 and “SuperviseState” on page 332, discussed in
IBM Visualization Data Explorer User’s Reference, the functions you can control
include the Image window interactions, and inserting an active image window into
an application with an existing user interface. You get the object cache, the
intelligent flow control, the object management and all the other functions which the
executive provides.

 Copyright IBM Corp. 1991-1997 179

You can also control the Data Explorer User Interface from another program using
the libDXL.a DXLink library. In addition to the executive functions, you can use the
Data Explorer Control Panels for user interaction, and the Image window with the
direct interactions. The routines contained in libDXL.a are listed in Chapter 16,
“DXLink Developer's Toolkit” on page 157. Figure 14 depicts the Data Explorer
architecture.

DX Architecture

DX Executive

DX Data Model

DX ModulesUser
Program

User
Program

DX DistributionCustom

DX UI

Figure 14. Data Explorer architecture

180 IBM Visualization Data Explorer: Programmer’s Reference

Appendix B. Data Explorer Data Model Library: DXlite
Routines

All Data Explorer routines are included in the libraries libDXcallm.a and libDX.a. All
routines are described in Appendix C, “Data Explorer Library Routines” on
page 183. A subset of those routines are included in libDXlite.a, as shown in the
list below. Outboard and stand-alone modules can use the Data Explorer data
model by linking to this Library. You can create, query, and modify Data Explorer
Objects. For example, you can write an importer that reads data in a particular file
format and creates a Data Explorer Field Object as its output. (Outboard and
stand-alone programs may also link to libDXcallm.a to access all of the routines
described in Appendix C, “Data Explorer Library Routines” on page 183.)

DXAbortTaskGroup
DXAdd
DXAddArrayData
DXAddBackColor
DXAddBackColors
DXAddColor
DXAddColors
DXAddFaceNormal
DXAddFaceNormals
DXAddFrontColor
DXAddFrontColors
DXAddLine
DXAddLines
DXAddMessage
DXAddNormal
DXAddNormals
DXAddOpacities
DXAddOpacity
DXAddPoint
DXAddPoints
DXAddQuad
DXAddQuads
DXAddTask
DXAddTetrahedra
DXAddTetrahedron
DXAddTriangle
DXAddTriangles
DXAdjointTranspose
DXAllocate
DXAllocateArray
DXAllocateLocal
DXAllocateLocalOnly
DXAllocateLocalOnlyZero
DXAllocateLocalZero
DXAllocateZero
DXApply
DXArrayConvert
DXArrayConvertV

DXBeginLongMessage
DXBoundingBox

DXCategorySize
DXChangedComponent-
 Values
DXClipBox
DXClipPlane
DXColorNameToRGB
DXComponentOpt
DXComponentOptLoc
DXComponentReq
DXComponentReqLoc
DXConcatenate
DXCopy
DXCopyAttributes
DXCreateArrayHandle
DXCreateHash
DXCreateTaskGroup
DXCross

DXDebug
DXDelete
DXDeleteAttribute
DXDeleteComponent
DXDeleteHashElement
DXDestroyHash
DXDeterminant
DXDiv
DXDot

DXEmptyField
DXEnableDebug
DXEndField
DXEndLongMessage
DXEndObject
DXExecuteTaskGroup
DXExists

DXExportDX
DXExtract
DXExtractFloat
DXExtractInteger
DXExtractNthString
DXExtractParameter
DXExtractString

DXFree
DXFreeArrayDataLocal
DXFreeArrayHandle
DXFreeModuleId

DXGetArrayClass
DXGetArrayData
DXGetArrayDataLocal
DXGetArrayInfo
DXGetAttribute
DXGetBackgroundColor
DXGetCacheEntry
DXGetCacheEntryV
DXGetCameraMatrix
DXGetCameraMatrix-
 WithFuzz
DXGetCameraResolution
DXGetCameraRotation
DXGetClipBox
DXGetClippedInfo
DXGetComponentAttribute
DXGetComponentValue
DXGetConnections
DXGetConstantArrayData
DXGetEnumeratedAttribute
DXGetEnumerated-
 ComponentAttribute
DXGetEnumerated-
 ComponentValue
DXGetEnumeratedMember

DXGetError
DXGetErrorMessage
DXGetFloatAttribute
DXGetGroupClass
DXGetIntegerAttribute
DXGetItemSize
DXGetMember
DXGetMemberCount
DXGetMeshArrayInfo
DXGetMeshOffsets
DXGetModuleId
DXGetNextHashElement
DXGetObjectClass
DXGetObjectTag
DXGetOrthographic
DXGetPart
DXGetPartClass
DXGetPathArrayInfo
DXGetPathOffset
DXGetPerspective
DXGetPrivateData
DXGetProductArrayInfo
DXGetRegularArrayInfo
DXGetScreenInfo
DXGetSeriesMember
DXGetString
DXGetStringAttribute
DXGetTime
DXGetType
DXGetVaidCount
DXGetView
DXGetXformInfo

DXImportDX
DXInitNextHashElement
DXInsert

 DXlite

 Copyright IBM Corp. 1991-1997 181

DXInsertHashElement
DXInvert

DXLength
DXLn

DXMakeGridConnections
DXMakeGridConnectionsV
DXMakeGridPositions
DXMakeGridPositionsV
DXMakeStringList
DXMakeStringListV
DXMarkTime
DXMarkTimeLocal
DXMat
DXMax
DXMessage
DXMin
DXMul

DXNeg
DXNeighbors
DXNewAmbientLight
DXNewArray
DXNewArrayV
DXNewCamera
DXNewClipped
DXNewCompositeField
DXNewConstantArray
DXNewConstantArrayV
DXNewDistantLight
DXNewField

DXNewMeshArray
DXNewMultiGrid
DXNewPathArray
DXNewPrivate
DXNewProductArray
DXNewProductArrayV
DXNewRegularArray
DXNewScreen
DXNewSeries
DXNewString
DXNewXform
DXNormalize

DXPartition
DXPrint
DXPrintAlloc
DXPrintTimes
DXPrintV
DXProcessorId
DXProcessors
DXProcessParts
DXPt

DXQuad
DXQueryArrayCommon
DXQueryArrayCommonV
DXQueryArrayConvert
DXQueryArrayConvertV
DXQueryConstantArray
DXQueryDebug
DXQueryDistantLight
DXQueryGridConnections

DXQueryGridPositions
DXQueryHashElement
DXQueryParameter

DXReadyToRun
DXReAllocate
DXReference
DXRegisterInputHandler
DXRemove
DXRename
DXReplace
DXResetError
DXRotateX
DXRotateY
DXRotateZ

DXScale
DXSetAttribute
DXSetBackgroundColor
DXSetCacheEntry
DXSetCacheEntryV
DXSetClippedObjects
DXSetComponentAttribute
DXSetComponentValue
DXSetConnections
DXSetEnumeratedMember
DXSetError
DXSetFloatAttribute
DXSetGroupType
DXSetGroupTypeV
DXSetIntegerAttribute
DXSetMember

DXSetMeshOffsets
DXSetObjectTag
DXSetOrthographic
DXSetPart
DXSetPathOffset
DXSetPerspective
DXSetResolution
DXSetScreenObject
DXSetSeriesMember
DXSetStringAttribute
DXSetView
DXSetXformObject
DXSub
DXSwap

DXTetra
DXTraceTime
DXTranslate
DXTranspose
DXTri
DXTrim
DXTypeCheck
DXTypeCheckV
DXTypeSize

DXUnreference
DXUnsetGroupType

DXVec

DXWarning

182 IBM Visualization Data Explorer: Programmer’s Reference

Appendix C. Data Explorer Library Routines

DXAbortTaskGroup . 189
DXAdd, DXCross, DXDiv, DXDot, DXLength, DXMax, DXMin, DXMul,

DXNeg, DXNormalize, DXSub . 189
DXAddArrayData . 190
DXAddFaceNormal, DXAddFaceNormals 191
DXAddLine, ...Triangle, ...Quad, ...Tetrahedron, ...Lines, ...Triangles,

...Quads, ...Tetrahedra . 192
DXAddMessage, DXMessageReturn, DXMessageGoto 193
DXAddPoint, ...Color, ...FrontColor, ...BackColor, ...Opacity, ...Normal,

DXAddPoints, ...Colors, ...FrontColors, ...BackColors, ...Opacities,
...Normals . 194

DXAddTask . 195
DXAllocate, DXAllocateZero, DXAllocateLocal, DXAllocateLocalZero,

DXAllocateLocalOnly, DXAllocateLocalOnlyZero 196
DXAllocateArray . 197
DXApplyTransform . 198
DXArrayConvert, DXArrayConvertV . 199
DXBeginLongMessage, DXEndLongMessage 201
DXBoundingBox . 201
DXCallModule, DXModSet..., DXSetModule... 203
DXChangedComponentValues, DXChangedComponentStructure 204
DXCheckRIH . 205
DXClipBox . 206
DXClipPlane . 208
DXColorNameToRGB . 208
DXCompareModuleID . 209
DXComponentReq, DXComponentOpt, DXComponentReqLoc,

DXComponentOptLoc . 209
DXConcatenate, DXInvert, DXTranspose, DXAdjointTranspose,

DXDeterminant, DXApply . 210
DXCopy . 211
DXCopyAttributes . 212
DXCopyModuleID . 213
DXCreateArrayHandle . 214
DXCreateHash . 214
DXCreateInvalidComponentHandle . 215
DXCreateTaskGroup . 216
DXCull . 217
DXDebug, DXEnableDebug, DXQueryDebug 219
DXDelete . 220
DXDeleteComponent . 221
DXDeleteHashElement . 221
DXDestroyHash . 222
DXDisplayX, DXDisplayX8, DXDisplayX12, DXDisplayX24 222
DXEmptyField . 224
DXEndField . 224
DXEndObject . 226
DXExecuteTaskGroup . 226
DXExists . 227
DXExportDX . 228

 Library Routines

 Copyright IBM Corp. 1991-1997 183

DXExtract . 228
DXExtractFloat . 229
DXExtractInteger . 230
DXExtractNthString . 230
DXExtractParameter . 231
DXExtractString . 232
DXFree . 233
DXFreeArrayDataLocal . 233
DXFreeArrayHandle . 234
DXFreeInvalidComponentHandle . 234
DXFreeModuleID . 235
DXGeometricText . 236
DXGetArrayClass . 236
DXGetArrayData . 237
DXGetArrayDataLocal . 237
DXGetArrayEntry, DXGetArrayEntries . 238
DXGetArrayInfo . 239
DXGetAttribute . 240
DXGetCacheEntry, DXGetCacheEntryV . 240
DXGetCameraMatrix, DXGetCameraRotation,

DXGetCameraMatrixWithFuzz . 241
DXGetClippedInfo . 242
DXGetComponentAttribute . 242
DXGetComponentValue . 243
DXGetConnections . 244
DXGetConstantArrayData . 244
DXGetEnumeratedAttribute . 245
DXGetEnumeratedComponentAttribute . 245
DXGetEnumeratedComponentValue . 246
DXGetEnumeratedMember . 247
DXGetError . 247
DXGetErrorExit . 248
DXGetErrorMessage . 249
DXGetFloatAttribute . 249
DXGetFont . 251
DXGetGroupClass . 251
DXGetImageSize, DXGetImageBounds . 252
DXGetIntegerAttribute . 253
DXGetInvalidComponentArray . 254
DXGetInvalidCount . 254
DXGetItemSize . 255
DXGetMember . 255
DXGetMemberCount . 256
DXGetMeshArrayInfo . 256
DXGetMeshOffsets . 257
DXGetModuleId . 258
DXGetNextHashElement . 258
DXGetNextInvalidElementIndex . 259
DXGetNextValidElementIndex . 259
DXGetObjectClass . 260
DXGetObjectTag, DXSetObjectTag . 260
DXGetPart . 261
DXGetPartClass . 262
DXGetPathArrayInfo . 262

184 IBM Visualization Data Explorer: Programmer’s Reference

DXGetPathOffset . 263
DXGetPickPoint . 264
DXGetPixels . 264
DXGetPrivateData . 265
DXGetProductArrayInfo . 265
DXGetRegularArrayInfo . 266
DXGetScreenInfo . 267
DXGetSeriesMember . 267
DXGetString . 268
DXGetStringAttribute . 269
DXGetTime . 269
DXGetType . 271
DXGetValidCount . 271
DXGetXformInfo . 272
DXGrow, DXGrowV . 273
DXImportCDF . 274
DXImportCM . 274
DXImportDX . 275
DXImportHDF . 275
DXImportNetCDF . 276
DXInitGetNextHashElement . 277
DXInitModules . 277
DXInitGetNextInvalidElementIndex, DXInitGetNextValidElementIndex . . . 278
DXInsert . 278
DXInsertHashElement . 279
DXInterpolate . 280
DXInvalidateConnections . 280
DXInvalidateDupBoundary . 281
DXInvalidateUnreferencedPositions . 281
DXInvertValidity . 282
DXIsElementValid, DXIsElementInvalid . 283
DXIsElementValidSequential, DXIsElementInvalidSequential 283
DXIterateArray . 285
DXLn, DXTri, DXQuad, DXTetra . 286
DXLocalizeInterpolator . 287
DXLoopDone . 287
DXLoopFirst . 288
DXMakeFloat . 289
DXMakeGridConnections, DXMakeGridConnectionsV 289
DXMakeGridPositions, DXMakeGridPositionsV 290
DXMakeImage . 291
DXMakeInteger . 291
DXMakeString . 292
DXMakeStringList, DXMakeStringListV . 292
DXMap . 293
DXMapArray . 294
DXMapCheck . 294
DXMarkTime, DXMarkTimeLocal . 295
DXMessage . 296
DXNeighbors . 297
DXNewAmbientLight . 297
DXNewArray, DXNewArrayV . 298
DXNewCamera . 299
DXNewClipped . 300

 Library Routines

 Appendix C. Data Explorer Library Routines 185

DXNewCompositeField . 301
DXNewConstantArray, DXNewConstantArrayV 302
DXNewDistantLight . 302
DXNewField . 303
DXNewGroup . 304
DXNewInterpolator . 305
DXNewMeshArray, DXNewMeshArrayV . 306
DXNewMultiGrid . 306
DXNewPathArray . 307
DXNewPrivate . 308
DXNewProductArray, DXNewProductArrayV 308
DXNewRegularArray . 309
DXNewScreen . 311
DXNewSeries . 312
DXNewString . 312
DXNewXform . 313
DXOutputRGB . 315
DXPartition . 316
DXPrint, DXPrintV . 316
DXPrintAlloc . 317
DXPrintTimes . 318
DXProcessorId . 319
DXProcessors . 320
DXProcessParts . 320
DXPt, DXVec . 322
DXQueryAmbientLight . 323
DXQueryArrayCommon, DXQueryArrayCommonV 323
DXQueryArrayConvert, DXQueryArrayConvertV 325
DXQueryConstantArray . 325
DXQueryDistantLight . 326
DXQueryGridConnections . 327
DXQueryGridPositions . 327
DXQueryHashElement . 328
DXQueryOriginalSizes, DXQueryOriginalMeshExtents 329
DXQueryParameter . 330
DXQueryPickCount . 331
DXQueryPickPath . 332
DXQueryPokeCount . 332
DXReadyToRun . 334
DXReAllocate . 334
DXReference . 335
DXRegisterInputHandler . 336
DXRemove . 336
DXRename . 337
DXRender . 337
DXReplace . 338
DXResetError . 339
DXRGB . 339
DXRibbon . 340
DXRotateX, DXRotateY, DXRotateZ, DXScale, DXTranslate, DXMat . . . 340
DXSaveInvalidComponent . 342
DXScalarConvert . 342
DXSetAllInvalid . 343
DXSetAllValid . 343

186 IBM Visualization Data Explorer: Programmer’s Reference

DXSetAttribute, DXDeleteAttribute . 344
DXSetBackgroundColor, DXGetBackgroundColor 345
DXSetCacheEntry, DXSetCacheEntryV . 345
DXSetClippedObjects . 347
DXSetComponentAttribute . 347
DXSetComponentValue . 348
DXSetConnections . 349
DXSetElementInvalid . 349
DXSetElementValid . 350
DXSetEnumeratedMember . 350
DXSetError, DXErrorReturn, DXErrorGoto 351
DXSetErrorExit . 352
DXSetFloatAttribute . 353
DXSetGroupType, DXSetGroupTypeV . 353
DXSetIntegerAttribute . 354
DXSetMember . 355
DXSetMeshOffsets . 355
DXSetOrthographic, DXGetOrthographic . 356
DXSetPart . 357
DXSetPathOffset . 357
DXSetPendingCmd . 358
DXSetPerspective, DXGetPerspective . 359
DXSetResolution, DXGetCameraResolution 360
DXSetScreenObject . 361
DXSetSeriesMember . 361
DXSetStringAttribute . 362
DXSetView, DXGetView . 363
DXSetXformObject . 363
DXShrink . 364
DXStatistics . 365
DXSwap . 365
DXTraceTime . 367
DXTraversePickPath . 367
DXTrim . 368
DXTube . 368
DXTypeCheck, DXTypeCheckV . 369
DXTypeSize, DXCategorySize . 370
DXUnreference . 371
DXUnsetGroupType . 371
DXValidPositionsBoundaryBox . 373
DXWarning . 374

 Library Routines

 Appendix C. Data Explorer Library Routines 187

The descriptions of routines begin after the list below, are sorted alphabetically by
the name of the (first) routine, and contain the following information:

 � General function
 � Syntax
 � Functional details
 � Return value(s)
� Related routine(s) and information.

In entries that describe more than one routine, the second and any subsequent
routines are not listed in the expected alphabetical order in the appendix. Their
names, along with the page numbers of the entries in which they appear, are listed
here.

A name ending in “(s)” signifies that the relevant entry describes both a “singular”
and a “plural” version of a routine.

DXAddBackColor(s) (194)
DXAddColor(s) (194)
DXAddFaceNormals (191)
DXAddFrontColor(s) (194)
DXAddLine(s) (192)
DXAddNormal(s) (194)
DXAddOpacities (194)
DXAddOpacity (194)
DXAddPoint(s) (194)
DXAddQuad(s) (192)
DXAddTetrahedra (192)
DXAddTetrahedron (192)
DXAddTriangle(s) (192)
DXAdjointTranspose (210)
DXAllocateLocal (196)
DXAllocateLocalOnly (196)
DXAllocateLocalOnlyZero (196)
DXAllocateLocalZero (196)
DXAllocateZero (196)
DXApply (210)
DXArrayConvertV (199)
DXASSERT (351)

DXCategorySize (370)
DXChangedComponentStructure
(204)
DXComponentOpt (209)
DXComponentOptLoc (209)
DXComponentReqLoc (209)
DXCross (189)

DXDeleteAttribute (344)
DXDeterminant (210)
DXDisplayX(8, 12, 24) (222)
DXDiv (189)
DXDot (189)

DXEnableDebug (219)

DXEndLongMessage (201)
DXErrorGoto (351)
DXErrorReturn (351)

DXGetArrayEntries (238)
DXGetBackgroundColor (345)
DXGetCacheEntryV (240)
DXGetCameraMatrixWithFuzz
(241)
DXGetCameraResolution (360)
DXGetCameraRotation (241)
DXGetImageBounds (252)
DXGetOrthographic (356)
DXGetPerspective (359)
DXGetView (363)
DXGrowV (273)

DXInitGetNextValidElementIndex
(278)
DXInvert (210)
DXIsElementInvalid (283)
DXIsElementInvalidSequential
(283)

DXLength (189)

DXMakeGridConnectionsV
(289)
DXMakeGridPositionsV (290)
DXMakeStringListV (292)
DXMarkTimeLocal (295)
DXMat (340)
DXMax (189)
DXMessageGoto (193)
DXMessageReturn (193)
DXMin (189)
DXModSetFloatInput (203)
DXModSetIntegerInput (203)

DXModSetObjectInput (203)
DXModSetObjectOutput (203)
DXModSetStringInput (203)
DXMul (189)

DXNeg (189)
DXNewArrayV (298)
DXNewConstantArrayV (302)
DXNewMeshArrayV (306)
DXNewProductArrayV (308)
DXNormalize (189)

DXPrintV (316)

DXQuad (286)
DXQueryArrayCommonV (323)
DXQueryArrayConvertV (325)
DXQueryDebug (219)
DXQueryOriginalMeshExtents
(329)

DXRotate(Y, Z) (340)

DXScale (340)
DXSetCacheEntryV (345)
DXSetGroupTypeV (353)
DXSetModuleInput (203)
DXSetModuleOutput (203)
DXSetObjectTag (260)
DXSub (189)

DXTetra (286)
DXTranslate (340)
DXTranspose (210)
DXTri (286)
DXTypeCheckV (369)

DXVec (322)

188 IBM Visualization Data Explorer: Programmer’s Reference

 DXAbortTaskGroup

 DXAbortTaskGroup

 Function
Aborts a task Group without executing it.

 Syntax
#include <dx/dx.h>

Error DXAbortTaskGroup()

 Functional Details
If the creation of a task Group must be terminated before it can be completed,
DXAbortTaskGroup should be called to release the resources allocated to that Group
and its component tasks. After this call, the routine DXExecuteTaskGroup must not
be called until a new task Group has been created (i.e., by DXCreateTaskGroup and
DXAddTask).

 Return Value
Returns OK or returns ERROR and sets an error code.

 See Also
DXAddTask, DXCreateTaskGroup, DXExecuteTaskGroup

12.8, “Parallelism” on page 123.

 Library Routines

DXAdd, DXCross, DXDiv, DXDot, DXLength, DXMax, DXMin, DXMul,
DXNeg, DXNormalize, DXSub

 Function
Perform standard vector mathematics.

 Syntax
#include <dx/dx.h>

Vector DXNeg(Vector v)
Vector DXNormalize(Vector v)
double DXLength(Vector v)
Vector DXAdd(Vector v, Vector w)
Vector DXSub(Vector v, Vector w)
Vector DXMin(Vector v, Vector w)
Vector DXMax(Vector v, Vector w)
Vector DXMul(Vector v, double f)
Vector DXDiv(Vector v, double f)
float DXDot(Vector v, Vector w)
Vector DXCross(Vector v, Vector w)

.

 Appendix C. Data Explorer Library Routines 189

 DXAddArrayData

 Functional Details
DXNeg, DXNormalize, DXLength

Perform unary operations of negation, normalization, and length.

DXAdd, DXSub, DXMin, DXMax
Perform vector operations of addition, subtraction, min, and max. Min
and max are performed on each component of a vector.

DXMul, DXDiv
Multiply or divide a vector by a float.

DXDot, DXCross
Form the dot product or cross-product of two vectors.

A Point and Vector are defined as follows:

typedef struct point {
float x, y, z;

} Point, Vector;

 Return Value
Each routine returns the result of its operation.

 See Also
DXAdjointTranspose, DXApply, DXConcatenate, DXDeterminant, DXInvert,
DXTranspose

“Basic Operations” on page 126.

 DXAddArrayData

 Function
Adds items to an Array.

 Syntax
#include <dx/dx.h>

Array DXAddArrayData(Array a, int start, int n, Pointer data)

.

 Functional Details
Adds n items to Array a, starting at the numbered item specified by start. The
additions may replace or supplement items already defined. If data is not NULL, the
routine copies the data into the Array; otherwise, it increases the number of items
in the Array by n, but leaves them uninitialized.

To avoid having memory allocated every time, DXAddArrayData may allocate more
than is needed for the requested number of items. If Array a is part of a Field, any
extra space will be freed when DXEndField is called. If it is not part of a Field,
DXTrim can be called to free the extra space, though this is not required.

To allocate space “up front” for an Array of known size, use DXAddArrayData(ð, n,
NULL), which is the preferred means for preallocating space for the data.

190 IBM Visualization Data Explorer: Programmer’s Reference

 DXAddFaceNormal, DXAddFaceNormals

DXAllocateArray(ð, n, NULL) also preallocates space, but the number of items in
the Array will be 0. If DXAllocateArray is called, DXTrim can be called to resize the
Array to the space required for the actual number of items.

Allocating more space for an Array may result in its being copied to a new location
in memory. If you call DXGetArrayData to obtain a pointer for an Array and then
allocate more space for it, you must call DXGetArrayData again because the pointer
may no longer be valid.

There are four ways to add data to irregular Arrays:

� Add items one at a time: DXAddArrayData(a, i, 1,item).
� Add items in batches: DXAddArrayData(a, i, n, items).
� Add multiple items all at one time: DXAddArrayData(a, ð, n, items).
� Allocate the memory: call DXAddArrayData(a, ð, n, NULL); get a pointer to

global memory with DXGetArrayData(a); and put the items directly into global
memory “by hand.”

 Return Value
Returns a or returns NULL and sets an error code.

 See Also
DXAllocateArray, DXEndField, DXGetArrayData, DXTrim,

“Irregular Arrays” on page 101.

 Library Routines

 DXAddFaceNormal, DXAddFaceNormals

 Function
Adds connection-dependent normals to a Field.

 Syntax
#include <dx/dx.h>

Field DXAddFaceNormal(Field f, int id, Vector v)
Field DXAddFaceNormals(Field f, int start, int n, Vector \v)

.

 Functional Details
A Field may contain connection-dependent normals that can be used to flat-shade
a polygonal object. If so, the normals component is expected to have the same
size as the “connections” component, as indicated by its having a “dep” attribute of
“connections.” Both routines aid in constructing such a component.

DXAddFaceNormal
Adds one normal (v) to f with the specified zero-based id. If f does not
contain a “normals” component, one is added.

DXAddFaceNormals
Adds n normals (\v) to f. Identifiers begin with start. If f does not
contain a “normals” component, one is added.

 Appendix C. Data Explorer Library Routines 191

 DXAddLine, ..., DXAddTetrahedra

Note: Both routines are suitable for adding a small number of face normals and
for rapid prototyping, but they are included here mainly for backward
compatibility. For better performance, see “DXAddArrayData” on page 190
and “Irregular Arrays” on page 101.

Normals are specified as Vectors and defined as follows:

typedef struct point {
float x, y, z;

} Point, Vector;

Note: These routines do not check the “dep” attribute of the “normals” component.
Thus, if a “normals” component that is “dep” on “positions” already exists in
f, the routine adds one or more normals to the normals component, leaving
the attribute unchanged. The result may be a component with the wrong
number of items for “dep.”

 Return Value
Returns f or returns NULL and sets an error code.

 See Also
DXAddArrayData, DXAddBackColor, DXAddBackColors, DXAddColor, DXAddColors,
DXAddFrontColor, DXAddFrontColors, DXAddNormal, DXAddNormals, DXAddOpacities,
DXAddOpacity, DXAddPoint, DXAddPoints, DXAddArrayData

“Points and Dependent Data” on page 106.

DXAddLine, ...Triangle, ...Quad, ...Tetrahedron, ...Lines, ...Triangles,
...Quads, ...Tetrahedra

 Function
Adds interpolation element(s) to a Field.

 Syntax
#include <dx/dx.h>

Field DXAddLine(Field f, int id, Line l)
Field DXAddTriangle(Field f, int id, Triangle t)
Field DXAddQuad(Field f, int id, Quadrilateral q)
Field DXAddTetrahedron(Field f, int id, Tetrahedron t)

Field DXAddLines(Field f, int start, int n, Line \l)
Field DXAddTriangles(Field f, int start, int n, Triangle \t)
Field DXAddQuads(Field f, int start, int n, Quadrilateral \q)
Field DXAddTetrahedra(Field f, int start, int n, Tetrahedron \t)

.

 Functional Details
The interpolation elements generated by these routines are stored in the
“connections” component.

192 IBM Visualization Data Explorer: Programmer’s Reference

 DXAddMessage, DXMessageReturn, DXMessageGoto

DXAddLine, DXAddTriangle, DXAddQuad, DXAddTetrahedron
Add a single line, triangle, quad, or tetrahedron to f with the specified
zero-based id. If necessary, a routine creates the “connections”
component.

DXAddLines, DXAddTriangles, DXAddQuads, DXAddTetrahedra
Add n lines, triangles, quads, or tetrahedra to f. Identifiers begin with
start. If necessary, a routine creates the “connections” component.

Lines, Triangles, Quadrilaterals, and Tetrahedra. are defined as follows:

typedef struct line {
PointId p, q;

} Line;

typedef struct triangle {
PointId p, q, r;

} Triangle;

typedef struct quadrilateral {
PointId p, q, r, s;

} Quadrilateral;

typedef struct tetrahedron {
PointId p, q, r, s;

} Tetrahedron;

Note: It is an error to attempt adding one kind of interpolation element to a
“connections” component that already contains a different kind. Library Routines

 Return Value
Returns f or returns NULL and sets an error code.

 See Also
DXGetConnections, DXSetConnections

“Connections” on page 107.

DXAddMessage, DXMessageReturn, DXMessageGoto

 Function
Concatenates a message with the current error message.

 Syntax
#include <dx/dx.h>

Error DXAddMessage(char \message, ...)
#define DXMessageReturn(s) {DXAddMessage(s); return ERROR;}
#define DXMessageGoto(s) {DXAddMessage(s); goto error;}

.

 Appendix C. Data Explorer Library Routines 193

 DXAddPoint, ..., DXAddNormals

 Functional Details
This routine can provide more information about an error originally detected in a
low-level routine. The contents of message may be a printf format string, in which
case additional arguments required by the format string must be specified.

 Return Value
Always returns ERROR.

 See Also
DXSetError

12.1, “Error Handling and Messages” on page 114.

DXAddPoint, ...Color, ...FrontColor, ...BackColor, ...Opacity, ...Normal,
DXAddPoints, ...Colors, ...FrontColors, ...BackColors, ...Opacities,
...Normals

 Function
Add points or point-dependent data to a Field.

 Syntax
#include <dx/dx.h>

Field DXAddPoint(Field f, int id, Point p)
Field DXAddColor(Field f, int id, RGBColor c)
Field DXAddFrontColor(Field f, int id, RGBColor c)
Field DXAddBackColor(Field f, int id, RGBColor c)
Field DXAddOpacity(Field f, int id, double o)
Field DXAddNormal(Field f, int id, Vector v)

Field DXAddPoints(Field f, int start, int n, Point \p)
Field DXAddColors(Field f, int start, int n, RGBColor \c)
Field DXAddFrontColors(Field f, int start, int n, RGBColor \c)
Field DXAddBackColors(Field f, int start, int n, RGBColor \c)
Field DXAddOpacities(Field f, int start, int n, float \o)
Field DXAddNormals(Field f, int start, int n, Vector \v)

.

 Functional Details
Associated with a Field may be a number of components that correspond
one-to-one with the “positions” component, as indicated by their each having a
“dep” attribute of “positions.” These routines aid in constructing such components.

DXAddPoint, DXAddColor, DXAddFrontColor, DXAddBackColor, DXAddOpacity,
DXAddNormal,

Add one point (position), color, front color, back color, opacity, or normal
to f with the specified zero-based id. If necessary, the routine creates
the appropriate component.

DXAddPoints, DXAddColors, DXAddFrontColors, DXAddBackColors,
DXAddOpacities, DXAddNormals

Add n points, colors, front colors, back colors, opacities, or normals to f

194 IBM Visualization Data Explorer: Programmer’s Reference

 DXAddTask

with zero-based identifiers beginning with start. If necessary, the
routine creates the appropriate component.

Colors are specified as RGBColors and defined as follows:

typedef struct rgbcolor {
float r, g, b;

} RGBColor;

Points and Normals are defined as follows:

typedef struct point {
float x, y, z;

} Point, Vector;

Opacities are specified as floating-point values.

Notes:

1. These routines are suitable for adding a small number of points and for rapid
prototyping. For better performance, see the description of DXAddArrayData
and the discussion of direct-access routines in “Irregular Arrays” on page 101

2. These routines do not check the “dep” attribute of the component being added
to; thus, these routines do not perform correctly if the component exists and
has a dep “connections” attribute.

 Return Value
Returns f or returns NULL and sets an error code. Library Routines

 See Also
DXAddArrayData, DXAddFaceNormal, DXAddFaceNormals, DXGetArrayData

“Points and Dependent Data” on page 106.

 DXAddTask

 Function
Adds a task to the current task Group.

 Syntax
#include <dx/dx.h>

Error DXAddTask(Error(\proc)(Pointer), Pointer arg, int size, double work)

.

 Functional Details
The task to be added is defined by the following parameters:

proc A pointer to a function that performs the task. It takes one argument of type
Pointer.

arg A pointer to an argument block.

 Appendix C. Data Explorer Library Routines 195

 DXAllocate, ..., DXAllocateLocalOnlyZero

size The size of the argument block in bytes. If size is nonzero, the argument
block is copied. Otherwise, the value of arg is passed to proc without
copying, which is useful for passing integers or Objects.

work The estimated amount of time required by the task in arbitrary units.

Tasks are executed, in parallel if possible, by DXExecuteTaskGroup. Executing a
task consists of calling (\proc)(arg). To facilitate load balancing, tasks are
executed in order of decreasing work estimates. Once DXExecuteTaskGroup has
been called, additional tasks can be created only from other tasks in the current
task Group, and they are run as soon as possible, without regard to work or the
status of the original tasks.

 Return Value
Returns OK or returns ERROR and sets an error code.

 See Also
DXAbortTaskGroup, DXCreateTaskGroup, DXExecuteTaskGroup, DXProcessorId,
DXProcessors

12.8, “Parallelism” on page 123.

DXAllocate, DXAllocateZero, DXAllocateLocal, DXAllocateLocalZero,
DXAllocateLocalOnly, DXAllocateLocalOnlyZero

 Function
Allocate global or local memory.

 Syntax
#include <dx/dx.h>

Pointer DXAllocate(unsigned int n)
Pointer DXAllocateZero(unsigned int n)
Pointer DXAllocateLocal(unsigned int n)
Pointer DXAllocateLocalZero(unsigned int n)
Pointer DXAllocateLocalOnly(unsigned int n)
Pointer DXAllocateLocalOnlyZero(unsigned int n)

.

 Functional Details
For all of these routines, n must be greater than zero.

DXAllocate
Allocates n bytes of memory in global memory.

DXAllocateZero
Allocates and clears n bytes of global memory.

DXAllocateLocal
On platforms with per-processor local memory (such as multiprocessor
workstations), allocates n bytes of memory in local memory.

196 IBM Visualization Data Explorer: Programmer’s Reference

 DXAllocateArray

DXAllocateLocalZero
Allocates n bytes in local memory and zeros the allocated memory.

DXAllocateLocal, DXAllocateLocalZero
If n bytes of local memory are not available, allocate them from global
memory.

DXAllocateLocalOnly, DXAllocateLocalOnlyZero
Allocate local memory only.

On platforms without per-processor local memory (such as all currently supported
workstations), DXAllocateLocal is identical to DXAllocate.

Although local is usually faster than global access, local memory should be used
only for Objects within a task or for parts of a module not in a task Group: Objects
in local memory cannot be shared between processors. Objects that are the output
of a module must be in global memory.

Note: Memory allocated by any routine listed here should be freed (with DXFree)
when it is no longer needed.

 Return Value
Returns a pointer to the allocated memory or returns NULL and sets an error code.

 See Also
DXAbortTaskGroup, DXAddTask, DXCreateTaskGroup, DXExecuteTaskGroup, DXFree,
DXPrintAlloc, DXReAllocate

12.3, “Memory Allocation” on page 116.

 Library Routines

 DXAllocateArray

 Function
Allocates space for the data items of an Array.

 Syntax
#include <dx/dx.h>

Array DXAllocateArray(Array a, int n)

.

 Functional Details
This routine allocates to Array a the space for at least n items. It increases
efficiency because it allocates space in advance, eliminating the need to allocate
additional space at a later time. It is most useful when you can specify the
maximum number of items that will be added. The routine changes only the
amount of space allocated to Array a, not the number of items in it (only
DXAddArrayData can do that).

Note: In the ideal case of knowing the exact number of items the Array will
require, you can call DXAddArrayData(a, o, n, NULL), which will allocate the right
amount of space for the specified number of items (n). The allocation routine

 Appendix C. Data Explorer Library Routines 197

 DXApplyTransform

detailed here, on the other hand, is for creating Arrays when this information is not
exact.

 Return Value
Returns a or returns NULL and sets an error code.

 See Also
DXAddArrayData, DXTrim

“Irregular Arrays” on page 101.

 DXApplyTransform

 Function
Creates a new Object by recursively applying a transform to a specified Object.

 Syntax
#include <dx/dx.h>

Object DXApplyTransform(Object o, Matrix \m)

.

 Functional Details
The routine descends Object o, applying transform m to the components of the
Fields encountered. Any transforms present in the Object are accumulated to form
a composite transform before being applied to subObjects. (The Object created
can be deleted with DXDelete. See 2.4, “Memory Management” on page 13.)

DXApplyTransform returns a new Object (i.e., a copy of o with transforms applied).
This routine can be applied directly to Array objects. It also removes the “box”
component from transformed Fields.

Positional Components,
Are transformed by the composite matrix. (Positional components are
“positions” and components with the “geometric” attribute “positional”.)

Vector Components,
Are transformed by the adjoint transpose of the composite matrix.
(Vector components are “normals,” “binormals,” “tangents,” “gradient,”
and components with the “geometric” attribute “vector.”)

 Return Value
Returns o or returns NULL and sets an error code.

 See Also
DXAdjointTranspose, DXApply, DXConcatenate, DXDeterminant, DXInvert, DXMat,
DXRotateX, DXRotateY, DXRotateZ, DXScale, DXTranslate, DXTranspose

15.1, “Transformation” on page 150.

198 IBM Visualization Data Explorer: Programmer’s Reference

 DXArrayConvert, DXArrayConvertV

 DXArrayConvert, DXArrayConvertV

 Function
Creates a new Array of specified type, category, rank, and shape from an existing
Array.

 Syntax
#include <dx/dx.h>

Array DXArrayConvert(Array a, Type t, Category c, int rank, ...)
Array DXArrayConvertV(Array a, Type t, Category c, int rank, int \shape)

.

 Functional Details
The routine copies Array a and converts it to type t, category c, rank rank, and a
specified shape. (The new Array can be deleted with DXDelete. See 2.4, “Memory
Management” on page 13.)

Conversion requires that the parameters of the newly created Array be compatible
with those of the Array from which it was copied. For example, the new rank and
shape are compatible with the rank and shape of a if they differ only by dimensions
that have a shape of 1. Thus an Array of 1 × n matrices can be converted to an
Array of vectors. Table 2 and Table 3 summarize the convertibility of the different
types and categories. Library Routines

Table 2. Summary of Type Conversions

Byte

Unsigned
Byte

Short

Unsigned
Short

Int

Unsigned
Int

Float

Double

Byte A CNS A CNS A CNS A A

Unsigned
Byte

CNS A A A A A A A

Short CNS CNS A CNS A CNS A A

Unsigned
Short

CNS CNS CNS A A A A A

Int CNS CNS CNS CNS A CNS A A

Unsigned
Int

CNS CNS CNS CNS CNS A A A

Float CNS CNS CNS CNS CNS CNS A A

Double CNS CNS CNS CNS CNS CNS CNS A

Notes:

CNS = Conversion not supported
A = ANSI 'C' type-conversion semantics

Table 3 (Page 1 of 2). Summary of Category Conversions

 Real Complex

Real Conversion Conversion

 Appendix C. Data Explorer Library Routines 199

Table 3 (Page 2 of 2). Summary of Category Conversions

 Real Complex

Complex CNS Conversion

Notes:

CNS = Conversion not supported
Real→Complex: a → a + 0i

 Return Value
Returns a new Array or returns NULL and sets an error code.

 See Also
DXExtractFloat, DXExtractInteger, DXExtractNthString, DXExtractParameter,
DXExtractString, DXQueryArrayCommon, DXQueryArrayCommonV,
DXQueryArrayConvert, DXQueryArrayConvertV, DXQueryParameter

11.8, “Extracting Module Parameters” on page 108.

200 IBM Visualization Data Explorer: Programmer’s Reference

 DXBeginLongMessage, DXEndLongMessage

 DXBeginLongMessage, DXEndLongMessage

 Function
Enables multiple DXMessage calls to create a single long message.

 Syntax
#include <dx/dx.h>

void DXBeginLongMessage()
void DXEndLongMessage()

 Functional Details
The DXMessage routine is suitable for relatively short, unformatted messages. For
long, multiple-line messages, you may enclose a series of calls to DXMessage
between DXBeginLongMessage and DXEndLongMessage. In this case, new lines are
not automatically appended to each message, and it is your responsibility to
indicate appropriate line breaks by including newline characters in the various
DXMessage calls. For example, multiple calls to DXMessage may be printed on the
same line, or one call to DXMessage may contain multiple lines.

 Return Value
None.

 Library Routines

 See Also
DXMessage

12.1, “Error Handling and Messages” on page 114.

 DXBoundingBox

 Function
Computes the bounding box of an Object.

 Syntax
#include <dx/dx.h>

Object DXBoundingBox(Object o, Point \box)

 Functional Details
This routine adds to Object o, and any of its descendants that are Fields, a “box”
component consisting of an Array of 2d points that are the corners of a bounding
box (where d is the dimensionality of the data). For data of dimensionality three or
less, the routine returns—in the Array pointed to by box—the eight corner points; for
dimensionalities of one or two, the extra dimensions are treated as zero in the box
returned by the routine.

The bounding box returned on o is determined by combining the bounding boxes of
all Fields contained in o.

 Appendix C. Data Explorer Library Routines 201

Transformations are considered in computing the bounding box, but clipping
Objects are not. The bounding box is not guaranteed to be the tightest possible.

A Point is defined as follows:

typedef struct point {
float x, y, z;

} Point, Vector;

 Return Value
Returns o or returns NULL and may or may not set an error code, depending on the
input. For example, it does not set an error code if a bounding box cannot be
defined for the given input.

 See Also
DXChangedComponentStructure, DXChangedComponentValues, DXEmptyField,
DXEndField, DXEndObject, DXNeighbors, DXStatistics
DXValidPositionsBoundingBox

“Standard Components” on page 107.

202 IBM Visualization Data Explorer: Programmer’s Reference

 DXCallModule, DXModSet..., DXSetModule...

DXCallModule, DXModSet..., DXSetModule...

 Function
Enable a routine to call a Data Explorer module.

 Syntax
#include <dx/dx.h>
 Error DXCallModule(char \modname, int num_inputs, ModuleInput \listin,

int num_outputs, ModuleOutput \listout);

Object DXModSetFloatInput(ModuleInput \in, char \name, int n);
Object DXModSetIntegerInput(ModuleInput \in, char \name, int n);
Object DXModSetStringInput(ModuleInput \in, char \name, char \s);
void DXModSetObjectInput(ModuleInput \in, char \name, Object obj);
void DXModSetObjectOutput(ModuleOutput \out, char \name, Object \obj);

DXSetModuleInput(ModuleInput in, char \name, Object \obj);
DXSetModuleOutput(ModuleOutput out, char \name, Object \obj);

 Functional Details
The five DXModSet... routines are auxiliary to DXCallModule, which makes the
actual call to a specified module.

Notes:

1. If you use DXCallModule in a stand-alone program or outboard module, you
must call DXInitModule before making any calls to DXCallModule

2. The two DXSetModule... routines are provided solely for backward compatibility.
Their use is not recommended.

3. The Get and Set modules cannot be called by DXCallModule.

4. Objects passed as inputs to DXCallModule will be deleted when that module is
finished. To use the Object after DXCallModule requires a call to DXReference
first, and the responsibility for deleting the Object when you are finished with it
is yours.

modname specifies the name of the module being called.

num_inputs specifies the number of inputs in listin.

listin is an Array of ModuleInput structures specifying the module inputs.

num_outputs specifies the number of outputs in listout.

listout is an Array of ModuleOutput structures specifying the module outputs.

The four DXModSet...Input routines set the contents of ModuleInput structures.
DXModSetObjectOutput sets the destination for module outputs.

� If name is specified as NULL, the inputs and outputs set by these routines are
considered positional. For example, the first values passed using one of the
DXModSet...Input routines will be assigned to the first parameter of the
module, the second value to the second parameter of that module, and so on.

� If name is a valid string, then it specifies a parameter of the module specified by
modname, and the passed value is assigned to that parameter.

 Library Routines

 Appendix C. Data Explorer Library Routines 203

 DXChangedComponentValues, DXChangedComponentStructure

� Positional parameters cannot follow named ones.

A ModuleInput is defined as follows:

typedef struct {
 char \name;
 Object value;
} ModuleInput;

A ModuleOutput is defined as follows:

typedef struct {
 char \name;
 Object \value;
} ModuleOutput;

 Return Value
Returns NULL or returns ERROR and sets an error code.

 See Also
DXInitModules,
DXGetErrorExit,
DXSetErrorExit,
DXCheckRIH

12.10, “Module Access” on page 127.

Readme file in /usr/lpp/dx/samples/callmodule/Readme.

 DXChangedComponentValues, DXChangedComponentStructure

 Function
Delete components of a Field.

 Syntax
#include <dx/dx.h>

Field DXChangedComponentValues(Field f, char \component)
Field DXChangedComponentStructure(Field f, char \component)

 Functional Details
DXChangedComponentValues deletes all the components of f that have a “der”
attribute naming the specified component component. This routine is typically used
when the values of the items of an Array change (e.g., the values of the “data”
component) but not the number of items.

DXChangedComponentStructure deletes all the components of f that have a “dep,”
“der,” or “ref” attribute naming the specified component component. This routine is
typically used when the number of items in an Array (e.g., the number of items in
the “positions” component) has been changed.

204 IBM Visualization Data Explorer: Programmer’s Reference

 DXCheckRIH

Both of these routines recursively apply DXChangedComponentStructure to the
components they delete. They ensure that Fields remain internally consistent when
they are altered.

By deleting components derived from a changed component, a call to
DXChangedComponentValues ensures that the derived component will be recalculated
when necessary and will remain up-to-date. For example, the “data statistics”
component is derived from the “data” component. If the “data” component is
changed, the current contents of data statistics become invalid. A call to
DXChangedComponentValues(field, “data”) will delete data statistics, and the
values will be recomputed on the next call to DXStatistics.

Similarly, DXChangedComponentStructure ensures that components that depend on,
refer to, or are derived from another component will be as up-to-date as possible.
For example, the “connections” component refers to the “positions” component. If
the structure of the “positions” component is changed, perhaps by deleting a
position, the references in the “connections” component that are indices into the
“positions” component cease to apply. Rather than leave an invalid “connections”
component in the Field, it is better to remove it by calling
DXChangedComponentStructure.

Note: Most components depend on, refer to, or are derived from others. These
routines may cause important information to be discarded. It is often better
to correct the component that has a “dep,” “der,” or “ref” attribute than to
delete it. In the example just described, you can avoid deleting the
“connections” component when a point is deleted from the “positions”
component by deleting all connections elements that refer to the discarded
position and remapping the remaining references to reflect the moved points
in the “positions” component.

 Library Routines

 Return Value
Returns f or returns NULL and sets an error code.

 See Also
DXEndField, DXGetComponentValue, DXSetComponentValue

“Standard Components” on page 107.

 DXCheckRIH

 Function
Checks registered input handlers.

 Syntax
#include <dx/dx.h>

int DXCheckRIH(int block);

 Appendix C. Data Explorer Library Routines 205

 DXClipBox

 Functional Details
This routine must be called periodically in a stand-alone program if the
DXRegisterInputHandler routine is used to define an input handler. (The executive
provides this function automatically for built-in Data Explorer routines.)

DXCheckRIH determines whether any input handlers need to be called and, if so,
calls them before returning. The valid arguments for block are:

0 = Check whether any events need handling. If not, return. Otherwise,
handle the event(s) and return.
1 = Do not return until an event that requires handling occurs.

If the Display module is part of your stand-alone program, this routine must be
called, since Display uses an input handler to deal with external events (e.g.,
repainting window contents after they have been obscured).

If the SuperviseState module (“SuperviseState” on page 332 in IBM Visualization
Data Explorer User’s Reference) is being used in conjunction with Display to
implement direct interaction, DXCheckRIH must not be called between
SuperviseState and Display. This will ensure that SuperviseState passes up-to-date
state information into Display.

 Return Value
Returns 1 if an event required handling; otherwise return 0.

 See Also
DXRegisterInputHandler

 DXClipBox

 Function
Creates a clipping Object defined by a clipping box.

 Syntax
#include <dx/dx.h>

Object DXClipBox(Object o, Point p1, Point p2)

 Functional Details
Creates a new Object that defines a clipping transformation to be performed on
Object o at render time. The Object will be clipped by the box, whose diagonal is
defined by points p1 and p2.

A Point is defined as follows:

typedef struct point {
float x, y, z;

} Point, Vector;

206 IBM Visualization Data Explorer: Programmer’s Reference

 DXClipBox

 Return Value
Returns an Object describing to the renderer how to clip at render time or returns
NULL and sets an error code.

 See Also
DXClipPlane

14.2, “Clipping” on page 146.

 Library Routines

 Appendix C. Data Explorer Library Routines 207

 DXClipPlane

 DXClipPlane

 Function
Creates a clipping Object defined by a clipping plane.

 Syntax
#include <dx/dx.h>

Object DXClipPlane(Object o, Point p, Vector n)

 Functional Details
Creates a new Object that defines a clipping transformation to be performed on
Object o at render time. The Object will be clipped by the plane that contains p
and is perpendicular to vector n. The Object on the side of the plane pointed to by
n is retained.

A Point or Vector is defined as follows:

typedef struct point {
float x, y, z;

} Point, Vector;

 Return Value
Returns an Object describing to the renderer how to clip at render time or returns
NULL and sets an error code.

 See Also
DXClipBox

14.2, “Clipping” on page 146.

 DXColorNameToRGB

 Function
Gets the RGB values for a specified color-name string.

 Syntax
#include <dx/dx.h>

Error DXColorNameToRGB(char \colorname, RGBColor \rgbvalue)

 Functional Details
The RGB values of the color string colorname are obtained from a color lookup
table and returned in \rgbvalue. For example, the RGB values for the color “white”
are 1.0, 1.0, 1.0. The color lookup table could come from a number of places:

� The routine first checks the environment variable DXCOLORS. If that is set,
the routine uses the value of the variable and tries to open it as a file.

208 IBM Visualization Data Explorer: Programmer’s Reference

 DXCompareModuleID

� If that does not succeed, the routine then checks the environment variables
DXEXECROOT and DXROOT for a directory path. It will append
/lib/colors.txt to this path and try to open the file. If that fails, it tries to
open /usr/lpp/dx/lib/colors.txt.

� If none of these files can be opened, the routine uses an internal static table.
This table is a subset of colors in the file /usr/lpp/dx/lib/colors.txt.

 Return Value
Returns OK or returns ERROR and sets an error code.

 See Also
“Colors” on page 125.

 DXCompareModuleID

 Function
Determines whether two module identifiers are the same.

 Syntax
#include <dx/dx.h>

Error DXCompareModuleId(Pointer id1, id2);

 Library Routines

 Return Value
Returns OK, if the two identifiers are the same, or returns ERROR. This routine
does not set an error code.

 See Also
DXCopyModuleID, DXGetModuleID, DXFreeModuleId

12.5, “Cache” on page 121,
12.11, “Asynchronous Services” on page 129.

DXComponentReq, DXComponentOpt, DXComponentReqLoc,
DXComponentOptLoc

 Function
Access or typecheck a component in a Field.

 Syntax
#include <dx/dx.h>

Error DXComponentReq(Array a, Pointer \data, int \n, int nreq, Type t, int dim)
Error DXComponentOpt(Array a, Pointer \data, int \n, int nreq, Type t, int dim)
Error DXComponentReqLoc(Array a, Pointer \data, int \n, int nreq, Type t, int dim)
Error DXComponentOptLoc(Array a, Pointer \data, int \n, int nreq, Type t, int dim)

 Appendix C. Data Explorer Library Routines 209

 DXConcatenate, DXInvert, DXTranspose, DXAdjointTranspose, DXDeterminant, DXApply

 Functional Details
Note: These routines will become obsolete in a future version of Data Explorer. In

their place, it is recommended that you now use DXGetComponentValue and
DXGetArrayInfo.

The four routines have identical calling sequences, but differ as follows.

First, DXComponentOpt and DXComponentReq return pointers to the global copy of the
Array data, while DXComponentOptLoc and DXComponentReqLoc return pointers to a
local copy of the Array data, and should be matched by a DXFreeArrayDataLocal
call.

Second, DXComponentReq and DXComponentReqLoc consider it an error if the
component is missing (a is NULL), while DXComponentOpt and DXComponentOptLoc
consider the component optional and do not consider a NULL a to be an error.

If data is not NULL, a pointer to a global or local copy of the data is returned in
\data. If n is not NULL, the number of items in the Array is returned in \n. If n is
NULL, the number of Array items must be nreq. The type of the Array must be t. If
dim is 0, the Array must have rank 0 (scalar). If dim is nonzero, the Array must
have rank 1 and shape equal to dim.

The type is one of the following:

TYPE_BYTE TYPE_HYPER TYPE_SHORT
TYPE_UBYTE TYPE_INT TYPE_USHORT
TYPE_DOUBLE TYPE_UINT TYPE_STRING
TYPE_FLOAT

Note: These functions will expand compact data Arrays and use extra memory.

 Return Value
Returns OK or returns ERROR and sets an error code.

 See Also
DXGetArrayData, DXGetArrayInfo, DXGetComponentValue

11.1, “Field Class” on page 97.

DXConcatenate, DXInvert, DXTranspose, DXAdjointTranspose,
DXDeterminant, DXApply

 Function
Apply standard matrix operations.

 Syntax
#include <dx/dx.h>

Matrix DXConcatenate(Matrix s, Matrix t)
Matrix DXInvert(Matrix t)
Matrix DXTranspose(Matrix t)
Matrix DXAdjointTranspose(Matrix t)

210 IBM Visualization Data Explorer: Programmer’s Reference

 DXCopy

float DXDeterminant(Matrix t)
Vector DXApply(Vector v, Matrix t)

 Functional Details
DXConcatenate returns a Matrix that is equivalent to transformation matrix s
followed by transformation matrix t.

DXInvert, DXTranspose, DXAdjointTranspose, and DXDeterminant compute the
matrix inverse, transpose, and adjoint transpose, and determinant, respectively.

DXApply applies matrix transformation t to v.

A Matrix is defined as follows:

typedef struct matrix {
/\ xA + b \ /

 float A[3][3]
 float b[3];
} Matrix

A Point and Vector is defined as follows:

typedef struct point {
float x, y, z;

} Point, Vector;

 Library Routines

 Return Value
Always returns the result of the operation.

 See Also
DXApplyTransform, DXRotateY, DXRotateZ, DXScale, DXTranslate

“Basic Operations” on page 126.

 DXCopy

 Function
Performs various copying operations.

 Syntax
#include <dx/dx.h>

Object DXCopy(Object o, enum copy copy)

 Functional Details
The DXCopy operations differ in the depth to which they copy the structure of an
Object o. Depth is specified by the copy parameter, which may be one of the
following:

 � COPY_STRUCTURE:

 Appendix C. Data Explorer Library Routines 211

 DXCopyAttributes

– For Groups, copies the Group header and recursively copies all Group
members.

– For Fields, copies the Field header but does not copy the components
(which are generally Arrays); instead it puts references to the components
of the given Object into the resulting Field.

– For Arrays, passes back a pointer to the data and makes no copy.

� COPY_HEADER: Copies only the header of the immediate Object but does not
copy attributes, members, components, and so on; instead it puts references to
them into the new Object.

The Object created can be deleted with DXDelete. See 2.4, “Memory
Management” on page 13.

� COPY_ATTRIBUTES: Creates a new Object of the same type as the old, and
copies all attributes and type information, but does not put references (to
members, components, and so on) in the new Object.

Notes:

1. Because of the data-flow execution model used by Data Explorer, it is critical
that no module actually alter its inputs. Instead, DXCopy is generally used to
create a modifiable copy of the input that is then altered and produced as
output. This is most often done by using the COPY_STRUCTURE form. This
produces a copy of the structure of the input, but uses references to the Arrays
of the input, rather than actual copies. Once a structure has been copied in
this manner, the Arrays (which are most often found as components of Fields)
may be replaced in the copied Field by new results. The result will be a copy
of the input that shares all unchanged data with the original, thereby saving
memory space.

2. DXCopy applied to an Object of type Array performs no copy and simply returns
its input. This presents the problem that in order to clean up, copied Objects of
other types may be deleted without deleting the original, while the result of
applying DXCopy to Arrays may not be deleted without deleting the original.

 Return Value
Returns the copy or returns NULL and sets an error code.

 See Also
DXCopyAttributes, DXNewField, DXNewGroup

“Object Routines” on page 119.

 DXCopyAttributes

 Function
Copies attributes from one Object to another.

212 IBM Visualization Data Explorer: Programmer’s Reference

 DXCopyModuleID

 Syntax
#include <dx/dx.h>

Object DXCopyAttributes(Object dst, Object src)

 Functional Details
Gets the value of each attribute, in turn, from the source Object src and sets it in
an identically named attribute in the destination Object dst. Attributes already
present in dst that are also present in src have their values updated to those in
src. The values of attributes present in dst but not present in src remain
unchanged.

 Return Value
Returns dst or returns NULL and sets an error code unless dst was also specified
as NULL.

 See Also
DXGetAttribute, DXGetEnumeratedAttribute, DXSetAttribute

“Object Routines” on page 119.

 DXCopyModuleID

 Function

 Library Routines

Returns a pointer to a copy of a specified module identifier.

 Syntax
#include <dx/dx.h>

Pointer DXCopyModule(Pointer id);

 Functional Details
When it is no longer needed, the copy should be deleted with DXFreeModuleID.

 Return Value
Returns the pointer or returns NULL (and sets an error code if an error occurs).

 See Also
DXCompareModuleID DXGetModuleID, DXFreeModuleId

12.5, “Cache” on page 121,
12.11, “Asynchronous Services” on page 129

 Appendix C. Data Explorer Library Routines 213

 DXCreateArrayHandle

 DXCreateArrayHandle

 Function
Creates a “handle” to allow convenient access to the items in any Array class.

 Syntax
#include <dx/dx.h>

ArrayHandle DXCreateArrayHandle(Array array)

 Functional Details
There are three different approaches for writing functions that support all of the
defined Array classes:

1. Use DXGetArrayClass to determine the specific Array class, and then use the
class-specific functions (e.g., DXGetConstantArrayData). The advantage of this
approach is it uses the most efficient method to access the data stored in the
Array. The disadvantage is that you need to write different code for each Array
class.

2. Use DXGetArrayData on all Arrays. The advantage here is the simplicity; the
disadvantage is that DXGetArrayData expands compact data, greatly increasing
memory use.

3. Use the Array handling routines. The advantage is that they work on Arrays of
any class without expanding the compact data; the disadvantage, that they are
slightly less efficient for some Array classes.

The ArrayHandle created should be deleted with DXFreeArrayHandle when the
user no longer needs it. See 2.4, “Memory Management” on page 13.

 Return Value
Returns an Array Handle or returns NULL and sets an error code.

 See Also
DXFreeArrayHandle, DXGetArrayEntries, DXGetArrayEntry, DXIterateArray

“Array Handling” on page 102.

 DXCreateHash

 Function
Creates a hash table for storing elements.

 Syntax
#include <dx/dx.h>

HashTable DXCreateHash(int elementSize, PseudoKey (\hashFunc)(),
 int (\cmpFunc)())

214 IBM Visualization Data Explorer: Programmer’s Reference

 DXCreateInvalidComponentHandle

 Functional Details
An element to be stored consists of a key plus whatever data is to be associated
with that key. Its size, in bytes, is specified by elementSize. in bytes. The
parameter hashFunc points to the optional hash function callback. Given an
element, hashFunc should return a uniformly distributed long integer pseudokey. If
hashFunc is not provided, then the first long integer word of each key is assumed to
be the pseudokey. cmpFunc is the optional compare function callback. Given a
search key and an element, cmpFunc should return 0 if the key matches the
element. If no compare function is provided, any element matching the pseudokey
is assumed to match the search key.

Optionally provided by the calling application:

PseudoKey hashFunc (Key key);

Called on insertion and query to convert the arbitrary-size search key into the long
integer pseudokey used to store the hash table-element.

int cmpFunc (Key searchKey, Element element);

Called on insertion and query when an element from the table matches the
pseudokey. Returns 0 if the search key matches the key contained in the element
found in the table.

See 13.5, “Hashing” on page 139 for additional details on hashFunc and cmpFunc.
The HashTable created should be deleted with DXDestroy when it is no longer
needed. See 2.4, “Memory Management” on page 13.

PseudoKey is defined as:

typedef long PseudoKey;

typedef Pointer Key;

 Library Routines

 Return Value
Returns the hash table or returns NULL and sets an error code.

 See Also
DXDeleteHashElement, DXDestroyHash, DXGetNextHashElement,
DXInitGetNextHashElement, DXInsertHashElement, DXQueryHashElement

13.5, “Hashing” on page 139.

 DXCreateInvalidComponentHandle

 Function
Creates an invalid-component handle.

 Appendix C. Data Explorer Library Routines 215

 DXCreateTaskGroup

 Syntax
#include <dx/dx.h>

InvalidComponentHandle DXCreateInvalidComponentHandle(Object object,
Array array, char \name)

 Functional Details
The invalid-component handle is necessary in order to use the other
invalid-component routines.

object specifies:

� a Field for which an invalid-component Array is to be created; or
� one of the following kinds of array: “positions,” “connections,” “face,” or

“polylines.”

array allows an initial “invalid positions” or “invalid connections” component to be
passed in to initialize the handle.

Note: If object is a Field, it is not necessary to specify array, since the
initial invalid component will be found in the Field. However, if
object is a Field and array is not NULL, then array supersedes the
invalid Array in the Field.

name Specifies the component referred to by the invalid component: “positions,”
“connections.,” “faces,” or “polylines.”

When you have finished using it, delete the invalid-component handle with
DXFreeInvalidComponentHandle.

 Return Value
Returns the invalid-component handle or returns NULL and sets an error code.

 See Also
DXFreeInvalidComponentHandle, DXGetInvalidCount, DXGetValidCount,
DXInvertValidity, DXIsElementInvalid, DXIsElementValid,
DXSaveInvalidComponent, DXSetAllInvalid, DXSetAllValid,
DXSetElementInvalid, DXSetElementValid

13.3, “Invalid Data” on page 133.

 DXCreateTaskGroup

 Function
Starts a new task Group to utilize parallelism.

 Syntax
#include <dx/dx.h>

Error DXCreateTaskGroup()

216 IBM Visualization Data Explorer: Programmer’s Reference

 DXCull

 Functional Details
All tasks subsequently created with DXAddTask until the matching
DXExecuteTaskGroup is called will be members of this task Group. Each task added
to this group will, when DXExecuteTaskGroup is called, be sorted by its work values
and executed in parallel if possible.

If an error occurs before ExecuteTaskGroup is called, AbortTaskGroup should be
called to free memory associated with the task group. See 2.4, “Memory
Management” on page 13.

 Return Value
Returns OK or returns ERROR and sets an error code.

 See Also
DXAbortTaskGroup, DXAddTask, DXExecuteTaskGroup, DXProcessorId,
DXProcessors

12.8, “Parallelism” on page 123.

 DXCull

 Function
Removes invalid positions, connections, faces, or polylines (and their dependent
information) from the Fields of an Object. Library Routines

 Syntax
#include <dx/dx.h>

Object DXCull(Object object)

 Functional Details
Validity is determined from the contents of the “invalid” components: positions,
connections, faces, or polylines. In any components that are dependent on these,
elements corresponding to removed positions, connections, faces, or polylines are
themselves removed. In any components that reference positions, connections,
faces, or polylines, indices are renumbered, with the value -1 inserted for indices
that reference removed elements. The “invalid” components are removed.

In general, DXInvalidateConnections and DXInvalidateUnreferencedPositions
should be called before DXCull is called. This ensures that all connection, face, or
polyline elements that reference invalid positions will be removed, along with all
positions no longer referenced by any connections, faces, or polylines.

 Return Value
Returns the updated Object or returns NULL and sets an error code.

 Appendix C. Data Explorer Library Routines 217

 See Also
DXInvalidateConnections, DXInvalidateUnreferencedPositions

13.3, “Invalid Data” on page 133.

218 IBM Visualization Data Explorer: Programmer’s Reference

 DXDebug, DXEnableDebug, DXQueryDebug

DXDebug, DXEnableDebug, DXQueryDebug

 Function
Perform operations on global debug keys.

 Syntax
#include <dx/dx.h>

void DXDebug(char \classes, char \message, ...)
void DXEnableDebug(char \classes, int enable)
int DXQueryDebug(char \classes)

 Functional Details
DXDebug compares the array of 1-character keys in classes to the set of keys that
have been enabled with DXEnableDebug. If it finds a match, DXDebug calls
DXMessage with message and any parameters that follow message.

DXEnableDebug enables or disables (enable = 1 or 0, respectively) the global key
corresponding to each key in the array of 1-character keys. Usually, this routine is
not called directly but is accessed at run time by calling the Trace module (see IBM
Visualization Data Explorer User’s Reference).

DXQueryDebug compares the array of 1-character keys to the set of keys that have
been enabled with DXEnableDebug. It returns 1 if any key matches; otherwise, it
returns 0.

Note: The upper-case letters A–Z and the numbers 0–9 are reserved for system
use. Module writers may use the lowercase letters a–z.

Example: If the module code for MyModule() contained the following lines:

DXDebug("aqr", "the value of the index is %d",i);

DXDebug("ar", "the last value was %d", last);

DXDebug("asq", "entering for loop");

DXDebug("a", "function foo() returned an error ");

Then after executing the following modules:

 Trace("q",1);

 MyModule();

Messages 1 and 3 would be printed.

If the following modules are then executed:

 Trace("r",1);

 MyModule();

Messages 1, 2, and 3 would be printed, since both “q” and “r” are now enabled.

If the following modules were then executed:

 Trace("qr",ð);

 MyModule();

 Library Routines

 Appendix C. Data Explorer Library Routines 219

 DXDelete

None of the messages would be printed, as “a,” “q,” “s,” and “r” are now all
disabled.

Messages are printed using the DXMessage function (see “DXMessage” on
page 296).

 Return Value
DXDebug and DXEnableDebug have no return value. DXQueryDebug returns 0 or 1.

 See Also
DXMessage

12.1, “Error Handling and Messages” on page 114.

 DXDelete

 Function
Deletes a reference to an Object.

 Syntax
#include <dx/dx.h>

Error DXDelete(Object o)

 Functional Details
A call to this routine indicates that Object o is no longer needed. A reference count
is maintained inside each Object; the memory associated with each Object o is not
actually released until the last user of Object o has called DXDelete. If o is NULL,
then DXDelete immediately returns OK.

When DXDelete is called on Objects that contain other objects (e.g., Groups or
Fields), it decrements the reference count on all Objects in the hierarchy. A
module that creates an Object is responsible for deleting the Object unless it is
either made part of another Object (e.g, using DXSetComponentValue) or it is
returned as the module output.

 Return Value
Returns OK or returns ERROR and sets an error code.

 See Also
DXCopy, DXReference

2.4, “Memory Management” on page 13, “Object Routines” on page 119.

220 IBM Visualization Data Explorer: Programmer’s Reference

 DXDeleteComponent

 DXDeleteComponent

 Function
Deletes a named component from a Field.

 Syntax
#include <dx/dx.h>

Field DXDeleteComponent(Field f, char \component)

 Functional Details
Deletes component from a Field f. Any attributes associated with the named
component are also deleted from the Field.

Deleting a component from a Field may alter the structure of the Field in significant
ways. For example, if the “positions” component is removed, any other components
that contain references to positions become invalid. For this reason,
DXChangedComponentStructure may be used to ensure that the remaining structure
of the Field is consistent.

 Return Value
Returns f or returns NULL but does not set an error code if the component does not
exist.

 Library Routines

 See Also
DXChangedComponentStructure, DXGetEnumeratedComponentValue, DXNewField,
DXSetComponentValue

11.1, “Field Class” on page 97.

 DXDeleteHashElement

 Function
Removes from a hash table any element that matches a search key.

 Syntax
#include <dx/dx.h>

Error DXDeleteHashElement(HashTable hashtable, Key searchKey)

 Functional Details
If a hash function was provided at the time the hash table was created, then that
function will be used to derive a pseudokey from searchKey. If a hash function was
not provided, then the first long integer word of searchKey is assumed to be the
pseudokey.

If more than one element is stored under that pseudokey (possibly only if a
compare function was provided at the time the hash table was created), then that
compare function will be used to delete only that element that matches searchKey.

 Appendix C. Data Explorer Library Routines 221

 DXDestroyHash

Key is defined as:

typedef Pointer Key;

 Return Value
Always returns OK.

 See Also
DXCreateHash, DXInsertHashElement

13.5, “Hashing” on page 139.

 DXDestroyHash

 Function
Deletes a hash table.

 Syntax
#include <dx/dx.h>

Error DXDestoryHash(HashTable hashTable)

 Functional Details
The routine deletes the table and frees all memory associated with it.

 Return Value
Returns OK or returns ERROR and sets an error code.

 See Also
DXCreateHash

13.5, “Hashing” on page 139.

DXDisplayX, DXDisplayX8, DXDisplayX12, DXDisplayX24

 Function
Displays an image in an X window.

 Syntax
#include <dx/dx.h>

Object DXDisplayX(Object i, char \xdisplay, char \title)
Object DXDisplayX8(Object i, char \xdisplay, char \title)
Object DXDisplayX12(Object i, char \xdisplay, char \title)
Object DXDisplayX24(Object i, char \xdisplay, char \title)

222 IBM Visualization Data Explorer: Programmer’s Reference

 Functional Details
Displays image i in an X window on the display specified by xdisplay, with the
title specified by title. xdisplay is used as the X display string when opening the
window. The window associated with xdisplay is maintained for subsequent calls
to DXDisplayX until the user closes it, after which a new window is created.

These routines can utilize 8-bit pseudo color X visuals, 12-bit Direct Color and True
Color visuals, and 24-bit Direct Color or True Color visuals.

DXDisplayX tries to create a window with the default visual, and if it is not of an
appropriate type, tries to create an 8-bit, then 12-bit, then 24-bit visual. The other
routines try to create the appropriate depth window first (for example, DXDisplayX8
tries to create an 8-bit window, then tries the default window depth.

Note: title cannot begin with a number or with two # characters.

 Return Value
Returns i or returns NULL and sets an error code.

 See Also
DXDisplayFB, DXMakeImage

15.9, “Image Fields” on page 156.

 Library Routines

 Appendix C. Data Explorer Library Routines 223

 DXEmptyField

 DXEmptyField

 Function
Determines whether a Field contains information.

 Syntax
#include <dx/dx.h>

int DXEmptyField(Field f)

 Functional Details
A Field is considered to be empty under any of the following conditions:

� It has no components.
� It has no “positions” component.
� Its “positions” component does not contain any elements.

Modules may use this call to avoid processing empty Fields so that the absence of
required components in an empty Field is not treated as an error.

 Return Value
Returns 1 if the Field is empty (see above); otherwise, returns 0.

 See Also
DXExists

“Standard Components” on page 107.

 DXEndField

 Function
Creates the standard components “box” and “neighbors” that other modules expect
Field f to contain.

 Syntax
#include <dx/dx.h>

Field DXEndField(Field f)

 Functional Details
The “box” component defines the corners of an n-dimensional box that contains all
of the positions described by the Field’s “positions” component. The “neighbors”
component contains information that provides a mechanism for quick access to
neighboring interpolation elements.

Note: A “neighbors” component is not created for a Field with regular connections.

In addition, DXEndField sets the “dep” and “ref” attributes, if not already set, on the
components listed in Table 4 on page 225.

224 IBM Visualization Data Explorer: Programmer’s Reference

 DXEndField

During this phase, DXEndField also checks to make sure that the number of
elements in a component being set to depend on the “positions” component does
actually match the number of positions in the Field.

DXEndField also trims all of a Field’s component Arrays to use the amount of space
actually containing data as specified by DXAddArrayData. Thus, for optimal
performance, DXEndField should be called just prior to returning a Field. Further,
after a call to DXEndField, pointers obtained by calls to DXGetArrayData to data
contained in Arrays that are components of a Field cannot be assumed valid.

If you are creating a Group that contains several Fields, then DXEndObject may be
called instead on the Group structure. This will parallelize the application of the
DXEndField calls to the member Fields on architectures that support parallelism.

For a more complete examination of a Field, including checks to ensure that indices
contained in components that refer to other components are correct, see additional
details of the Verify module in Chapter 1, “Data Explorer Tools” on page 1 in IBM
Visualization Data Explorer User’s Reference.

Table 4. Set Attributes

Component Attribute Value

“positions” “dep” “positions”

“connections” “ref” “positions”

“data” “dep” “positions”

“colors” “dep” “positions”

“front colors” “dep” “positions”

“back colors” “dep” “positions”

“opacities” “dep” “positions”

“tangents” “dep” “positions”

“normals” “dep” “positions”

“binormals” “dep” “positions”

 Library Routines

 Return Value
Returns f or returns NULL and sets an error code.

 See Also
DXBoundingBox, DXChangedComponentStructure, DXChangedComponentValues,
DXEmptyField, DXEndObject, DXNeighbors, DXStatistics, Verify

“Standard Components” on page 107.

 Appendix C. Data Explorer Library Routines 225

 DXEndObject

 DXEndObject

 Function
Creates the standard components “box” and “neighbors” that other modules expect
a Field to contain.

 Syntax
#include <dx/dx.h>

Object DXEndObject(Object o)

 Functional Details
DXEndObject provides a higher-level interface to the Field-completion processing
provided by DXEndField, since it will traverse a variety of Object classes to access
embedded Fields. In addition, DXEndObject detects if the Fields contained as
subObjects of o share components, and if so, share the newly created “box” and/or
“neighbors” components between Fields containing the shared components.
Finally, DXEndObject processes the Fields that are subObjects of o in parallel on
architectures supporting parallelism.

Thus, unless the Object to be completed is simply a single Field, DXEndObject
provides a more flexible, faster, and potentially more space-efficient processing
stage than DXEndField.

 Return Value
Returns o or returns NULL and sets an error code.

 See Also
DXEndField

“Standard Components” on page 107.

 DXExecuteTaskGroup

 Function
Runs the group of tasks in the current group in parallel, if possible.

 Syntax
#include <dx/dx.h>

Error DXExecuteTaskGroup()

 Functional Details
Begins executing the tasks belonging to the current task group.
DXCreateTaskGroup waits for the completion of all tasks in this task group. The
tasks are started in decreasing order of the work estimate given in DXAddTask.

226 IBM Visualization Data Explorer: Programmer’s Reference

 DXExists

 Return Value
Returns OK if all tasks in the task group complete without error; otherwise, returns
ERROR. Any error code returned is set by the task involved.

 See Also
DXAddTask, DXCreateTaskGroup

12.8, “Parallelism” on page 123.

 DXExists

 Function
Determines if a component exists in a Field.

 Syntax
#include <dx/dx.h>

Object DXExists(Object o, char \name)

 Functional Details
If any Field in Object o contains a component of the specified name, this routine
returns o. Object o can be a single Field or any Object that can contains Fields
(e.g., Groups or Series). Library Routines

 Return Value
Returns o if any Field in Object o contains a name component; otherwise, NULL but
does not set an error code.

 See Also
DXExtract, DXGetComponentValue, DXInsert, DXRemove DXRename, DXReplace,
DXSwap

11.10, “Component Manipulation” on page 110.

 Appendix C. Data Explorer Library Routines 227

 DXExportDX

 DXExportDX

 Function
Writes an Object to a specified file in a specified Data Explorer format.

 Syntax
#include <dx/dx.h>

Error DXExportDX(Object o, char \filename, char \format)

 Functional Details
Writes the contents of Object o into the file specified by filename using format
format. format must be “dx” with the following optional keywords appended:

You may specify more than one keyword (e.g., format="dx text 2").

Table 5. Format Keyword Description

Keyword Format of the Data in the File

text data in ASCII

ASCII data in ASCII

binary data in binary

1 header and data in a single file: header section, then data section

2 header and data in two files

follows header and data in a single file; data immediately following object description
in header section

 Return Value
Returns OK or returns NULL and sets an error code.

 See Also
DXImportDX

“Data Explorer Format Files” on page 110.

 DXExtract

 Function
Extracts a component from a Field.

 Syntax
#include <dx/dx.h>

Object DXExtract(Object o, char \name)

228 IBM Visualization Data Explorer: Programmer’s Reference

 DXExtractFloat

 Functional Details
For each Field in Object o, the routine returns the Object specified by name (typically
an Array). Object o can be a simple Field or any Object that can contain Fields
(e.g., Groups or Series).

If Object o is a single Field, a single Object is returned (typically an Array). If
Object o is anything else, the Object hierarchy is preserved, and each Field is
replaced by component name.

 Return Value
Returns o or returns NULL and sets an error code. It is an error if no component of
the specified name is found in any Field of o.

 See Also
DXExists, DXGetComponentValue, DXInsert, DXRemove, DXRename, DXReplace,
DXSwap

11.10, “Component Manipulation” on page 110.

 DXExtractFloat

 Function
Determines whether an Object can be converted to a floating-point value, and if so,
extracts it. Library Routines

 Syntax
#include <dx/dx.h>

Object DXExtractFloat(Object o, float \fp)

 Functional Details
If Object o can be converted to a floating-point value (i.e., TYPE_FLOAT,
CATEGORY_REAL, rank 0), this routine extracts it and places it in \fp.

 Return Value
Returns o and sets \fp if a floating-point value can be extracted from o; otherwise,
returns NULL without setting an error code.

 See Also
DXExtractInteger, DXExtractNthString, DXExtractParameter, DXExtractString,
DXQueryArrayConvert, DXQueryParameter

11.8, “Extracting Module Parameters” on page 108.

 Appendix C. Data Explorer Library Routines 229

 DXExtractInteger

 DXExtractInteger

 Function
Determines whether an Object can be converted to an integer, and if so, extracts it.

 Syntax
#include <dx/dx.h>

Object DXExtractInteger(Object o, int \ip)

 Functional Details
If Object o can be converted into an integer (i.e., TYPE_INT, CATEGORY_REAL, rank 0),
this routine extracts the integer value and places it in \ip.

 Return Value
Returns o and sets ip if an integer can be extracted from o; otherwise, returns NULL
without setting an error code.

 See Also
DXExtractFloat, DXExtractNthString DXExtractParameter, DXExtractString,
DXQueryArrayConvert, DXQueryParameter

11.8, “Extracting Module Parameters” on page 108.

 DXExtractNthString

 Function
Determines whether an Object can be converted to a list of strings and, if so,
extracts the nth one from it.

 Syntax
#include <dx/dx.h>

Object DXExtractNthString(Object o, int n, char \\cp)

 Functional Details
If Object o contains at least an nth string (where n is a zero-based index), this
routine extracts it and places a pointer to its first character in \cp.

Strings may be extracted from:

� String Objects (if n is 0)
� String lists (e.g., those created by DXMakeStringList and DXMakeStringListV).

230 IBM Visualization Data Explorer: Programmer’s Reference

 DXExtractParameter

 Return Value
Returns o and sets cp if the nth string can be extracted from o; otherwise, returns
NULL without setting an error code.

 See Also
DXExtractFloat, DXExtractInteger, DXExtractParameter, DXExtractString,
DXMakeStringList, DXMakeStringListV, DXQueryArrayConvert, DXQueryParameter

11.8, “Extracting Module Parameters” on page 108.

 DXExtractParameter

 Function
Determines whether an Object can be converted to a specific value type and, if so,
returns the value in the user-provided buffer.

 Syntax
#include <dx/dx.h>

Object DXExtractParameter(Object o, Type t, int dim, int count, Pointer p)

 Functional Details
If Object o can be converted to Type t with dimensionality dim and count
elements, this routine performs the conversion and returns the data in the buffer
pointed to by p.

For a successful conversion, Object o must be either an Array or a String. If o is
an Array, then its Category must be CATEGORY_REAL, its rank must be either 0 or 1,
and it must have count items contained within.

If dim is greater than 1, then o’s rank must be 1 and its shape must match dim in
order for this conversion to be successful. If dim is either 0 or 1, then both rank 0
and rank 1 shape 1 Arrays will match in size.

Once it is known that the sizes match, the Array’s Type is examined to determine
whether it can be converted to the Type specified by t. In general, smaller signed
(or unsigned) types can be converted to larger signed (or unsigned) types as
follows:

TYPE_BYTE ⇒ TYPE_SHORT ⇒ TYPE_INT ⇒ TYPE_FLOAT ⇒ TYPE_DOUBLE

and

TYPE_UBYTE ⇒ TYPE_USHORT ⇒ TYPE_UINT

Signed and unsigned versions of the same type cannot be converted between each
other (e.g., TYPE_BYTE and TYPE_UBYTE). However, unsigned types can be
converted to larger signed types (e.g., TYPE_UBYTE ⇒ TYPE_SHORT).

If the Types are identical, the data contained in o is copied to the buffer pointed to
by p. If (without violating any of the rules just given) o can be converted to the
Type specified in t, it is, and the converted data is copied to the buffer (p).

 Library Routines

 Appendix C. Data Explorer Library Routines 231

 DXExtractString

If o is a String, then t must be TYPE_STRING and dim must be either 0 or 1. If dim is
0, then the string contained in o must consist only of a single character.

 Return Value
Returns o if the conversion is valid; otherwise, returns NULL without setting an error
code.

 See Also
DXExtractFloat, DXExtractInteger, DXExtractNthString, DXExtractString,
DXQueryArrayConvert, DXQueryParameter

11.8, “Extracting Module Parameters” on page 108.

 DXExtractString

 Function
Determines whether an Object can be converted to a String, and if so, extracts it.

 Syntax
#include <dx/dx.h>

Object DXExtractString(Object o, char \\cp)

 Functional Details
If Object o contains a string, the routine extracts it and places a pointer to its first
character in \cp. Strings may be extracted from any of the following:

 � String Objects
� String lists containing a single element, such as those created by

DXMakeStringList and DXMakeStringListV
� Array Objects containing data of Type TYPE_UBYTE with a single NULL at the end

and no embedded NULLS. This is for backward compatibility only; its use is not
recommended.

 Return Value
Returns o and sets cp if a string can be extracted from o; otherwise, returns NULL
without setting an error code.

 See Also
DXExtractFloat, DXExtractInteger, DXExtractNthString, DXExtractParameter,
DXMakeStringList, DXMakeStringListV, DXQueryArrayConvert, DXQueryParameter

11.8, “Extracting Module Parameters” on page 108.

232 IBM Visualization Data Explorer: Programmer’s Reference

 DXFree

 DXFree

 Function
Frees a previously allocated block of memory.

 Syntax
#include <dx/dx.h>

Error DXFree(Pointer x)

 Functional Details
This routine can be used to free memory (pointed to by x) that has been allocated
by any of the following routines: DXAllocate, DXAllocateZero, DXAllocateLocal,
DXAllocateLocalZero, or DXReAllocate. If x is NULL, DXFree immediately returns
OK.

 Return Value
Returns OK or returns ERROR and sets an error code.

 See Also
DXAllocate, DXAllocateLocal, DXAllocateLocalZero, DXAllocateZero,
DXPrintAlloc, DXReAllocate

12.3, “Memory Allocation” on page 116.

 Library Routines

 DXFreeArrayDataLocal

 Function
Frees space previously allocated by DXGetArrayDataLocal.

 Syntax
#include <dx/dx.h>

Array DXFreeArrayDataLocal(Array a, Pointer data)

 Functional Details
This routine must be called from the same task that called DXGetArrayDataLocal if
the program is running in parallel. If called on a machine without processor local
memory, it simply returns without setting an error code.

 Return Value
Returns a or returns NULL and sets an error code.

 Appendix C. Data Explorer Library Routines 233

 DXFreeArrayHandle

 See Also
DXGetArrayData, DXGetArrayDataLocal

11.3, “Array Class” on page 101.

 DXFreeArrayHandle

 Function
Frees the memory allocated for an Array handle.

 Syntax
#include <dx/dx.h>

Error DXFreeArrayHandle(ArrayHandle handle)

 Functional Details
Frees the memory allocated for the Array handle handle.

 Return Value
Returns OK or returns ERROR and sets an error code.

 See Also
DXCreateArrayHandle

“Array Handling” on page 102.

 DXFreeInvalidComponentHandle

 Function
Frees all memory associated with an invalid-component handle.

 Syntax
#include <dx/dx.h>

Error DXFreeInvalidComponentHandle(InvalidComponentHandle handle)

 Functional Details
Frees all memory associated with the invalid-component handle handle.

 Return Value
Returns OK or returns ERROR and sets an error code.

 See Also
DXCreateInvalidComponentHandle, DXFreeInvalidComponentHandle

13.3, “Invalid Data” on page 133.

234 IBM Visualization Data Explorer: Programmer’s Reference

 DXFreeModuleID

 DXFreeModuleID

 Function
Frees the space pointed to by a module identifier.

 Syntax
#include <dx/dx.h>

Error DXFreeFreeModuleID(Pointer id)

 Functional Details
If DXCopyModuleID was used to obtain a copy of a module identifier,
DXFreeModuleID should be used to delete that copy when it is no longer needed.

 Return Value
Returns OK or returns ERROR and sets an error code.

 See Also
13.3, “Invalid Data” on page 133

12.5, “Cache” on page 121

12.11, “Asynchronous Services” on page 129. Library Routines

 Appendix C. Data Explorer Library Routines 235

 DXGeometricText

 DXGeometricText

 Function
Produces a geometric text Object consisting of a given string.

 Syntax
#include <dx/dx.h>

Object DXGeometricText(char \s, Object font, float \width)

 Functional Details
The geometric text Object consists of the string s, in the font font (which is an
Object returned by DXGetFont. The text is a Field with a “positions” component
indicating the points of the font in pixels, a “connections” component of type “lines,”
and a “colors” component with a constant white color. The origin of the string (left
end of baseline) is placed at the origin of the x,y plane with the baseline pointed
along the positive x axis. If width is not NULL, the width of the string (in pixels) will
be returned in \width. The string will be bounded above by ascent and below by
-descent (as returned by DXGetFont), to the left by 0, and to the right by width.

 Return Value
Returns the text Object or returns NULL and sets an error code.

 See Also
DXGetFont

14.1, “Text” on page 146.

 DXGetArrayClass

 Function
Returns the subclass of an Array Object.

 Syntax
#include <dx/dx.h>

Class DXGetArrayClass(Array a)

 Functional Details
Returns CLASS_ARRAY if the Array a is irregular. Otherwise returns one of
CLASS_REGULARARRAY, CLASS_PRODUCTARRAY, CLASS_PATHARRAY, CLASS_MESHARRAY, or
CLASS_CONSTANTARRAY.

 Return Value
Returns the subclass of an Array Object.

236 IBM Visualization Data Explorer: Programmer’s Reference

 DXGetArrayData

 See Also
DXGetArrayData, DXGetArrayInfo

11.3, “Array Class” on page 101.

 DXGetArrayData

 Function
Returns a pointer to the start of a global memory area containing the items
constituting the data stored in an Array.

 Syntax
#include <dx/dx.h>

Pointer DXGetArrayData(Array a)

 Functional Details
For irregular Arrays, the pointer points to the actual data that was stored in the
Array; this data may be changed directly to change the contents of the Array. For
compact Arrays (regular, grid, path, or mesh Arrays), this routine expands the
compact data and returns a pointer to the result; such data should not be changed
because changes to this data will not be reflected in the original Array. The
returned Array contains n items numbered from 0 to n-1, where n is the number of
items in a. DXAddArrayData must be called before calling DXGetArrayData;
otherwise, the values of items in an irregular Array are undefined.

Note: To reduce memory requirements, it is preferable, where possible, to
recognize compact Arrays using DXGetArrayClass, and not to expand them
by calling DXGetArrayData. The Array handle routines may be used to
access arrays of any class without expansion.

Memory pointed to by the return from DXGetArrayData should not be freed
by the user.

 Library Routines

 Return Value
Returns a pointer to the data or returns NULL and sets an error code.

 See Also
DXAddArrayData, DXCreateArrayHandle, DXGetArrayClass, DXGetArrayDataLocal,
DXNewArray, DXNewArrayV

11.3, “Array Class” on page 101.

 DXGetArrayDataLocal

 Function
Returns a pointer to the start of memory of a local copy of the data stored in an
Array.

 Appendix C. Data Explorer Library Routines 237

 DXGetArrayEntry, DXGetArrayEntries

 Syntax
#include <dx/dx.h>

Pointer DXGetArrayDataLocal(Array a)

 Functional Details
This routine performs the same operation as DXGetArrayData, on a machine without
processor local memory.

On a machine with processor local memory, it performs the same operation as
DXGetArrayData, after which, the Array data contents of a are copied to local
memory. When you no longer need the local copy, DXFreeArrayDataLocal must be
called.

The local data should be considered a read-only copy.

 Return Value
Returns a pointer to the data or returns NULL and sets an error code.

 See Also
DXFreeArrayDataLocal, DXGetArrayData

11.3, “Array Class” on page 101.

 DXGetArrayEntry, DXGetArrayEntries

 Function
Return a specified item or items from an Array.

 Syntax
#include <dx/dx.h>

Pointer DXGetArrayEntry(ArrayHandle handle, int offset, Pointer scratch)

void DXGetArrayEntries(ArrayHandle handle, int count, int \offsets,
Pointer \entries, Pointer scratch)

 Functional Details
Given an offset or list of \offsets into an Array, the routine returns a pointer or
pointers to the memory location(s) containing the Array elements specified. (The
Array is specified by the Array handle handle, which must first be created by
DXCreateArrayHandle).

For DXGetArrayEntry: The region of memory pointed to by scratch must be large
enough to hold a specified element.

For DXGetArrayEntries: The routine returns a list of pointers in entries, which
must be large enough to hold count pointers. The parameter scratch must be
large enough to hold count items of the Array.

238 IBM Visualization Data Explorer: Programmer’s Reference

 DXGetArrayInfo

 Return Value
Return a pointer or pointers to the specified entry or entries if the “offset” value(s)
are valid for the Array. If not, the results are undefined. Note that you should use
the return value of this function, not scratch.

 See Also
DXCreateArrayHandle, DXFreeArrayHandle, DXGetArrayEntry, DXGetArrayEntries,
DXIterateArray

“Array Handling” on page 102.

 DXGetArrayInfo

 Function
Returns the number of items, type, category, rank, and shape of an Array.

 Syntax
#include <dx/dx.h>

Array DXGetArrayInfo(Array a, int \items, Type \type, Category \category,
int \rank, int \shape)

 Functional Details
If items is not NULL, this routine returns in \items the number of items currently in
the Array. If type is not NULL, it returns in \type the type of each item. If category
is not NULL, it returns in \category the category of each item. If rank is not NULL,
it returns in \rank the number of dimensions in each item. If shape is not NULL, it
returns in \shape an Array of the extents of each dimension of the items.

The type is one of the following:

TYPE_BYTE TYPE_HYPER TYPE_SHORT
TYPE_UBYTE TYPE_INT TYPE_USHORT
TYPE_DOUBLE TYPE_UINT TYPE_STRING
TYPE_FLOAT

The category is either CATEGORY_REAL or CATEGORY_COMPLEX.

(For information on rank and shape, see Chapter 3, “Understanding the Data
Model” on page 15 in IBM Visualization Data Explorer User’s Guide.)

 Library Routines

 Return Value
Returns a or returns NULL without setting an error code.

 See Also
DXGetArrayClass, DXGetItemSize, DXTypeCheck, DXTypeCheckV

11.3, “Array Class” on page 101.

 Appendix C. Data Explorer Library Routines 239

 DXGetAttribute

 DXGetAttribute

 Function
Retrieves a named attribute from an Object.

 Syntax
#include <dx/dx.h>

Object DXGetAttribute(Object o, char \name)

 Functional Details
Retrieves the attribute specified by the string name from Object o.

 Return Value
Returns the Object associated with the attribute name or returns NULL without
setting an error code.

 See Also
DXGetEnumeratedAttribute, DXGetFloatAttribute, DXGetIntegerAttribute,
DXGetStringAttribute, DXSetAttribute, DXDeleteAttribute,
DXSetFloatAttribute, DXSetIntegerAttribute, DXSetStringAttribute

“Object Routines” on page 119.

 DXGetCacheEntry, DXGetCacheEntryV

 Function
Retrieve a cache entry.

 Syntax
#include <dx/dx.h>

Object DXGetCacheEntry(char \function, int key, int n, ...)
Object DXGetCacheEntryV(char \function, int key, int n, Object \in)

 Functional Details
Both routines return the Object referenced by a cache entry. The cache is indexed
by a key created from function, key, n, and the Objects in the Array in. These
must be the same values as those used when the Object was placed in the cache
with DXSetCacheEntry.

Notes:

1. Because Data Explorer modules follow pure function semantics, the cache
should not be used to store a state that affects the output of the module. A
module must always be able to recreate the Object from the same set of
inputs; the cache should only be used as an optimization tool.

2. On a multiprocessor machine, processor local information should not be stored
in the cache, since its contents may be retrieved on another processor.

240 IBM Visualization Data Explorer: Programmer’s Reference

 DXGetCameraMatrix, DXGetCameraRotation, DXGetCameraMatrixWithFuzz

3. The cache is local to one machine and cannot be used to communicate
information between modules on different machines when running in distributed
mode.

Since DXGetCacheEntry returns an Object that is referenced so that it will not be
deleted, you must delete it when you are finished with it. Failure to do so will result
in a memory leak.

For additional details on the deletion of cached Objects, see DXSetCacheEntry.

 Return Value
Returns the cached output Object or returns NULL but does not set an error code if
no such cache entry exists.

 See Also
DXDelete, DXReference, DXSetCacheEntry, DXSetCacheEntryV, DXGetObjectTag,
DXSetObjectTag

12.5, “Cache” on page 121.

 DXGetCameraMatrix, DXGetCameraRotation,
DXGetCameraMatrixWithFuzz

 Function
Return matrices that represent stages of the viewing operation.

 Library Routines

 Syntax
#include <dx/dx.h>

Matrix DXGetCameraMatrix(Camera c)
Matrix DXGetCameraRotation(Camera c)
Matrix DXGetCameraMatrixWithFuzz(Camera c, float fuzz)

 Functional Details
A camera defines the position and orientation of the viewer, the volume of interest
of the object being viewed, and the size of the image to contain the resulting view.

Conceptually, there are three steps to converting an object in 3-dimensional space
to an image in two-dimensional space:

1. Translate the Object and camera as a unit so that From is at the center of the
image, rotate them until up is aligned with the image y axis, and the from-to
vector is perpendicular to the image.

DXGetCameraRotation, given camera c, returns the matrix that performs this
series of transformations.

2. Scale the size of the volume of interest to the size of the image. (For
additional details, see DXSetPerspective and DXSetOrthographic.)

DXGetCameraMatrix and DXGetCameraMatrixWithFuzz, given camera c, return
the matrices that perform this step and the previous step.
DXGetCameraMatrixWithFuzz returns the matrix with a given fuzz applied. The
fuzz allows an object that is coincident with a second object, to be moved

 Appendix C. Data Explorer Library Routines 241

 DXGetClippedInfo

forward slightly to allow it to appear in front of the second object. An example
of this would be displaying contour lines on a surface; a positive fuzz applied
to the lines make the lines appear displayed slightly in front of the surface.

3. For perspective cameras only, make the walls of the volume interest parallel.
(For additional details, see DXSetPerspective.)

When these three steps are completed, the object has the correct image x,y
coordinates and can be rasterized.

 Return Value
Return the matrix.

 See Also
DXSetResolution, DXGetCameraResolution, DXSetView, DXGetView, DXNewCamera,
DXSetOrthographic, DXGetOrthographic, DXSetPerspective, DXGetPerspective,
DXRender

15.7, “Camera Class” on page 155.

 DXGetClippedInfo

 Function
Returns the Object to be rendered and the clipping Object.

 Syntax
#include <dx/dx.h>

Clipped DXGetClippedInfo(Clipped c, Object \render, Object \clipping)

 Functional Details
Returns the Object to be rendered in \render, given a Clipped Object c, if render
is not NULL. If clipping is not NULL, returns the clipping Object in \clipping.

 Return Value
Returns c or returns NULL and sets an error code.

 See Also
DXNewClipped, DXSetClippedObjects

15.6, “Clipped Class” on page 155.

 DXGetComponentAttribute

 Function
Returns a named attribute of a specified component of a Field.

242 IBM Visualization Data Explorer: Programmer’s Reference

 DXGetComponentValue

 Syntax
#include <dx/dx.h>

Object DXGetComponentAttribute(Field f, char \name, char \attribute)

 Functional Details
The routine first retrieves the component name from Field f. If the component
exists, the attribute specified by the string attribute associated with that
component is returned.

 Return Value
Returns the Object associated with attribute of component name or returns NULL
without setting an error code (unless f is not a Field).

 See Also
DXGetAttribute, DXGetComponentValue, DXGetEnumeratedComponentAttribute,
DXGetFloatAttribute, DXGetIntegerAttribute, DXSetComponentAttribute

11.1, “Field Class” on page 97.

 DXGetComponentValue

 Function
Returns a specified component of a specified Field.

 Library Routines

 Syntax
#include <dx/dx.h>

Object DXGetComponentValue(Field f, char \name)

 Functional Details
Typically, Fields have a “positions” component defining a set of points in space, a
“connections” component defining the connectivity of the positions, and a “data”
component containing the individual data values associated with the individual
positions or connections. A Field can be manipulated by accessing these
components. The following are just two examples:

� You can transform a Field by calling DXGetComponentValue(field,
“positions”) to return the “positions” component, and then transforming the
points it contains.

� You can convert a Field containing vector data to one containing the magnitude
of the vector data by calling DXGetComponentValue(field, “data”) to return the
“data” component, and then creating a new “data” component containing the
magnitude data to replace it in the Field.

 Return Value
Returns the name component of Field f or returns NULL and Sets an error code if f
is not a Field. It does not set an error code if the component does not exist.

 Appendix C. Data Explorer Library Routines 243

 DXGetConnections

 See Also
DXDeleteComponent, DXGetComponentAttribute, DXGetEnumeratedComponentValue,
DXSetComponentValue

11.1, “Field Class” on page 97.

 DXGetConnections

 Function
Gets the “connections” component of a Field and checks to see if it has a specified
“element type” attribute.

 Syntax
#include <dx/dx.h>

Array DXGetConnections(Field f, char \type)

 Functional Details
This routine combines the functions of DXGetComponentValue and
DXGetComponentAttribute.

 Return Value
Returns the connections Array or returns NULL without setting an error code if (1) no
“connections” component is present or (2) if the “element type” attribute does not
match.

 See Also
DXGetComponentAttribute, DXGetComponentValue, DXSetConnections

“Connections” on page 107.

 DXGetConstantArrayData

 Function
Returns a pointer to the value stored in a Constant Array.

 Syntax
#include <dx/dx.h>

Pointer DXGetConstantArrayData (Array a)

 Functional Details
The data pointed to by this pointer should be interpreted by the user according the
type, category, rank, and shape parameters associated with a.

While a Constant Array may contain numerous items, as may be indicated by either
DXGetArrayInfo or DXQueryConstantArray, the pointer returned by
DXGetConstantArrayData should not be incremented beyond the amount necessary

244 IBM Visualization Data Explorer: Programmer’s Reference

 DXGetEnumeratedAttribute

to index a single item since the value of all items in a Constant Array is actually
stored in a single item.

For compatibility with previous versions, this routine will also work with Regular
Arrays where the delta vectors consist solely of zeros.

 Return Value
Returns a pointer to the data contained in the Constant Array or returns NULL and
sets an error code.

 See Also
DXGetArrayData, DXGetArrayInfo, DXNewConstantArray, DXNewConstantArrayV,
DXQueryConstantArray

“Constant Arrays” on page 105.

 DXGetEnumeratedAttribute

 Function
Retrieves the nth attribute from an Object.

 Syntax
#include <dx/dx.h>

Object DXGetEnumeratedAttribute(Object o, int n, char \\name)

 Library Routines

 Functional Details
The attribute to be retrieved from Object o is specified by the zero-based index n.
If o has an nth attribute, and name is not NULL, the string associated with the nth
attribute will be returned in name.

 Return Value
Returns the Object associated with the index n or returns NULL without setting an
error code.

 See Also
DXGetAttribute, DXGetFloatAttribute, DXGetIntegerAttribute,
DXGetStringAttribute, DXSetAttribute, DXSetFloatAttribute,
DXSetIntegerAttribute, DXSetStringAttribute

“Object Routines” on page 119.

 DXGetEnumeratedComponentAttribute

 Appendix C. Data Explorer Library Routines 245

 DXGetEnumeratedComponentValue

 Function
Provides access to a specified attribute of a component by index rather than by
name.

 Syntax
#include <dx/dx.h>

Object DXGetEnumeratedComponentAttribute(Field f, int n, char \\name, char \attribute)

 Functional Details
The attribute attribute of the nth component of Field f is returned. The name of
the component is returned in \name.

This interface is used primarily to provide access to all components of the Field f
without requiring a list of component names.

 Return Value
Returns the attribute or returns NULL but does not set an error code if n is out of
range.

 See Also
DXGetComponentAttribute, DXGetEnumeratedComponentValue

11.1, “Field Class” on page 97.

 DXGetEnumeratedComponentValue

 Function
Provides access to the components of a Field by index rather than by name.

 Syntax
#include <dx/dx.h>

Object DXGetEnumeratedComponentValue(Field f, int n, char \\name)

 Functional Details
Provides access to all components of the Field f without requiring a list of
component names. We might, for example, find all components that are dependent
on positions by using DXGetEnumeratedComponentValue in a looping construct in
which DXGetEnumeratedComponentAttribute (or, using the name returned by
DXGetEnumeratedComponentValue, using DXGetComponentAttribute) is used to
access the “dep” attribute of each component.

The components of Field f may be indexed by calling
DXGetEnumeratedComponentValue with successive values of n until NULL is returned.
The name of the component is returned in \name.

Note: DXGetEnumeratedComponentAttribute would not be suitable for use in the
looping construct because it will return NULL if the nth component doesn't
have the specified component, even if there are more than n components.

246 IBM Visualization Data Explorer: Programmer’s Reference

 DXGetEnumeratedMember

 Return Value
Returns the value of the component or returns NULL but does not set an error code
if n is out of range.

 See Also
DXGetComponentAttribute, DXGetComponentValue,
DXGetEnumeratedComponentAttribute

11.1, “Field Class” on page 97.

 DXGetEnumeratedMember

 Function
Returns the members of a Group by index.

 Syntax
#include <dx/dx.h>

Object DXGetEnumeratedMember(Group g, int n, char \\name)

 Functional Details
Returns the nth member of Group g. The members of a Group may be indexed by
calling this routine with successive values of n starting with 0 until NULL is returned.
This routine returns the name of the nth member in \name if name is not NULL.

Note: The numbering changes as members are added and deleted.

 Library Routines

 Return Value
Returns the nth member or returns NULL but does not set an error code if n is out of
range. Sets an error code if g is not a Group.

 See Also
DXGetMember, DXGetMemberCount, DXNewGroup, DXSetEnumeratedMember

“Generic Operations” on page 98.

 DXGetError

 Function
Returns the error code for the last error that occurred.

 Syntax
#include <dx/dx.h>

ErrorCode DXGetError()

 Appendix C. Data Explorer Library Routines 247

 DXGetErrorExit

 Functional Details
Returns the error code for the last error that occurred, which is one of the following
error codes:

ERROR_ASSERTION ERROR_INTERNAL ERROR_NO_MEMORY
ERROR_BAD_CLASS ERROR_INVALID_DATA ERROR_NO_NONE
ERROR_BAD_PARAMETER ERROR_MISSING_DATA ERROR_NOT_IMPLEMENTED
ERROR_BAD_TYPE ERROR_NO_CAMERA ERROR_UNEXPECTED

A return value of ERROR_NONE signifies that no error code has been set.

Note: This routine is not typically used by module writers.

 Return Value
Returns the error code for the most recent error or returns ERROR_NONE if no error
code has been set.

 See Also
DXGetErrorMessage, DXResetError, DXSetError

12.1, “Error Handling and Messages” on page 114.

 DXGetErrorExit

 Function
Returns the current value of level as set by DXSetErrorExit.

 Syntax
#include <dx/dx.h>

int DXGetErrorExit();

 Functional Details
This routine is intended for use only in stand-alone programs.

 Return Value
Returns 0, 1, or 2: Valid arguments for level are:

ð = store error message. Use DXPrintError() to print when ready.

1 = print error message and return.

2 = print error message and exit.

 See Also
DXSetErrorExit

12.10, “Module Access” on page 127.

248 IBM Visualization Data Explorer: Programmer’s Reference

 DXGetErrorMessage

 DXGetErrorMessage

 Function
Returns the current error message.

 Syntax
#include <dx/dx.h>

char \DXGetErrorMessage()

 Functional Details
Returns a pointer to the current error message NULL-terminated string. This is a
pointer to a static buffer in local memory, so it must be copied if it is to be used
outside the scope of the calling routine.

 Return Value
Returns a pointer to a null string if the error code is ERROR_NONE. Otherwise,
returns a pointer to the current error message.

 See Also
DXSetErrorExit

12.1, “Error Handling and Messages” on page 114. Library Routines

 DXGetFloatAttribute

 Function
Retrieves a named attribute from an Object, verifies that it contains a floating-point
number, and returns that number.

 Syntax
#include <dx/dx.h>

Object DXGetFloatAttribute(Object o, char \name, float \x)

 Functional Details
The attribute to be retrieved from Object o is specified by the string name. The
routine then verifies that the attribute contains a scalar floating-point value. If x is
not NULL, the floating-point value is returned in \x.

 Return Value
Returns o or returns NULL without setting an error code.

 Appendix C. Data Explorer Library Routines 249

 DXGetFloatAttribute

 See Also
DXGetAttribute, DXGetEnumeratedAttribute, DXGetIntegerAttribute,
DXGetStringAttribute, DXSetAttribute, DXSetFloatAttribute,
DXSetIntegerAttribute, DXSetStringAttribute

“Object Routines” on page 119.

250 IBM Visualization Data Explorer: Programmer’s Reference

 DXGetFont

 DXGetFont

 Function
Returns a Group representing the named font.

 Syntax
#include <dx/dx.h>

Object DXGetFont(char \name, float \ascent, float \descent)

 Functional Details
The Group has as many members as there are characters in the named font
(name). Typically, the returned font is passed to DXGeometricText to construct a
text Object from a given string. Alternatively, individual characters can be extracted
using DXGetEnumeratedMember. The member number is the same as the ASCII
character code.

The font has an overall height of 1. If ascent is not NULL, the portion of the overall
height above the baseline is returned in \ascent. If descent is not NULL, the portion
of the overall height below the baseline is returned in \descent. The sum of the
ascent and the descent is the overall height 1.

This routine checks the environment variables DXFONTS, DXEXECROOT, and
DXROOT for directories to search for fonts. The routine also checks in
/usr/lpp/dx and in the subdirectory fonts of each of these directories.

 Library Routines

 Return Value
Returns the font or returns NULL and sets an error code.

 See Also
DXGeometricText, DXGetEnumeratedMember

14.1, “Text” on page 146.

 DXGetGroupClass

 Function
Returns the subclass of a Group Object.

 Syntax
#include <dx/dx.h>

Class DXGetGroupClass(Group g)

 Appendix C. Data Explorer Library Routines 251

 DXGetImageSize, DXGetImageBounds

 Functional Details
Returns the subclass of a Group Object g. This will be CLASS_GROUP if the Object is
a generic Group Object, or either CLASS_SERIES, CLASS_MULTIGRID, or
CLASS_COMPOSITEFIELD if the Object class is a subclass of Group.

A CLASS_GROUP Object and its subclasses contain other Objects that are referred to
as members. The members of a CLASS_GROUP Object can be of any class and are
not restricted as to type, whereas the CLASS_SERIES, CLASS_MULTIGRID, and
CLASS_COMPOSITEFIELD generally contain members of TYPE_FIELD, and they assume
the type of the first typed member to be added and are untyped if empty. All of the
subclasses require that the type of all its members is the same; see
DXSetGroupType. A CLASS_SERIES is generally used to maintain time-variant data,
whereas the CLASS_COMPOSITEFIELD and CLASS_MULTIGRID are used to maintain
spatially partitioned data within a single field.

Note: A Group can be structured to take advantage of more than one Group
class. For example, one could have a Series of Composite Fields where
each Series member is a Field that has been partitioned into a Composite
Field.

 Return Value
Returns the subclass of a Group Object or returns an undefined value if g is not a
Group. The subclass returned will be:

� CLASS_GROUP, if the Object is a generic Group Object; or
� CLASS_SERIES, CLASS_MULTIGRID, or CLASS_COMPOSITEFIELD, if the Object class is

a subclass of Group.

 See Also
DXGetObjectClass, DXNewCompositeField, DXNewGroup, DXNewMultiGrid,
DXNewSeries

“Generic Operations” on page 98.

 DXGetImageSize, DXGetImageBounds

 Function
Return information about image Fields.

 Syntax
#include <dx/dx.h>

Field DXGetImageSize(Field i, int \width, int \height)
Object DXGetImageBounds(Object o, int \x, int \y, int \width, int \height)

 Functional Details
DXGetImageSize returns the width and height of a simple image Field i.

DXGetImageBounds returns the origin and dimensions of a simple or composite
image Field o (such as is generated by the Arrange module). The origin is the
offset of this part of the image compared to the whole image.

252 IBM Visualization Data Explorer: Programmer’s Reference

 DXGetIntegerAttribute

 Return Value
Return the image or return NULL and sets an error code.

 See Also
DXGetPixels, DXMakeImage

15.9, “Image Fields” on page 156.

 DXGetIntegerAttribute

 Function
Retrieves a named attribute from an Object, verifies that its contents are an integer
number, and returns that number.

 Syntax
#include <dx/dx.h>

Object DXGetIntegerAttribute(Object o, char \name, int \x)

 Functional Details
Retrieves the attribute specified by the string name from Object o. It then verifies
that the attribute contains a scalar integer value. If x is not NULL, the integer value
is returned in \x. Library Routines

 Return Value
Returns o or returns NULL without setting an error code.

 See Also
DXGetAttribute, DXGetEnumeratedAttribute, DXGetFloatAttribute,
DXGetStringAttribute, DXSetAttribute, DXSetFloatAttribute,
DXSetIntegerAttribute, DXSetStringAttribute

“Object Routines” on page 119.

 Appendix C. Data Explorer Library Routines 253

 DXGetInvalidComponentArray

 DXGetInvalidComponentArray

 Function
Returns an Array containing the information stored in an invalid-component handle.

 Syntax
#include <dx/dx.h>

Array DXGetInvalidComponentArray(InvalidComponentHandle handle)

 Functional Details
The returned Array may be dependent or referential (see Chapter 13, “Data
Processing” on page 131). If handle was created using a Field, then the Array will
contain the appropriate “dep” or “ref” attributes. However, if handle was created
using only an Array, then this routine cannot determine whether the returned Array
is dependent or it references “positions” or “connections,” and it is up to the calling
program to set the appropriate attribute. The determination of should be based on
the type of the Array; if it is TYPE_UBYTE or TYPE_BYTE, it is dependent; if it is
TYPE_UINT or TYPE_INT, it is referential.

 Return Value
Returns the Array or returns NULL and sets an error code.

 See Also
DXCreateInvalidComponentHandle, DXFreeInvalidComponentHandle, DXGetType

13.3, “Invalid Data” on page 133.

 DXGetInvalidCount

 Function
Returns the number of invalid elements in an invalid-component handle.

 Syntax
#include <dx/dx.h>

int DXGetInvalidCount(InvalidComponentHandle handle)

 Functional Details
Elements that are multiply invalidated are counted once.

 Return Value
Returns the number of invalid elements.

254 IBM Visualization Data Explorer: Programmer’s Reference

 DXGetItemSize

 See Also
DXCreateInvalidComponentHandle, DXFreeInvalidComponentHandle

13.3, “Invalid Data” on page 133.

 DXGetItemSize

 Function
Returns the size in bytes of each individual item of an Array.

 Syntax
#include <dx/dx.h>

int DXGetItemSize(Array a)

 Functional Details
The routine takes into account the type, category, rank, and shape of Array a.
(String Arrays are implemented as arrays of type TYPE_STRING, rank 1, and shape
max_string_length+1.)

 Return Value
Returns the size in bytes or returns 0.

 Library Routines

 See Also
DXGetCategorySize, DXGetTypeSize

11.3, “Array Class” on page 101.

 DXGetMember

 Function
Gets a named member of a Group.

 Syntax
#include <dx/dx.h>

Object DXGetMember(Group g, char \name)

 Functional Details
The routine returns the member of Group g that has been assigned the name name.
Because the attribute is optional, a name may not have been assigned to a given
Group member. In that case, the member can be retrieved by index with
DXGetEnumeratedMember.

 Appendix C. Data Explorer Library Routines 255

 DXGetMemberCount

 Return Value
Returns the member or returns NULL but does not set an error code if the member
does not exist.

 See Also
DXGetEnumeratedMember, DXGetMemberCount, DXNewGroup, DXSetMember

“Generic Operations” on page 98.

 DXGetMemberCount

 Function
Retrieves the numerical count of members in a Group.

 Syntax
#include <dx/dx.h>

Group DXGetMemberCount(Group g, int \n)

 Functional Details
Group g can be generic or a subclass of Group (such as Series, MultiGrid, or
Composite Field).

 Return Value
Returns a pointer to group g and (in \n) the number of members in Group g or
returns NULL and sets an error code if g is not a Group.

 See Also
DXGetEnumeratedMember, DXGetMember, DXNewGroup

“Generic Operations” on page 98.

 DXGetMeshArrayInfo

 Function
Returns the number of terms and the terms of a Mesh Array.

 Syntax
#include <dx/dx.h>

MeshArray DXGetMeshArrayInfo(MeshArray a, int \n, Array \terms)

 Functional Details
If n is not NULL, the routine returns (in \n) the number of terms in the product a. If
terms is not NULL, it returns (in \terms) the terms of the product.

Mesh Arrays are generally used to specify “connections” components as
combinations of lower-dimensional Arrays. In their simplest, form Mesh Arrays are

256 IBM Visualization Data Explorer: Programmer’s Reference

 DXGetMeshOffsets

used to combine k Path Arrays into a regular k-dimensional grid, such as regular
grids of cubes or quadrilaterals. In order to make this common case simple to use,
an alternative, DXQueryGridConnections is provided to give quick access to the
dimensionality and counts of regular grids.

Array Handles offer a simple mechanism for accessing the individual elements of a
Mesh Array without expansion.

 Return Value
Returns a or returns NULL and sets an error code.

 See Also
DXCreateArrayHandle, DXGetMeshOffsets, DXMakeGridConnections,
DXNewMeshArray, DXNewMeshArrayV, DXQueryGridConnections, DXSetMeshOffsets

“Mesh Arrays” on page 105.

 DXGetMeshOffsets

 Function
Gets the offset of a partition within the original Field after partitioning.

 Syntax
#include <dx/dx.h>

MeshArray DXGetMeshOffsets(MeshArray a, int \offsets)

 Library Routines

 Functional Details
The offsets are specified as an Array of integers, one for each dimension of the
mesh, specifying the offset along that dimension of the partition in the original Field.
In the case where a Mesh Array is used to define a regular grid of connections that
is a part of a partitioned Field, it is useful to know the offset of the partition in the
original Field.

DXGetMeshOffsets works only on fully regular Mesh Arrays (e.g., those that contain
only Path Arrays). Mesh Arrays containing any other type of array will cause an
error. In the event that this routine is passed to an Array that is not the result of
partitioning, zeros are returned.

 Return Value
Returns a or returns NULL and sets an error code.

 See Also
DXGetMeshArrayInfo, DXGetPathOffset, DXNewMeshArray, DXNewMeshArrayV

“Mesh Arrays” on page 105.

 Appendix C. Data Explorer Library Routines 257

 DXGetModuleId

 DXGetModuleId

 Function
Get a unique identifier for each instance of a module.

 Syntax
#include <dx/dx.h>

Pointer DXGetModuleId()

 Functional Details
DXGetModuleId returns a pointer to a unique identifier id, which can be used to
generate unique cache tags (e.g., for use by asynchronous modules).

 Return Value
Returns NULL or returns ERROR and sets an error code.

 See Also
DXSetCacheEntry, DXSetCompareModuleId, DXSetCopyModuleId, DXReadyToRun

12.5, “Cache” on page 121.
12.11, “Asynchronous Services” on page 129

 DXGetNextHashElement

 Function
Returns the next element in a hash table

 Syntax
#include <dx/dx.h>

Element DXGetNextHashElement(HashTable hashTable)

 Functional Details
The elements are returned in no predefined order. DXInitGetNextHashElement
must be called before any calls to DXGetNextHashElement are made.

Element is defined as:

typedef Pointer Element;

 Return Value
Returns the next element or returns NULL if there are no more elements to return.

258 IBM Visualization Data Explorer: Programmer’s Reference

 DXGetNextInvalidElementIndex

 See Also
DXCreateHash, DXInitGetNextHashElement

13.5, “Hashing” on page 139.

 DXGetNextInvalidElementIndex

 Function
Returns the index of the next invalid element.

 Syntax
#include <dx/dx.h>

int DXGetNextInvalidElementIndex(InvalidComponentHandle handle)

 Functional Details
Returns the index of the next invalid element after the index returned on the prior
call (or zero, if this is the first call), given invalid-component handle handle.

 Return Value
Returns the index of the next invalid element or returns -1 if there are no more
invalid elements.

 Library Routines

 See Also
DXCreateInvalidComponentHandle, DXFreeInvalidComponentHandle13.3, “Invalid
Data” on page 133 .

 DXGetNextValidElementIndex

 Function
Returns the index of the next valid element.

 Syntax
#include <dx/dx.h>

int DXGetNextValidElementIndex(InvalidComponentHandle handle)

 Functional Details
Returns the index of the next valid element after the index returned on the prior call
(or zero, if this is the first call), given invalid-component handle handle.

 Return Value
Returns the index of the next valid element or returns -1 if there are no more valid
elements.

 Appendix C. Data Explorer Library Routines 259

 DXGetObjectClass

 See Also
DXCreateInvalidComponentHandle, DXFreeInvalidComponentHandle

13.3, “Invalid Data” on page 133.

 DXGetObjectClass

 Function
Returns the class of an Object.

 Syntax
#include <dx/dx.h>

Class DXGetObjectClass(Object o)

 Functional Details
The class of Object o is one of the following:

CLASS_ARRAY CLASS_INTERPOLATOR CLASS_PRODUCTARRAY
CLASS_CAMERA CLASS_LIGHT CLASS_REGULARRAY
CLASS_CLIPPED CLASS_MESHARRAY CLASS_SCREEN
CLASS_COMPOSITEFIELD CLASS_MULTIGRID CLASS_SERIES
CLASS_CONSTANTARRAY CLASS_OBJECT CLASS_STRING
CLASS_FIELD CLASS_PATHARRAY CLASS_XFORM
CLASS_GROUP CLASS_PRIVATE

All valid Objects have a class that identifies what kind of information the Object
contains and what Data Explorer library functions can be called using this Object.

For Objects of CLASS_GROUP and CLASS_ARRAY, they are further categorized into
subclasses. See the DXGetGroupClass and DXGetArrayClass routines for additional
details.

 Return Value
Returns the class of an Object. Invalid Objects return CLASS_MIN, CLASS_MAX, or
CLASS_DELETED.

 See Also
DXGetArrayClass, DXGetGroupClass

“Object Routines” on page 119.

 DXGetObjectTag, DXSetObjectTag

 Function
Manipulates unique Object identifiers.

260 IBM Visualization Data Explorer: Programmer’s Reference

 DXGetPart

 Syntax
#include <dx/dx.h>

int DXGetObjectTag(Object o)
Object DXSetObjectTag(Object o, int tag)

 Functional Details
Every Object is assigned a unique nonzero integer tag when it is created. In
addition, the executive sets the Object tag of Objects passed to and returned from
modules by using DXSetObjectTag. This tag is used, for example, by the cache
system to identify Objects. DXGetObjectTag returns the Object identifier tag for
Object o. DXGetObjectTag can be used with the cache routines DXGetCacheEntry
and DXSetCacheEntry to cache intermediate results between calls to a module.

Note: DXSetObjectTag is intended for use only by the executive and should not be
used by module writers.

 Return Value
Returns the Object identifier or returns 0 and sets an error code.

 See Also
DXGetCacheEntry, DXSetCacheEntry

“Object Routines” on page 119.

 Library Routines

 DXGetPart

 Function
Returns the parts of an Object by index.

 Syntax
#include <dx/dx.h>

Field DXGetPart(Object o, int n)

 Functional Details
The parts of a Group may be indexed by calling DXGetPart with successive values
of n starting with 0 until NULL is returned. This call is equivalent to DXGetPartClass
with the class parameter set to CLASS_FIELD.

Note: The DXGetPart, DXGetPartClass, and DXSetPart routines are useful
primarily for prototyping or in cases where their convenience outweighs
efficiency concerns. The DXProcessParts routine can often be used for the
same purposes with better efficiency.

 Return Value
Returns the nth part or returns NULL.

 Appendix C. Data Explorer Library Routines 261

 DXGetPartClass

 See Also
DXGetPartClass, DXProcessParts, DXSetPart

“Parts” on page 100.

 DXGetPartClass

 Function
Returns by index only those parts belonging to the specified class.

 Syntax
#include <dx/dx.h>

Object DXGetPartClass(Object o, int n, Class class)

 Functional Details
Performs a depth-first traversal of the Object o and returns a reference to the nth
(n>= 0) occurrence of a subObject with the requested class. The parts of a group
may be enumerated by calling DXGetPartClass with successive values of n starting
at 0 until NULL is returned.

For applying a function to every Field in a Group, DXProcessParts is a more
efficient interface.

 Return Value
Returns the nth subObject of the requested class or returns NULL.

 See Also
DXGetPart, DXProcessParts, DXSetPart

“Parts” on page 100.

 DXGetPathArrayInfo

 Function
Returns the number of points referred to in a Path Array.

 Syntax
#include <dx/dx.h>

PathArray DXGetPathArrayInfo(PathArray a, int \count)

 Functional Details
If count is not NULL, this routine returns in \count the number of points referred to
by the Path Array a; this is one more than the number of line segments in a.

Path Arrays are used to define the regular constituents of a connections grid. As
such, they are most often found as members of Mesh Arrays. While it is possible
to use Path Arrays directly to define 1-dimensional regular connections, they will

262 IBM Visualization Data Explorer: Programmer’s Reference

 DXGetPathOffset

not be recognized through the usual DXQueryGridConnections interface, and, in
some cases, will not be handled without expansion. It is therefore preferable to use
DXMakeGridConnections and DXQueryGridConnections to define and access
1-dimensional regular grids.

Array handles offer a simple mechanism to access individual elements of a Path
Array without expansion.

 Return Value
Returns a or returns NULL and sets an error code.

 See Also
DXCreateArrayHandle, DXGetPathOffset, DXMakeGridConnections,
DXNewPathArray, DXQueryGridConnections, DXSetPathOffset

“Path Arrays” on page 104.

 DXGetPathOffset

 Function
Gets the offset of a Path Array in the original Field after partitioning.

 Syntax
#include <dx/dx.h>

PathArray DXGetPathOffset(PathArray a, int \offset)

 Library Routines

 Functional Details
Gets the offset value offset for this portion of the Path Array a relative to the
original grid. In the case where a Path Array is used to define a regular grid of
connections that is a part of a partitioned Field, it is useful to know the offset of the
partition within the original Field.

Path Arrays are typically used as constituents in Mesh Arrays that define regular or
partially regular connections grids of one or more dimensions. In that case, the
mesh offsets of the partition within the original mesh are generally accessed at the
Mesh Array level through calls to DXSetMeshOffsets and DXGetMeshOffsets.

 Return Value
Returns a or returns NULL and sets an error code.

 See Also
DXGetMeshOffsets, DXGetPathArrayInfo, DXNewPathArray, DXSetMeshOffsets

“Path Arrays” on page 104.

 Appendix C. Data Explorer Library Routines 263

 DXGetPickPoint

 DXGetPickPoint

 Function
Returns the pick point in world coordinates.

 Syntax
#include <dx/dx.h>

Error DXGetPickPoint(Field picks, int poke, int pick, Point \point)

 Functional Details
Given picks pick information, poke number poke, and pick number pick, the
routine returns the pick point in point.

A Point is defined as follows:

typedef struct point {
float x, y, z;

} Point, Vector;

 Return Value
Returns OK or returns NULL and sets an error code.

 See Also
DXQueryPickCount, DXQueryPickPath, DXQueryPokeCount, DXTraversePickPath

13.6, “Pick-Assistance Routines” on page 142.

 DXGetPixels

 Function
Returns a pointer to the data in an image Field.

 Syntax
#include <dx/dx.h>

RGBColor \DXGetPixels(Field i)

 Functional Details
Returns a pointer to the Array of RGBColors of an image i. The length of this
array can be determined using DXGetImageSize.

 Return Value
Returns a pointer or returns NULL and sets an error code.

264 IBM Visualization Data Explorer: Programmer’s Reference

 DXGetPrivateData

 See Also
DXGetImageSize, DXMakeImage

15.9, “Image Fields” on page 156.

 DXGetPrivateData

 Function
Returns the private data pointer associated with a private Object.

 Syntax
#include <dx/dx.h>

Pointer DXGetPrivateData(Private p)

 Functional Details
This routine is used to access the private data pointer specified when p was
created.

 Return Value
Returns the private data pointer.

 See Also Library Routines

DXNewPrivate

11.5, “Private Class” on page 106.

 DXGetProductArrayInfo

 Function
Returns the number of terms and the terms of a Product Array.

 Syntax
#include <dx/dx.h>

ProductArray DXGetProductArrayInfo(ProductArray a, int \n, Array \terms)

 Functional Details
If n is not NULL, this routine returns in \n the number of terms in the product a. If
terms is not NULL, it returns in \terms the terms of the product.

Product Arrays provide a compact method for specifying regular and partially
regular “positions” components. In their simplest form, a regular n-dimensional grid
may be defined by combining n Regular Arrays, each of which specifies a set of
points along some n-dimensional delta vector. Partially regular “positions”
components may be specified compactly by combining regular and irregular terms.

DXGetProductArrayInfo allows access to the constituent terms of the Product Array
and is useful in cases where the terms may be handled independently, or when

 Appendix C. Data Explorer Library Routines 265

 DXGetRegularArrayInfo

knowledge of the separate terms make it possible to process the Product Array
without expansion. Array handles also provide a mechanism to access individual
elements of a Product Array without expansion.

 Return Value
Returns a or returns NULL and sets an error code.

 See Also
DXCreateArrayHandle, DXNewProductArray, DXNewProductArrayV,
DXQueryGridPositions

“Product Arrays” on page 105.

 DXGetRegularArrayInfo

 Function
Returns the number of items, the origin, and the delta of a Regular Array.

 Syntax
#include <dx/dx.h>

RegularArray DXGetRegularArrayInfo(RegularArray a, int \count,
Pointer origin, Pointer delta)

 Functional Details
If count is not NULL, this routine returns in \count the number of points. If origin
is not NULL, it returns in \origin the position of the first point. If delta is not NULL,
it returns in \delta the spacing between the points. Both origin and delta must
point to buffers large enough to hold one item of the type of a. The information
about a may be obtained by calling DXGetArrayInfo.

Regular Arrays provide a compact representation for a sequence of count points
beginning at origin and extending in the direction specified by the delta vector
and spaced delta apart. The dimensionality of origin and delta may be found
through a call to DXGetArrayInfo. By accessing the origin and delta information
directly, it may be possible to process Regular Arrays without expansion. Array
handles provides a mechanism for accessing individual elements of a Regular
Array without expansion.

 Return Value
Returns a or returns NULL and sets an error code.

 See Also
DXCreateArrayHandle, DXGetArrayInfo, DXNewRegularArray

“Regular Arrays” on page 104.

266 IBM Visualization Data Explorer: Programmer’s Reference

 DXGetScreenInfo

 DXGetScreenInfo

 Function
Returns information about a Screen Object.

 Syntax
#include <dx/dx.h>

Screen DXGetScreenInfo(Screen s, Object \o, int \position, int \z)

 Functional Details
Returns the Object being transformed and the screen transformation parameters
from Screen Object s. If o is not NULL, then the Object being transformed by the
screen transformation is returned in o. Similarly, if position is not NULL, then the
type of screen transformation is returned in position. Finally, if z is not NULL, the
depth of the Screen Object is returned in z.

The value returned in position will be one of the following:

� SCREEN_VIEWPORT—The origin of o is in viewport-relative coordinates. o will be
centered in the viewport when displayed.

� SCREEN_PIXEL—The origin of o is in pixel coordinates. o will be centered about
the specified pixel coordinate when displayed.

� SCREEN_WORLD—The origin of o is in world coordinates. o will be located in the
world coordinate system.

� SCREEN_STATIONARY—o is parallel to the screen, but in its own coordinate
system.

When position is SCREEN_STATIONARY, then z will take one of the following values:

< ð Object o is to be displayed behind the other Objects in the scene.

ð Object o is to be displayed in the middle of the scene.

> ð Object o is to be displayed in front of the other Objects in the scene.

 Library Routines

 Return Value
Returns s or returns NULL and sets an error code if s is not a Screen Object.

 See Also
DXNewScreen, DXSetScreenObject

15.5, “Screen Class” on page 154.

 DXGetSeriesMember

 Function
Returns an indexed member from a Series Object.

 Appendix C. Data Explorer Library Routines 267

 DXGetString

 Syntax
#include <dx/dx.h>

Object DXGetSeriesMember(Series s, int n, float \position)

 Functional Details
Retrieves the Object specified by the zero-based index n from the Series s. If s
has an nth member, and position is not NULL, then the value of that Object’s
position in the Series will be returned in \position.

A Series is intended to represent a single Field sampled across some parameter,
such as time or temperature. position contains the value of this sampled
parameter.

Series members cannot be retrieved by the Series position value. They must be
retrieved by index value n.

 Return Value
Returns the nth member or returns NULL if n is out of range. Returns NULL and sets
an error code.

 See Also
DXGetEnumeratedMember, DXGetMember, DXGetMemberCount, DXNewSeries,
DXSetSeriesMember

“Series Groups” on page 99.

 DXGetString

 Function
Gets a pointer to the contents of a String Object.

 Syntax
#include <dx/dx.h>

char \DXGetString(String s)

 Functional Details
Returns a pointer to the NULL-terminated character string contained in a String
Object s. The contents of the string must not be modified.

 Return Value
Returns a pointer to the string value or returns NULL and sets an error code.

 See Also
DXNewString

11.4, “String Class” on page 106.

268 IBM Visualization Data Explorer: Programmer’s Reference

 DXGetStringAttribute

 DXGetStringAttribute

 Function
Retrieves a named attribute from an Object, verifies that it contains a string, and
returns a pointer to that string.

 Syntax
#include <dx/dx.h>

Object DXGetStringAttribute(Object o, char \name, char \\x)

 Functional Details
The attribute to be retrieved from Object o is specified by the string name. It then
verifies that the attribute contains a string value. If x is not NULL, a pointer to the
string is returned in \x.

 Return Value
Returns o returns NULL and does not set an error code.

 See Also
DXGetAttribute, DXGetEnumeratedAttribute, DXGetFloatAttribute,
DXGetIntegerAttribute, DXSetAttribute, DXSetFloatAttribute,
DXSetIntegerAttribute, DXSetStringAttribute

“Object Routines” on page 119.

 Library Routines

 DXGetTime

 Function
Returns the elapsed time, in seconds, from system initialization.

 Syntax
#include <dx/dx.h>

double DXGetTime()

 Functional Details
The resolution of this measurement is limited by the timing information available
from the underlying operating system.

Generally, calls to DXGetTime should be used in pairs to measure the amount of
time elapsed between two events during a single execution of Data Explorer.

 Return Value
Returns the elapsed time.

 Appendix C. Data Explorer Library Routines 269

 DXGetTime

 See Also
DXMarkTime, DXMarkTimeLocal, DXPrintTimes, DXTraceTime

12.2, “Timing” on page 116.

270 IBM Visualization Data Explorer: Programmer’s Reference

 DXGetType

 DXGetType

 Function
Returns the type, category, rank, and shape of an Object.

 Syntax
#include <dx/dx.h>

Object DXGetType(Object o, Type \t, Category \c, int \rank, int \shape)

 Functional Details
If t is not NULL, this routine returns the type of g in \t. If c is not NULL, it returns
the type of g in \c. If rank is not NULL, it returns the rank of g in \rank. If shape
is not NULL, it returns the shape Array of g in \shape. shape must point to an Array
at least \rank in length.

The type is one of the following:

TYPE_BYTE TYPE_HYPER TYPE_SHORT
TYPE_UBYTE TYPE_INT TYPE_USHORT
TYPE_DOUBLE TYPE_UINT TYPE_STRING
TYPE_FLOAT

The category is either CATEGORY_REAL or CATEGORY_COMPLEX.

Array Objects are always typed. Fields are typed if they contain a “data”
component; their type is the same as that of the “data” component. Series,
MultiGrids, and Composite Fields are typed if they contain typed Fields. Generic
Groups may be typed by explicitly calling DXSetGroupType. If typed, all Fields
contained in the Group must match the type. Other Objects do not contain type
information.

 Library Routines

 Return Value
Returns o only if there is a type associated with o or returns NULL without setting an
error code.

 See Also
DXGetArrayInfo, DXSetGroupType, DXUnsetGroupType

“Setting Data Types” on page 120.

 DXGetValidCount

 Function
Returns the number of valid elements in an invalid-component handle.

 Appendix C. Data Explorer Library Routines 271

 DXGetXformInfo

 Syntax
#include <dx/dx.h>

int DXGetValidCount(InvalidComponentHandle handle)

 Functional Details
Elements that are multiply validated are counted once.

 Return Value
Returns the number of valid elements.

 See Also
DXCreateInvalidComponentHandle, DXFreeInvalidComponentHandle

13.3, “Invalid Data” on page 133.

 DXGetXformInfo

 Function
Extracts information from a Transform Object.

 Syntax
#include <dx/dx.h>

Xform DXGetXformInfo(Xform x, Object \o, Matrix \m)

 Functional Details
Extracts the Object being transformed and the transformation matrix from a
Transform Object x. If o is not NULL, then the Object being transformed by the
transformation contained in t is returned in o. Similarly, if m is not NULL, then the
transformation contained in t is returned in m.

 Return Value
Returns t or returns NULL and sets an error code if t is not a Transform.

 See Also
DXNewXform, DXSetXformObject

15.4, “Xform Class” on page 154.

272 IBM Visualization Data Explorer: Programmer’s Reference

 DXGrow, DXGrowV

 DXGrow, DXGrowV

 Function
Add information from neighboring partitions to a Composite Field.

 Syntax
#include <dx/dx.h>

Object DXGrow(Object object, int n, Pointer fill, ...)
Object DXGrowV(Object object, int n, Pointer fill, char \\components)

 Functional Details
Recursively add boundary information to each partition of any Composite Fields
encountered in object.

The depth of overlap is defined by n. The treatment of the boundary of the Field is
specified by the fill parameter: specify GROW_NONE for no expansion at the
exterior boundary of the entire field; GROW_REPLICATE to expand at the exterior
boundary by replicating the nearest edge values; GROW_NOFILL to expand the
exterior boundary by leaving space for the extra data but leaving their value
undefined; any other value of fill must be a pointer to a data item of the correct
type to expand at the boundary. It is used as the fill value. For DXGrowV, the
components Array contains a NULL-terminated list of components to be grown; all
others remain unaffected. For DXGrow, the final arguments after n consist of a
NULL-terminated list of the components to be grown. For each component that is
grown, the original component is renamed to “original component” before the grown
component is created.

 Library Routines

 Return Value
Returns the input Object with the overlapping data added or returns NULL and sets
an error code. If o is a field, returns o unmodified.

 See Also
DXQueryOriginalMeshExtents, DXQueryOriginalSizes, DXShrink

13.4, “Growing and Shrinking Partitioned Data” on page 137.

 Appendix C. Data Explorer Library Routines 273

 DXImportCDF

 DXImportCDF

 Function
Imports data from an CDF file.

 Syntax
#include <dx/dx.h>

Object DXImportCDF(char \filename, char \\variable, int \start, int
\end, int \delta)

 Functional Details
Imports data from a CDF (Common Data Format) filename. If variable is specified,
only fields matching the list in variable are imported. If variable is NULL, all fields
are read in and placed in a group. If the CDF contains records, then a series is
imported and start, end, and delta can be used to specify which records are
imported.

For additional information on the CDF file format, see Appendix B, “Importing Data:
File Formats” on page 241 in IBM Visualization Data Explorer User’s Guide.

 Return Value
Returns a pointer to the Object or returns NULL and sets an error code.

 See Also
DXImportNetCDF, DXImportDX, DXImportCM, DXImportHDF

 DXImportCM

 Function
Imports data from an Data Explorer colormap file.

 Syntax
#include <dx/dx.h>

DXImportCM(char \filename,char \\variable)

 Functional Details
Imports data from a Data Explorer colormap file filename. (These files can be
saved using Save As from the File menu of the Colormap Editor). variable can be
“colormap” or “opacity”. If variable is NULL, then both the colormap and the
opacity map are imported and placed in a group.

 Return Value
Returns a pointer to the Object or returns NULL and sets an error code.

274 IBM Visualization Data Explorer: Programmer’s Reference

 DXImportDX

 See Also
DXImportNetCDF, DXImportDX, DXImportHDF, DXImportCDF

 DXImportDX

 Function
Imports data from a Data Explorer file.

 Syntax
#include <dx/dx.h>

Object DXImportDX(char \filename, char \\variable, int \start, int \end,
 int \delta)

 Functional Details
Imports data from a Data Explorer file specified by the filename parameter. The
variable parameter specifies a NULL-terminated list of strings that identify which
variables to import. This parameter identifies Objects in the file that have the
names specified by variable. If more than one variable is specified, the Objects
are collected together and a Group is returned.

For Series data, \start, \end, and \delta are used to control which indexed
Series members are read in. If start is NULL, it defaults to the beginning of the
series; if end is NULL, it defaults to the end of the series; if delta is NULL, it defaults
to one.

For additional information on the Data Explorer file format, see Appendix B,
“Importing Data: File Formats” on page 241. in IBM Visualization Data Explorer
User’s Guide.

 Library Routines

 Return Value
Returns a pointer to the Object or returns NULL and sets an error code.

 See Also
DXImportHDF, DXImportNetCDF,DXImportHDF , DXImportCM, DXImportCDF

“Data Explorer Format Files” on page 110.

 DXImportHDF

 Function
Imports data from an HDF file.

 Syntax
#include <dx/dx.h>

Field DXImportHDF(char \filename, char \variable)

 Appendix C. Data Explorer Library Routines 275

 DXImportNetCDF

 Functional Details
Imports data from an HDF (Hierarchical Data Format) file. variable, though
represented as a string, is a number corresponding to the (zero-based) position of
the dataset in the file filename. If variable is NULL, all fields are read in and
placed in a group.

For additional information on the HDF file format, see Appendix B, “Importing Data:
File Formats” on page 241 in IBM Visualization Data Explorer User’s Guide.

 Return Value
Returns a pointer to the Object or returns NULL and sets an error code.

 See Also
DXImportNetCDF, DXImportDX, DXImportCM, DXImportCDF

 DXImportNetCDF

 Function
Imports data from a netCDF file.

 Syntax
#include <dx/dx.h>

Object DXImportNetCDF(char \filename, char \\variable, int \start,
int \end, int \delta)

 Functional Details
The routine creates a new Field or Group Object to hold the data that are to be
imported. The filename parameter is the name of a data file in netCDF format.
The variable parameter specifies a NULL-terminated list of strings that identify the
variables to be imported. If more than one is specified, the Objects are collected
together and a Group is returned.

For Series data, \start, \end, and \delta are used to control which indexed Series
members are read in. If start is NULL, it defaults to the beginning of the series; if
end is NULL, it defaults to the end of the series; if delta is NULL, it defaults to 1
(one).

For additional information on the Data Explorer requirements and conventions for
the netCDF file, see Appendix B, “Importing Data: File Formats” on page 241 in
IBM Visualization Data Explorer User’s Guide.

 Return Value
Returns a pointer to the Object or returns NULL and sets an error code.

276 IBM Visualization Data Explorer: Programmer’s Reference

 DXInitGetNextHashElement

 See Also
DXImportDX, DXImportHDF,DXImportHDF , DXImportCM, DXImportCDF

“netCDF Data” on page 111.

 DXInitGetNextHashElement

 Function
Initializes a pointer for DXGetNextHashElement.

 Syntax
#include <dx/dx.h>

Error DXInitGetNextHashElement(HashTable hashtable)

 Functional Details
Generally, a program retrieves entries from a hash table by calling
DXQueryHashElement to access arbitrary elements, but sometimes it is convenient to
access all elements, regardless of their order. In that case, the program calls
DXInitGetNextHashElement to initiate this indexing by initializing the pointer that
DXGetNextHashElement uses for iterating hashtable. DXInitGetNextElement
initializes the required pointer to zero (0).

 Return Value

 Library Routines

Returns OK or returns ERROR and sets an error code.

 See Also
DXCreateHash, DXGetNextHashElement, DXInsertHashElement, DXQueryHashElement

13.5, “Hashing” on page 139.

 DXInitModules

 Function
Performs necessary initialization when using DXCallModule in a stand-alone
program or outboard module.

 Syntax
#include <dx/dx.h>

void DXInitModules();

 Return Value
No return value.

 Appendix C. Data Explorer Library Routines 277

 DXInitGetNextInvalidElementIndex, DXInitGetNextValidElementIndex

 See Also
DXCallModule, DXModSet..., DXSetModule...

 DXInitGetNextInvalidElementIndex, DXInitGetNextValidElementIndex

 Function
Prepares an invalid-component handle for iteration through the invalid or valid
elements.

 Syntax
#include <dx/dx.h>

Error DXInitGetNextInvalidElementIndex(InvalidComponentHandle handle)
Error DXInitGetNextValidElementIndex(InvalidComponentHandle handle)

 Functional Details
Prepares the invalid-component handle handle for iteration through the contents.

 Return Value
Returns OK or returns ERROR and sets an error code.

 See Also
DXCreateInvalidComponentHandle, DXFreeInvalidComponentHandle

13.3, “Invalid Data” on page 133.

 DXInsert

 Function
Adds a component to a Field.

 Syntax
#include <dx/dx.h>

Object DXInsert(Object o, Object add, char \name)

 Functional Details
For each Field in Object o, add Object add as component name. Object o can be a
single Field, or any Object that can contain Fields (e.g., Groups or Series). If
Object o is a single Field, Object add must be a single Object, usually an Array. If
Object o is anything else, the Object hierarchy of o must match that of add, where
each Field of o matches an Array in add. If the Field already contains a name
component, it is replaced.

278 IBM Visualization Data Explorer: Programmer’s Reference

 DXInsertHashElement

 Return Value
Returns o or returns NULL and sets an error code.

 See Also
DXExists, DXExtract, DXRemove, DXRename, DXReplace, DXSetComponentValue,
DXSwap

11.10, “Component Manipulation” on page 110.

 DXInsertHashElement

 Function
Inserts an element into a hash table.

 Syntax
#include <dx/dx.h>

Error DXInsertHashElement(HashTable hashtable, Element element)

 Functional Details
If a hash function was provided at the time the hash table was created, then that
function will be used to derive a pseudokey from the contents of element. If no
hash function was provided, then the first long integer of element is assumed to be
the pseudokey.

If there is already an element stored in the hash table with that pseudokey, the
behavior will depend on whether or not a compare function was provided at the
time the hash table was created. If one was not provided, the already-stored
element will be overwritten with the new one. If a compare function was provided,
then it will be used to determine whether the keys associated with the elements are
in fact unique. If they are, then each will be stored, up to a maximum of 16 for a
given pseudokey.

Element is defined as:

typedef Pointer Element;

 Library Routines

 Return Value
Returns OK or returns ERROR and sets an error code.

 See Also
DXCreateHash

13.5, “Hashing” on page 139.

 Appendix C. Data Explorer Library Routines 279

 DXInterpolate

 DXInterpolate

 Function
Interpolates data values in a Field.

 Syntax
#include <dx/dx.h>

Interpolator DXInterpolate(Interpolator interpolator, int \n,
float \points, Pointer result)

 Functional Details
Interpolates up to \n points in the data Object associated with interpolator. The
points parameter is a pointer to a list of sample points to be interpolated. The
result is a pointer to a buffer large enough to hold \n elements of the type of the
data Object associated with interpolator. The input sample points are
interpolated sequentially until a point lying outside the data model is encountered,
at which time interpolation terminates. This routine returns in \n the number of
points that remained to be interpolated when a point outside the data Object is
found; this is not considered to be an error.

Points must be of the same dimensionality as the positions in the interpolation
Object; thus, (x) points are used to interpolate along the line, (x,y) points are used
to interpolate in the plane and (x,y,z) points in 3-dimensional space.

 Return Value
This routine returns interpolator or returns NULL and sets an error code.

 See Also
DXLocalizeInterpolator, DXMap, DXMapArray, DXNewInterpolator

13.2, “Interpolation and Mapping” on page 132.

 DXInvalidateConnections

 Function
Propagates the validity of positions.

 Syntax
#include <dx/dx.h>

Object DXInvalidateConnections(Object object)

 Functional Details
Propagates the validity of positions within the Fields of object to the connections,
faces, or polylines. The validity of the positions is determined from the contents of
the “invalid positions” component. A connections, faces, or polylines element will
be invalidated if any of its constituent positions are invalid. An “invalid”
connections, faces, or polylines component will be created if necessary. If there is

280 IBM Visualization Data Explorer: Programmer’s Reference

 DXInvalidateDupBoundary

no “invalid positions” component, if none of the positions are invalid, or if there is
no “connections,” “faces,” or “polylines,” component, there will be no change to
object.

To invalidate positions that become unreferenced because of the action of
DXInvalidateConnections, use DXInvalidateUnreferencedPositions. To remove
invalidated connections, faces, or polylines (and positions), use DXCull.

 Return Value
Returns the updated Object or returns NULL and sets an error code.

 See Also
DXCull, DXInvalidateUnreferencedPositions

13.3, “Invalid Data” on page 133.

 DXInvalidateDupBoundary

 Function
Invalidates all but one of the positions shared between partitions in a Composite
Field.

 Syntax
#include <dx/dx.h>

Object DXInvalidateDupBoundary(Object object)

 Library Routines

 Functional Details
In a Composite Field, positions (and any position-dependent component entries)
along a common boundary are shared between partitions. Unless this duplication
is taken into account, certain operations (e.g., calculations of statistics or the
number of points in a Field) may produce incorrect results. This routine invalidates
all but one of the duplicated positions.

 Return Value
Returns the input Object with the duplicate positions invalidated or returns NULL
and sets an error code.

 See Also
DXCull

13.3, “Invalid Data” on page 133.

 DXInvalidateUnreferencedPositions

 Appendix C. Data Explorer Library Routines 281

 DXInvertValidity

 Function
Determines which positions in the Fields of the input Object are not referenced by
any connections, faces, or polylines element and then invalidates them.

 Syntax
#include <dx/dx.h>

Object DXInvalidateUnreferencedPositions(Object object)

 Functional Details
Positions referenced by invalid connection elements (as determined from the
contents of an “invalid” connections, faces, or polylines component) are considered
to be unreferenced.

Positions are invalidated by use of the “invalid positions” component. If that
component does not already exist, one is created.

To remove the invalidated positions, use DXCull.

 Return Value
Returns the updated Object or returns NULL and sets an error code.

 See Also
DXCull, DXInvalidateConnections

13.3, “Invalid Data” on page 133.

 DXInvertValidity

 Function
Inverts the validity state of every element in a specified invalid-component handle.

 Syntax
#include <dx/dx.h>

Error DXInvertVaildity(InvalidComponentHandle handle)

 Functional Details
All valid elements in the handle are changed to DATA_INVALID; all invalid elements,
to DATA_VALID.

 Return Value
Returns OK or returns ERROR and sets an error code.

282 IBM Visualization Data Explorer: Programmer’s Reference

 DXIsElementValid, DXIsElementInvalid

 See Also
DXCreateInvalidComponentHandle, DXFreeInvalidComponentHandle

13.3, “Invalid Data” on page 133.

 DXIsElementValid, DXIsElementInvalid

 Function
Returns the validity of a specified element of an invalid-component handle.

 Syntax
#include <dx/dx.h>

int DXIsElementValid(InvalidComponentHandle handle, int index)
int DXIsElementInvalid(InvalidComponentHandle handle, int index)

 Functional Details
The result reflects both the initial conditions of handle when handle was created
using DXCreateInvalidComponentHandle, plus any effects of any calls to
DXSetElementInvalid, DXSetElementValid, DXInvertValidity, DXSetAllValid, and
DXSetAllInvalid.

 Return Value
DXIsElementInvalid returns TRUE (1) if element index in the invalid-component
handle handle is invalid, and returns FALSE (0) otherwise.

DXIsElementValid returns TRUE (1) if element index in the invalid-component
handle handle is valid, and returns FALSE (0) otherwise.

 Library Routines See Also
DXCreateInvalidComponentHandle, DXFreeInvalidComponentHandle

13.3, “Invalid Data” on page 133.

 DXIsElementValidSequential, DXIsElementInvalidSequential

 Function
Return the validity of a specified element of an invalid-component handle when the
queries come in sequential order.

 Syntax
#include <dx/dx.h>

int DXIsElementValidSequential(InvalidComponentHandle handle, int index)
int DXIsElementInvalidSequential(InvalidComponentHandle handle, int index)

 Appendix C. Data Explorer Library Routines 283

 DXIsElementValidSequential, DXIsElementInvalidSequential

 Functional Details
Access with either routine is generally faster than with DXIsElementInvalid or
DXIsElementValid.

The result reflects both the initial conditions of handle when it was created with
DXCreateInvalidComponentHandle, and of the effects of any calls to
DXSetElementInvalid, DXSetElementValid, DXInvertValidity, DXSetAllValid, or
DXSetAllInvalid.

Note: Accesses must be in sequential order; if they are not, the results may be
incorrect.

 Return Value
DXIsElementInvalidSequential returns TRUE (1) if element index is marked
invalid, and returns FALSE (0) otherwise.

DXIsElementValidSequential returns TRUE (1) if element index is marked valid,
and returns FALSE (0) otherwise.

 See Also
DXCreateInvalidComponentHandle, DXFreeInvalidComponentHandle

13.3, “Invalid Data” on page 133.

284 IBM Visualization Data Explorer: Programmer’s Reference

 DXIterateArray

 DXIterateArray

 Function
Iterates through an Array.

 Syntax
#include <dx/dx.h>

Pointer DXIterateArray(ArrayHandle handle, int offset,
Pointer last, Pointer scratch)

 Functional Details
This routine can be used when an Array is accessed sequentially. The Array
handle handle is that obtained through the use of DXCreateArrayHandle.

If the Array is constant, a pointer to the constant value is immediately returned. If
the Array is irregular and the given offset is 0, the Array data pointer (which is a
pointer to the 0th element of the Array) is returned. If the offset is not 0, then the
last parameter should point to the prior Array element, and (last + itemSize) is
returned, where itemSize is the size in bytes of an item of the Array described by
handle. If the Array is compact, the desired element is calculated. scratch should
be of a size large enough to hold a single Array item.

 Return Value Library Routines

Returns a pointer to the next item in an Array or returns NULL (but does not set an
error) code when there are no more items.

 See Also
DXCreateArrayHandle, DXFreeArrayHandle, DXGetArrayEntry, DXGetArrayEntries,
DXGetItemSize

“Array Handling” on page 102.

 Appendix C. Data Explorer Library Routines 285

 DXLn, DXTri, DXQuad, DXTetra

DXLn, DXTri, DXQuad, DXTetra

 Function
Constructs a line, triangle, quadrilateral, or tetrahedron from point identifiers.

 Syntax
#include <dx/dx.h>

Line DXLn(PointId p, PointId q)
Triangle DXTri(PointId p, PointId q, PointId r)
Quadrilateral DXQuad(PointId p, PointId q, PointId r, PointId s)
Tetrahedron DXTetra(PointId p, PointId q, PointId r, PointId s)

 Functional Details
Each of the connection primitives defined here consists of indices into an Array that
stores the coordinate data, which are typically stored in the “positions” component
of a Field.

The type definitions for a Line, Triangle, Quadrilateral, and Tetrahedron are as
follows:

typedef struct line {
PointId p, q;

} Line;

typedef struct triangle {
PointId p, q, r;

} Triangle;

typedef struct quadrilateral {
PointId p, q, r, s;

} Quadrilateral;

typedef struct tetrahedron {
PointId p, q, r, s;

} Tetrahedron;

A Point Id is defined as follows:

typedef int PointId;

 Return Value
Returns a line, triangle, quadrilateral, or tetrahedron.

 See Also
DXAddArrayData, DXAddLine, DXAddQuad, DXAddTetrahedron, DXAddTriangle,
DXNewArray

“Lines, Triangles, Quadrilaterals, Tetrahedra, and Cubes” on page 124.

286 IBM Visualization Data Explorer: Programmer’s Reference

 DXLocalizeInterpolator

 DXLocalizeInterpolator

 Function
Copies an interpolator structure into local memory.

 Syntax
#include <dx/dx.h>

Interpolator DXLocalizeInterpolator(Interpolator interp)

 Functional Details
The interpolator structure (interp) is copied from shared memory into local
memory, on multiprocessor machines with local memory. If the data being
interpolated are relatively small and repeatedly accessed, these structures may be
copied into local memory for faster access.

The local copy will automatically be freed when the interpolator is deleted.

 Return Value
Returns the localized interpolator or returns NULL and sets an error code.

 See Also
DXInterpolate, DXNewInterpolator

13.2, “Interpolation and Mapping” on page 132.

 Library Routines

 DXLoopDone

 Function
Terminates a loop

 Syntax
#include <dx/dx.h>

void DXLoopDone(int done)

 Functional Details
If this routine is called with a value of done=1, then any currently executing loop
within the macro containing the module calling DXLoopDone will terminate. In this
way it acts much like the Done module. Note that if you call DXLoopDone with a
value of 1, and then later call it with a value of 0, the loop will still terminate.

 Return Value
Does not return a value.

 Appendix C. Data Explorer Library Routines 287

 DXLoopFirst

 See Also
DXLoopFirst

12.7, “Looping Support” on page 122.

 DXLoopFirst

 Function
Indicates whether it is the first time through a loop

 Syntax
##include <dx/dx.h>

int DXLoopFirst()

 Functional Details
This function is used to determine whether or not it is the first iteration of the loop
within the macro containing the module calling DXLoopFirst.

 Return Value
Returns 1 if it is the first iteration of a loop. Returns 0 otherwise.

 See Also
DXLoopDone

12.7, “Looping Support” on page 122.

288 IBM Visualization Data Explorer: Programmer’s Reference

 DXMakeFloat

 DXMakeFloat

 Function
Returns a floating-point Array with a single floating-point value.

 Syntax
#include <dx/dx.h>

Array DXMakeFloat(float f);

 Functional Details
Creates an Array of type TYPE_FLOAT containing a single specified floating-point
value (f). The Array can be deleted with DXDelete().

 Return Value
Returns the Array or returns NULL and sets an error code.

 DXMakeGridConnections, DXMakeGridConnectionsV

 Function
Construct a grid of regular connections.

 Library Routines

 Syntax
#include <dx/dx.h>

Array DXMakeGridConnections(int n, int count, int count, ...)
Array DXMakeGridConnectionsV(int n, int \counts)

 Functional Details
Both routines construct an Array of n-dimensional regular grid connections (i.e., a
set of n-dimensional cubes, or hypercubes). For example, a quad mesh is
represented by a 2-dimensional grid, while a cube mesh is represented by a
3-dimensional grid.

Note: DXMakeGridConnections and DXMakeGridConnectionsV set the “element type”
for you.

For DXMakeGridConnections, the counts are given as the last n arguments. The
resulting Array is a Mesh Array of n terms, where the kth term is the Path Array
connecting counts[k] points; this routine is included to simplify the process of
creating the common case of regular grid connections. The number of points along
each axis is given by counts.

 Return Value
Return the Array or return NULL and sets an error code.

 Appendix C. Data Explorer Library Routines 289

 DXMakeGridPositions, DXMakeGridPositionsV

 See Also
DXMakeGridPositions, DXMakeGridPositionsV, DXNewMeshArray, DXNewPathArray,
DXQueryGridConnections, DXQueryGridPositions

“Creating Positions and Connections Grids” on page 103.

 DXMakeGridPositions, DXMakeGridPositionsV

 Function
Create an n-dimensional grid of regularly spaced positions.

 Syntax
#include <dx/dx.h>

Array DXMakeGridPositions(int n, int count, int count, int count,...,
float origin, float origin, ..., float delta, float delta, ...)

Array DXMakeGridPositionsV(int n, int \counts, float \origin, float \deltas)

 Functional Details
The grids created by these routines are compactly encoded by creating a Product
Array of n Regular Arrays and are suitable as “positions” components of a Field.
This compact encoding is particularly useful when the data lie in or on a lattice of
regularly spaced points, since their positions can be computed, thereby saving the
space that explicit indexing would require.

DXMakeGridPositions is used to enter the grid’s specifications as individual
arguments of the routine’s parameters. DXMakeGridPositionsV is used to enter the
same arguments as one integer (n) and three Arrays.

� The n parameter specifies the dimensionality of the grid. The remaining
specifications must be consistent with this value.

� The counts parameter specifies the number of elements in each of the grid’s
dimensions (e.g., 5 and 4 if n=2).

� The origin parameter specifies the vector that defines the grid’s origin (e.g.,
3.2 and 7.1 for a 2-dimensional grid).

� The delta parameter specifies the n-dimensional vectors that define the delta
values to be used (e.g., if n=2, this parameter would have four numbers, to
specify two 2-vectors).

The grid constructed by either routine is a Product Array of n terms, each of which
is a Regular Array. The first zero-based term describes a line in an n-dimensional
space with counts[0] points (starting at the origin), each point separated from the
previous point on the line by the n-dimensional vector described by deltas[0]
through deltas[n-1]. For each of the remaining n-1 terms, the kth term will have
counts[k] points (starting at [0 ... 0]), each of which is separated from the previous
point on the line by the n-dimensional vector described by deltas[k*n] through
deltas[k*n + (n-1)].

The Array created can be deleted with DXDelete. See 2.4, “Memory Management”
on page 13.

290 IBM Visualization Data Explorer: Programmer’s Reference

 DXMakeImage

 Return Value
Returns the Array or returns NULL and sets an error code.

 See Also
DXMakeGridConnections, DXMakeGridConnectionsV, DXQueryGridConnections,
DXQueryGridPositions

“Creating Positions and Connections Grids” on page 103.

 DXMakeImage

 Function
Creates a new empty image Field.

 Syntax
#include <dx/dx.h>

Field DXMakeImage(int width, int height)

 Functional Details
Simplifies creating a Field that represents an image of the specified width and
height.

An image Field is a regular 2-dimensional grid of “positions” and “connections,” with
a “colors” component that is floating-point, 3-vector. The sign of the deltas of the
“positions” component determines the orientation of the image. This routine creates
each of these components, adds them to a Field, and returns the Field.

The Field created can be deleted with DXDelete. See 2.4, “Memory Management”
on page 13.

 Library Routines

 Return Value
Returns the image or returns NULL and sets an error code.

 See Also
DXGetImageSize, DXGetPixels

15.9, “Image Fields” on page 156.

 DXMakeInteger

 Function
Creates an integer Array with a specified integer value.

 Appendix C. Data Explorer Library Routines 291

 DXMakeString

 Syntax
#include <dx/dx.h>

Array DXMakeInteger(int n);

 Functional Details
Returns an integer Array of TYPE_INT containing a single specified integer value
(n). The Array can be deleted with DXDelete().

 Return Value
Returns the Array or returns NULL and sets an error code.

 DXMakeString

 Function
Returns a String Object.

 Syntax
#include <dx/dx.h>

String DXMakeString(char \s);

 Functional Details
Creates a String Object containing a specified string (s). The Object can be
deleted with DXDelete().

 Return Value
Returns the String Object or returns NULL and sets an error code.

 DXMakeStringList, DXMakeStringListV

 Function
Create a string list from a given list of strings.

 Syntax
#include <dx/dx.h>

Array DXMakeStringList(int n, char \s,...)
Array DXMakeStringListV(int n, char \\s)

 Functional Details
The first form of this routine (DXMakeStringList) specifies the strings as the last n
arguments. The second form (DXMakeStringListV) specifies the strings as an
Array of strings s.

292 IBM Visualization Data Explorer: Programmer’s Reference

 DXMap

 Return Value
Return the string list or return NULL and sets an error code.

 See Also
DXNewArray

“String List Routines” on page 102.

 DXMap

 Function
Interpolates data values at sample points.

 Syntax
#include <dx/dx.h>

Object DXMap(Object object, Object map, char \src, char \dst)

 Functional Details
This function provides a simple generic tool for interpolation. Object object may be
either a Field, a Composite Field, or an Array. In the first two cases, the
component specified by src is used to sample map; the results of the interpolation
are placed in the component specified by dst, and object is returned. If object is
an Array, it is used directly to interpolate map, and an Array containing the
interpolated values is returned; in this case, the src and dst parameters are
ignored.

If map represents a data Field, it must be a Field, a Composite Field, or an
Interpolator. The src component of this data Field is used to generate the values
at the sample points.

If map is an Array, this routine creates a resulting Array that consists of the
appropriate number of copies of the contents of the map Array (which must contain
exactly one item). This result is then handled as previously described: if object is
a Field or a Composite Field, the result Array is added to the Field using the
component name specified by dst. Otherwise, the resulting Array is returned. This
form is used to create a constant data value at all sample points.

DXMapCheck should be called before DXMap to check the compatibility of the input
object and map.

 Library Routines

 Return Value
Returns an Object (see above) or returns NULL and sets an error code.

 See Also
DXInterpolate, DXMapArray, DXMapCheck, DXNewInterpolator

13.2, “Interpolation and Mapping” on page 132.

 Appendix C. Data Explorer Library Routines 293

 DXMapArray

 DXMapArray

 Function
Provides an intermediate-level mapping function.

 Syntax
#include <dx/dx.h>

Array DXMapArray(Array index, Interpolator map, Array \invalid)

 Functional Details
This function is lower-level than DXMap but higher than DXInterpolate.

The parameter index specifies an Array containing points to be sampled from the
Interpolator map. The result is returned as an Array. If invalid is not NULL, an
Array that indicates invalid data in which uninterpolated elements are tagged
DATA_INVALID is returned. If an invalid-data Array corresponding to index exists
prior to the call to DXMapArray, it should be passed in through \invalid. See
“DXInterpolate” on page 280 for valid types of index and map data.

 Return Value
Returns index or returns NULL and sets an error code.

 See Also
DXInterpolate, DXMap, DXMapCheck, DXNewInterpolator

13.2, “Interpolation and Mapping” on page 132.

 DXMapCheck

 Function
Verifies that the types of input and map are valid to be used as parameters to the
DXMap routine.

 Syntax
#include <dx/dx.h>

Object DXMapCheck(Object input, Object map, char \index,
Type \type, Category \category, int \rank, int \shape)

 Functional Details
If map is an Array, it must contain a single element. If map is not an Array, the type,
category, rank, and shape of the input component specified by index must match
that of the “positions” component of the map. The type, category, rank and shape
of the map (and of the data Object produced by this mapping) are returned in the
corresponding arguments, type, category, rank, and shape.

The type is one of the following:

294 IBM Visualization Data Explorer: Programmer’s Reference

 DXMarkTime, DXMarkTimeLocal

TYPE_BYTE TYPE_HYPER TYPE_SHORT
TYPE_UBYTE TYPE_INT TYPE_USHORT
TYPE_DOUBLE TYPE_UINT TYPE_STRING
TYPE_FLOAT

The category is either CATEGORY_REAL or CATEGORY_COMPLEX.

 Return Value
Returns the input argument if input and map are valid for mapping; otherwise,
returns NULL but does not set an error code.

 See Also
DXMap, DXMapArray

13.2, “Interpolation and Mapping” on page 132.

 DXMarkTime, DXMarkTimeLocal

 Function
Record time marks.

 Syntax
#include <dx/dx.h>

void DXMarkTime(char \string)
void DXMarkTimeLocal(char \string)

 Library Routines

 Functional Details
DXMarkTime records a “global” time mark relevant to the system as a whole.

DXMarkTimeLocal records a “local” event relevant to one processor (e.g., during a
parallel section). This routine is called by the executive at the beginning and end of
each module, at the beginning and end of each task or parallel section, and by
some system modules.

Both routines store the current time (from DXGetTime) and a copy of string in a
processor local list. The copied version of string will be truncated if longer than 16
characters. The number of time marks stored since the last call to DXPrintTimes is
limited to 2000 events.

 Return Value
None.

 See Also
DXGetTime, DXPrintTimes, DXTraceTime

12.2, “Timing” on page 116.

 Appendix C. Data Explorer Library Routines 295

 DXMessage

 DXMessage

 Function
Presents a message to the user.

 Syntax
#include <dx/dx.h>

void DXMessage(char \message, ...)

 Functional Details
The message string should not contain newline characters, because the DXMessage
routine formats the message in a manner appropriate to the output medium. For
terminal output, this includes prefixing the message with the processor identifier
and appending a newline. The message may be a printf form string, in which case
additional arguments may be necessary.

You can also invoke standard error messages by specifying message as

"#number"

where number identifies a message in the file /usr/lpp/dx/messages. Note that
many of the messages require one or more arguments.

Note: In combination with two other library routines, DXMessage can be used to
form “long” messages. For details, see “DXBeginLongMessage,
DXEndLongMessage” on page 201.

 Return Value
None.

 See Also
DXBeginLongMessage, DXEndLongMessage, DXSetError, DXWarning

12.1, “Error Handling and Messages” on page 114.

296 IBM Visualization Data Explorer: Programmer’s Reference

 DXNeighbors

 DXNeighbors

 Function
Returns the neighbors Array of a Field.

 Syntax
#include <dx/dx.h>

Array DXNeighbors(Field f)

 Functional Details
For a Field with irregular connections, returns the “neighbors” component of Field
f. If it does not exist, it is computed and added to the Field before returning.
Neighbors are not computed for connections with element type “lines.”

For a Field with regular connections, returns NULL without setting the error code
because neighbors in a regular grid can be implicitly determined without using
additional memory. DXQueryGridConnections can be used to determine if the
connections are regular or irregular.

The “neighbors” Array is used to indicate which connection elements share faces.
For additional details on neighbors, see Chapter 3, “Understanding the Data Model”
on page 15 in IBM Visualization Data Explorer User’s Guide.

 Library Routines

 Return Value
Returns the “neighbors” Array or returns NULL and sets an error code (unless the
Field has regular or “line” connections., in which case no error code is set.

 See Also
DXQueryGridConnections

“Standard Components” on page 107.

 DXNewAmbientLight

 Function
Creates a light Object representing an ambient light source.

 Syntax
#include <dx/dx.h>

Light DXNewAmbientLight(RGBColor color)

 Functional Details
Creates a light Object of the color color that produces a constant illumination on
all rendered Objects regardless of surface orientation.

An RGBColor is defined as follows:

 Appendix C. Data Explorer Library Routines 297

 DXNewArray, DXNewArrayV

typedef struct rgbcolor {
float r, g, b;

} RGBColor;

 Return Value
Returns the light or returns NULL and sets an error code.

 See Also
DXNewDistantLight, DXQueryAmbientLight, DXQueryDistantLight

15.8, “Light Class” on page 156.

 DXNewArray, DXNewArrayV

 Function
Create an irregular Array Object.

 Syntax
#include <dx/dx.h>

Array DXNewArray(Type t, Category c, int rank, ...)
Array DXNewArrayV(Type t, Category c, int rank, int \shape)

 Functional Details
The Object created is an Array of Array subclass CLASS_ARRAY. Each item is a
scalar, vector, matrix, or tensor whose rank is specified by rank (number of
dimensions).

The first form of this routine (DXNewArray) specifies the shape as the last rank
arguments. The second form (DXNewArrayV) specifies shape as an Array of
integers. Each entry in the item is real or complex, as specified by c, with
coefficients that are integer, single precision, and double precision, according to t.
The Array initially contains no items.

The type is one of the following:

TYPE_BYTE TYPE_HYPER TYPE_SHORT
TYPE_UBYTE TYPE_INT TYPE_USHORT
TYPE_DOUBLE TYPE_UINT TYPE_STRING
TYPE_FLOAT

The category is CATEGORY_REAL or CATEGORY_COMPLEX.

 Return Value
Return the Array or return NULL and set an error code.

DXAddArrayData

“Irregular Arrays” on page 101.

298 IBM Visualization Data Explorer: Programmer’s Reference

 DXNewCamera

 DXNewCamera

 Function
Creates a new Camera.

 Syntax
#include <dx/dx.h>

Camera DXNewCamera()

 Functional Details
Creates a new Camera. A camera defines the position and orientation of the
viewer, the volume of interest of the object being viewed, and the size of the image
to contain the resulting view.

A summary of how to interpret a camera follows.

The position and orientation of the view are defined by where the viewer is
standing, from, where the viewer is looking, to, and the tilt of the viewer’s head,
up.

The volume of interest of the object being viewed depends on the type of camera.
An orthographic camera defines a box that is centered on the to point and has an
infinite z axis lying along the to-from vector. The y axis is perpendicular to the
to-from vector in the direction of the up vector. The x- and y-dimensions of the box
are given by the width and aspect parameters of the camera, where aspect is
defined as the ratio of the height to width.

In orthographic projection, objects do not appear smaller as they get more distant,
and in fact, distance between the object and the viewer has no effect on the
appearance of the object. The distance between the to and from points is
irrelevant; only the direction is important.

The volume of interest defined by a perspective camera is a pyramid with an apex
at the from position, and a base at the to point perpendicular to the to-from
vector. The width of the base is defined by the angle formed by the sides of the
pyramid at the apex and the distance between the to and from points. The angle
formed by the sides of the pyramid is also known as the “field of view” and is the
fov parameter.

The fov is defined as twice the tangent of half the angle (e.g., for a 90-degree
sweep, the fov is 2 * tan(45 degrees), or 2.0). The fov can also be thought as the
ratio of the width of the base to the distance to the viewer (e.g., for a 20-meter wide
area from a distance of 10 meters , set the fov to 20/10, or 2.0). The base height
is defined by the resulting width times the aspect.

With a perspective camera, objects appear smaller with increasing distance. When
the perspective pyramid is projected onto the image, the sides of the pyramid are
made parallel, with a cross-section equal to the base dimensions. This has the
effect of widening (in x and y) the objects in front of the pyramid base and
compressing (in x and y) the objects behind the pyramid base.

 Library Routines

 Appendix C. Data Explorer Library Routines 299

 DXNewClipped

The Camera created can be deleted with DXDelete. See 2.4, “Memory
Management” on page 13.

The horizontal size of the image containing the resulting view is defined as the
resolution in pixels, and the vertical size is determined by the resolution *
aspect. The same aspect ratio is used for both the size of the image and the
volume of interest to prevent the object from being stretched in one of the
dimensions. The background color of the image is also a parameter to the camera.

By default, the camera is orthographic, looking from the positive z axis toward the
origin; x and y each range from -1 to +1. The image is 640 by 480 pixels, with the
origin at the center of the image.

 Return Value
Returns the Camera or returns NULL and sets an error code.

 See Also
DXGetCameraMatrix, DXRender, DXSetBackgroundColor, DXSetOrthographic,
DXSetPerspective, DXSetResolution, DXSetView

15.7, “Camera Class” on page 155.

 DXNewClipped

 Function
Creates a new Clipped Object.

 Syntax
#include <dx/dx.h>

Clipped DXNewClipped(Object render, Object clipping)

 Functional Details
Constructs a Clipped Object that instructs the renderer to render the first argument
render clipped by the second argument clipping. That is, all parts of Object
render that would have been in front of the clipping Object are removed at render
time.

The clipping Object must have only surface data (no volume data); the colors and
opacity of the surface are ignored. Nesting of clipping Objects is not supported,
and the clipping Object must be convex. Every volume and translucent surface in a
scene must have the same clipping Object.

The Object created can be deleted with DXDelete. See 2.4, “Memory
Management” on page 13.

300 IBM Visualization Data Explorer: Programmer’s Reference

 DXNewCompositeField

 Return Value
Returns the Clipped Object or returns NULL and sets an error code.

 See Also
DXGetClippedInfo, DXSetClippedObjects

15.6, “Clipped Class” on page 155.

 DXNewCompositeField

 Function
Creates a new Composite Field Object.

 Syntax
#include <dx/dx.h>

CompositeField DXNewCompositeField()

 Functional Details
A Composite Field Object (a subclass of Group) is a collection of compatible Fields,
all having a “positions” component of the same dimensionality, “data” components
of the same type, and “connections” of the same “element type.” A Composite Field
is intended to be interpreted as a collection of Fields that together define a single
Field.

Composite Fields are usually created by DXPartition. They are used to represent
the spatial partitioning of one original Field. No member Field may overlap any
other, and, where they abut they must share exact vertex locations. If the
“connections” component of Composite Fields are regular (i.e., Mesh Arrays), then
the “connections” component of each Field must have a “mesh offsets” attribute
that indicates where in the original grid the new Field was located.

The type of a Composite Field is set the first time a typed member is added; a
typed member is either a Field with a “data” component or a typed Group. All
typed members added to a typed Composite Field must match the type of the
Composite Field. If a Composite Field has no members, it is untyped.

The Field created can be deleted with DXDelete. See 2.4, “Memory Management”
on page 13.

 Library Routines

 Return Value
Returns the Composite Field or returns NULL and sets an error code.

 See Also
DXGrow, DXNewGroup, DXNewMultiGrid, DXNewSeries, DXSetMeshOffests

“Composite Fields” on page 100.

 Appendix C. Data Explorer Library Routines 301

 DXNewConstantArray, DXNewConstantArrayV

 DXNewConstantArray, DXNewConstantArrayV

 Function
Create an Array containing constant data.

 Syntax
#include <dx/dx.h>

ConstantArray DXNewConstantArray (int items, Pointer data, Type t,
Category c, int rank, ...)

ConstantArray DXNewConstantArrayV (int items, Pointer data, Type t,
Category c, int rank, int \shape)

 Functional Details
Constant Arrays provide a compact mechanism for representing constant values in
Array form. All parameters are required:

� items specifies the number of items in the Array.
� data should point to a memory location containing the constant value to be

stored in the Array.
� t specifies the type of the data:

TYPE_BYTE TYPE_HYPER TYPE_SHORT
TYPE_UBYTE TYPE_INT TYPE_USHORT
TYPE_DOUBLE TYPE_UINT TYPE_STRING
TYPE_FLOAT

� c specifies the category of the data: CATEGORY_REAL or CATEGORY_COMPLEX.
� rank specifies the rank of the data.
� shape (or the remaining rank arguments given in the DXNewConstantArray form)

specify the shape of the data.

The Array created can be deleted with DXDelete. See 2.4, “Memory Management”
on page 13.

 Return Value
Return the Constant Array or returns NULL and sets an error code.

 See Also
DXNewArray

“Constant Arrays” on page 105.

 DXNewDistantLight

 Function
Creates a distant light Object of specified color and direction.

302 IBM Visualization Data Explorer: Programmer’s Reference

 DXNewField

 Syntax
#include <dx/dx.h>

Light DXNewDistantLight(Vector direction, RGBColor color)

 Functional Details
The light source is located at an infinite distance from the scene in the specified
direction. Shading from distant lights differs with orientation in relation to the light
and not with the distance from the light.

The Light created can be deleted with DXDelete. See 2.4, “Memory Management”
on page 13.

A Vector is defined as follows:

typedef struct point {
float x, y, z;

} Point, Vector;

An RGBColor is defined as follows:

typedef struct rgbcolor {
float r, g, b;

} RGBColor;

 Return Value

 Library Routines

Returns the Light or returns NULL and sets an error code.

 See Also
DXQueryDistantLight

15.8, “Light Class” on page 156.

 DXNewField

 Function
Creates a new Field Object.

 Syntax
#include <dx/dx.h>

Field DXNewField()

 Functional Details
The Field Object is the fundamental Object in Data Explorer. It consists of zero or
more named components, usually Arrays, that are accessed with
DXGetComponentValue or DXGetEnumeratedComponentValue. Initially, the Field has no
components and is said to be empty; DXEmptyField returns “1” for such Fields.
Components are inserted in the Field using the function DXSetComponentValue.

 Appendix C. Data Explorer Library Routines 303

 DXNewGroup

There are several predefined component names in Data Explorer. The component
“positions” generally refers to the points in the data space where the field is
sampled; “connections” are the relationships between the “positions” and their
interpolation; “data” refers to the values either at the “positions” or for each whole
“connections” element.

The Field created can be deleted with DXDelete. See 2.4, “Memory Management”
on page 13.

See Chapter 3, “Understanding the Data Model” on page 15 in IBM Visualization
Data Explorer User’s Guide for additional information on the Data Explorer data
model.

 Return Value
Returns the Field or returns NULL and sets an error code.

 See Also
DXEmptyField, DXGetComponentValue, DXGetEnumeratedComponentValue,
DXSetComponentValue

11.1, “Field Class” on page 97.

 DXNewGroup

 Function
Creates a new generic Group Object.

 Syntax
#include <dx/dx.h>

Group DXNewGroup()

 Functional Details
A generic Group consists of a number of members that may optionally be named.
There is no restriction on the class of Objects in a generic Group and no
requirement that the type of the members be the same. This is in contrast to the
Composite Field, MultiGrid, and Series subgroups of the class Group, which
generally contain members of class Field and are typed. Generic Groups may be
explicitly typed using DXSetGroupType if all the members are of the same type.

Named members are added to a Group with DXSetMember. Unnamed members are
added to a Group with DXSetEnumeratedMember.

The Group created can be deleted with DXDelete. See 2.4, “Memory
Management” on page 13.

304 IBM Visualization Data Explorer: Programmer’s Reference

 DXNewInterpolator

 Return Value
Returns the Group or returns NULL and sets an error code.

 See Also
DXNewCompositeField, DXNewMultiGrid, DXNewSeries, DXSetEnumeratedMember,
DXSetGroupType, DXSetMember

“Generic Operations” on page 98.

 DXNewInterpolator

 Function
Creates an Interpolator Object for interpolating in Object o.

 Syntax
#include <dx/dx.h>

Interpolator DXNewInterpolator(Object o, enum interp_init init, float fuzz)

 Functional Details
Object o should be a Field or an Object that contains Fields (e.g., a Group). An
Interpolator builds and stores the information about the Field or Fields to speed up
searching for and computing data values corresponding to any location enclosed by
the positions of the Object. This is particularly useful with irregular meshes.

The initialization type is specified by setting the init argument to
INTERP_INIT_DELAY, INTERP_INIT_IMMEDIATE or INTERP_INIT_PARALLEL.
INTERP_INIT_DELAY does not initialize the Interpolator until the information is actually
needed. This is fastest if a small number of points will be interpolated.
INTERP_INIT_IMMEDIATE does all initialization before returning.
INTERP_INIT_PARALLEL does all initialization in parallel if running in a multiprocessor
machine before returning.

The fuzz value assigns a fuzz factor to the interpolation process: any sample falling
within this distance of a valid primitive of the Object o is assumed to be inside that
primitive. When this point lies geometrically outside the primitive, an appropriate
result is extrapolated. Any positive or zero value is used as the fuzz factor; a
negative value indicates that the interpolator should determine its own fuzz factor.

Interpolators can be used with the DXMap call. See “DXMap” on page 293 for
additional details.

The interpolator created can be deleted with DXDelete. See 2.4, “Memory
Management” on page 13.

 Library Routines

 Return Value
Returns the Interpolator or returns NULL and sets an error code.

 Appendix C. Data Explorer Library Routines 305

 DXNewMeshArray, DXNewMeshArrayV

 See Also
DXInterpolate, DXMap, DXMapArray

13.2, “Interpolation and Mapping” on page 132.

 DXNewMeshArray, DXNewMeshArrayV

 Function
Create an Array that is the product of a set of regular or irregular connection
Arrays.

 Syntax
#include <dx/dx.h>

MeshArray DXNewMeshArray(int n, ...)
MeshArray DXNewMeshArrayV(int n, Array \terms)

 Functional Details
The terms of the product are given by the Array pointer terms (for
DXNewMeshArrayV) or by the last n arguments (for DXNewMeshArray).

Mesh Arrays are generally used to specify regular or partially regular “connections”
components in compact form as combinations of lower-degree Arrays. For
example, a fully regular cubic “connections” component can be created by
combining three Path Arrays in a Mesh Array. A fully regular “connections”
component is more easily created with DXMakeGridConnections.

The Array created can be deleted with DXDelete. See 2.4, “Memory Management”
on page 13.

 Return Value
Return the Mesh Array or returns NULL and sets an error code.

 See Also
DXGetMeshArrayInfo, DXGetMeshOffsets, DXMakeGridConnections,
DXSetMeshOffsets

“Mesh Arrays” on page 105.

 DXNewMultiGrid

 Function
Creates a new MultiGrid Object.

 Syntax
#include <dx/dx.h>
MultiGrid DXNewMultiGrid()

306 IBM Visualization Data Explorer: Programmer’s Reference

 DXNewPathArray

 Functional Details
The new Object is a Group Object that can contain a Field or Composite Field
Objects.

The Fields in a MultiGrid Object must all be the same data type and have the same
connections element type, but the combined positions are not required to fill space
exactly. The Fields may overlap or there may be space between them. An “invalid
positions” component may be used to select the preferred Field in the overlapping
case.

The Group created can be deleted with DXDelete. See 2.4, “Memory
Management” on page 13.

 Return Value
Returns the MultiGrid Object or returns NULL and sets an error code.

 See Also
DXCreateInvalidArrayHandle, DXNewCompositeField, DXSetMember

“MultiGrid Groups” on page 99.

 DXNewPathArray

 Function Library Routines

Creates an Array specifying the linear connections between points.

 Syntax
#include <dx/dx.h>

PathArray DXNewPathArray(int count)

 Functional Details
The type of a is implicitly set to integer, the rank to 1, and the shape to 2. The
count parameter specifies the number of positions connected in the path defined by
the Path Array.

Path Arrays are used to specify 1-dimensional regular axes of a regular or partially
regular “connections” component representing count-1 segments along the axis.
These are generally combined in Mesh Arrays to create 1-dimensional or higher
regular-connection grids.

In the case of fully regular connections (e.g., when one or more path arrays are to
be combined in a Mesh Array), it is often easier to use DXMakeGridConnections.

The Array created can be deleted with DXDelete. See 2.4, “Memory Management”
on page 13.

 Appendix C. Data Explorer Library Routines 307

 DXNewPrivate

 Return Value
Returns the Path Array or returns NULL and sets an error code.

 See Also
DXGetPathArrayInfo, DXGetPathOffset, DXMakeGridConnections, DXSetPathOffset

“Path Arrays” on page 104.

 DXNewPrivate

 Function
Creates an Object that contains a pointer to private data.

 Syntax
#include <dx/dx.h>

Private DXNewPrivate(Pointer data, Error (\deleteFunction)(Pointer))

 Functional Details
The user is responsible for the private data. If the data Object is larger than the
single pointer, you also need to specify deleteFunction, which takes an argument
of type Pointer. If deleteFunction is not NULL, it will be called when the Private
Object is deleted and it will be passed the pointer data. In most cases, data should
be a pointer to global memory.

Private objects are useful for storing arbitrary structures in the cache for later use.

Note: Private Objects cannot be used between different nodes when running in
distributed mode.

The Object created can be deleted with DXDelete. See 2.4, “Memory
Management” on page 13.

 Return Value
Returns the Private Object or returns NULL and sets an error code.

 See Also
DXAllocate, DXGetPrivateData, DXSetCacheEntry

11.5, “Private Class” on page 106.

 DXNewProductArray, DXNewProductArrayV

 Function
Create an Array that is the product of a set of regular or irregular position Arrays.

308 IBM Visualization Data Explorer: Programmer’s Reference

 DXNewRegularArray

 Syntax
#include <dx/dx.h>

ProductArray DXNewProductArray(int n, ...)
ProductArray DXNewProductArrayV(int n, Array \terms)

 Functional Details
All of the Array types must be floating-point and of the same rank and shape. The
Array created will have the same rank and shape as the input Arrays. The terms of
the product are given by the Array pointer terms (for DXNewProductArrayV) or by the
last n arguments (for DXNewProductArray).

Product Arrays are most often used to construct regular or partially regular
“positions” components. In the case of fully regular positions (e.g., when each of
the items is a Regular Array), it is often be easier to use DXMakeGridPositions.

The Array created can be deleted with DXDelete. See 2.4, “Memory Management”
on page 13.

 Return Value
Return the Product Array or returns NULL and set an error code.

 See Also
DXGetProductArrayInfo, DXMakeGridPositions

“Product Arrays” on page 105.

 Library Routines

 DXNewRegularArray

 Function
Creates an Array containing evenly spaced data.

 Syntax
#include <dx/dx.h>

RegularArray DXNewRegularArray(Type t, int dim, int n,
Pointer origin, Pointer delta)

 Functional Details
The new Array Object represents a Regular Array of n points starting at origin
with a spacing of delta. The rank is assumed to be 1, and the shape is dim. Both
origin and delta are assumed to point to items of the same type as the items in
a.

Type t is one of the following:

TYPE_BYTE TYPE_HYPER TYPE_SHORT
TYPE_UBYTE TYPE_INT TYPE_USHORT
TYPE_DOUBLE TYPE_UINT TYPE_STRING
TYPE_FLOAT

 Appendix C. Data Explorer Library Routines 309

 DXNewRegularArray

Regular Arrays are most often used as constituents of Product Arrays for the
compact representation of regular grids of positions.

In previous versions of the Data Explorer software, regular arrays with zero delta
values were used to store constant data. This type of data can now be stored in a
Constant Array.

The Array created can be deleted with DXDelete. See 2.4, “Memory Management”
on page 13.

 Return Value
Returns the Regular Array or returns NULL and sets an error code.

 See Also
DXCreateArrayHandle, DXGetRegularArrayInfo, DXNewConstantArray

“Regular Arrays” on page 104.

310 IBM Visualization Data Explorer: Programmer’s Reference

 DXNewScreen

 DXNewScreen

 Function
Creates a new Object aligned to the final screen.

 Syntax
#include <dx/dx.h>

Screen DXNewScreen(Object o, int position, int z)

 Functional Details
A Screen Object is an Object that maintains a size and alignment with the screen
(output image) independent of the camera view and scaling transformations applied
to it.

The position parameter specifies one of the three options for positioning of the
Screen Object as explained in the following material; it must be one of
SCREEN_WORLD, SCREEN_PIXEL or SCREEN_VIEWPORT. The z parameter determines the
relative depth of the Object, as described in the following text.

Three options are provided for the interpretation of translations applied to a Screen
Object. First, a translation applied to the Screen Object may specify a new position
for the origin of the Screen Object in world space (SCREEN_WORLD). Second, a
translation applied to the Screen Object may specify a new location for the Screen
Object in the image, measured in pixels, where (0,0) refers to the lower-left corner
of the image (SCREEN_PIXEL). Third, a translation applied to the Screen Object may
specify a new location for the Screen Object in the image, measured in
viewport-relative coordinates, where (0,0) refers to the lower-left corner of the
image and (1,1) refers to the upper-right corner of the image (SCREEN_VIEWPORT).

The z parameter controls where the Screen Object is displayed relative to all other
Objects in the scene. -1 displays behind, 0 is in the scene, and +1 is in front of all
other Objects.

The Object created can be deleted with DXDelete. See 2.4, “Memory
Management” on page 13.

 Library Routines

 Return Value
Returns the Screen Object or returns NULL and sets an error code.

 See Also
DXGetScreenInfo, DXSetScreenObject

15.5, “Screen Class” on page 154.

 Appendix C. Data Explorer Library Routines 311

 DXNewSeries

 DXNewSeries

 Function
Creates a new Series Object.

 Syntax
#include <dx/dx.h>

Series DXNewSeries()

 Functional Details
A Series is intended to represent a single field sampled across some parameter,
such as time or temperature (e.g., a simulation of a CMOS device across a
temperature range). Members of a Series have a position. A copy of the position
is found in the “series position” attribute.

For Realization modules, a Series should be a collection of compatible Fields, each
with the same “data,” “position,” and “connection” types, and the Series positions of
all members should be increasing only or decreasing only for the whole Series.

The type of a Series is set the first time a typed member is added; a typed member
is either a Field with a “data” component or a typed Group. All typed members
added to a typed Series must match the type of the Series. If a Series has no
members, it is untyped.

The Object created can be deleted with DXDelete. See 2.4, “Memory
Management” on page 13.

 Return Value
Returns the Series or returns NULL and sets an error code.

 See Also
DXNewCompositeField, DXNewGroup, DXNewMultiGrid, DXSetSeriesMember

“Series Groups” on page 99.

 DXNewString

 Function
Creates a new String Object.

 Syntax
#include <dx/dx.h>

String DXNewString(char \s)

312 IBM Visualization Data Explorer: Programmer’s Reference

 DXNewXform

 Functional Details
The new String Object is initialized with a copy of the specified NULL-terminated
string s.

The Object created can be deleted with DXDelete. See 2.4, “Memory
Management” on page 13.

 Return Value
Returns the Object or returns NULL and sets an error code.

 See Also
DXGetString

11.4, “String Class” on page 106.

 DXNewXform

 Function
Creates a new Transform Object.

 Syntax
#include <dx/dx.h>

Xform DXNewXform(Object o, Matrix m)

 Library Routines

 Functional Details
The new Transform Object represents Object o, to which a modeling transform
Matrix m is to be applied.

The modeling transformation is specified as a Matrix that is defined as follows:

typedef struct
{
 float A[3][3]
 float b[3];
} Matrix;

This definition of a Matrix is sufficient for specifying all 3-dimensional affine
transformations (e.g., xA + b, where A is a 3x3 rotation Matrix and b is a
3-dimensional translation vector).

Transforms may be applied hierarchically.

Note: The transformation is not actually applied when the Transform Object is
created.

The Object created can be deleted with DXDelete. See 2.4, “Memory
Management” on page 13.

 Appendix C. Data Explorer Library Routines 313

 Return Value
Returns the Transform Object or returns NULL and sets an error code.

 See Also
DXApplyTransform, DXGetXformInfo, DXRotateX, DXRotateY, DXRotateZ, DXScale,
DXSetXformObject, DXTranslate

15.4, “Xform Class” on page 154.

314 IBM Visualization Data Explorer: Programmer’s Reference

 DXOutputRGB

 DXOutputRGB

 Function
Writes an image to a file in RGB format.

 Syntax
#include <dx/dx.h>

Field DXOutputRGB(Field i, int fd)

 Functional Details
The routine writes image Field i to file descriptor fd as three bytes (red, green, and
blue) per pixel.

The values of the floating-point “colors” component (ranging from 0.0 to 1.0) are
converted into byte values from 0 to 255. Values below 0 and above 1 are
changed to 0 and 255 respectively.

The image is written at the current byte offset in the file. lseek() should be called
first to reposition the current read/write pointer to the desired location.

 Return Value
Returns i or returns NULL and sets an error code.

 Library Routines

 See Also
15.9, “Image Fields” on page 156.

 Appendix C. Data Explorer Library Routines 315

 DXPartition

 DXPartition

 Function
Divides a Field into partitions.

 Syntax
#include <dx/dx.h>

Group DXPartition(Field f, int n, int size)

 Functional Details
Divides f into a maximum of n spatially local pieces with at least size points in
each piece.

The Group created can be deleted with DXDelete. See 2.4, “Memory
Management” on page 13.

 Return Value
Returns f (if it is already partitioned) or returns a new Composite Field; otherwise, it
returns NULL and sets an error code.

 See Also
DXGrow, DXShrink

13.1, “Data Partitioning” on page 132.

 DXPrint, DXPrintV

 Function
Print an Object according to specified formatting options.

 Syntax
#include <dx/dx.h>

Error DXPrint(Object o, char \options, ...)
Error DXPrintV(Object o, char \options, char \\components)

 Functional Details
In the case of DXPrint, the arguments following options should consist of a
NULL-terminated list of strings. These strings specify the components of a Field to
which the options should be applied. Alternatively, the components may all be
specified together in a NULL-terminated Array of strings and supplied as the
components argument to DXPrintV.

If components is not specified or is NULL, the formatting options are applied to all
components.

If o is a Group or other Object capable of containing another Object, then it is
traversed in a depth-first order, and the appropriate printing options are applied for

316 IBM Visualization Data Explorer: Programmer’s Reference

 DXPrintAlloc

the particular Object currently being visited. If the Object being printed is not a
Field, then the specified component names are ignored.

The formatting options are:

� r - Recursively traverse the Object.
� o - Print only the top level of the Object.
� d - Print first and last 25 items in Arrays, as well as headers.
� D - Print all the items in Arrays as well as headers.
� x - Print in expanded form rather than compact form.
� n - Print Object to n levels.

See also “Print” on page 244 in IBM Visualization Data Explorer User’s Reference.

 Return Value
Returns OK or returns NULL and sets an error code.

 See Also
DXCategorySize, DXGetType, DXTypeSize

“Setting Data Types” on page 120.

 DXPrintAlloc

 Function Library Routines

Prints a summary of memory use.

 Syntax
#include <dx/dx.h>

void DXPrintAlloc(int t)

 Functional Details
This routine can be run from Data Explorer, with the Usage module, in script mode
or in the user interface. When it is run, memory areas should be quiescent (on a
multiprocessor system, for example, no other tasks should be running). The
parameter t specifies the level of detail of the printout:

0 Prints out a summary of the current use of memory, both in small and in large
areas. A typical printout might look like:

ð: small: 41943ð4 = hdr 16472 + used 486864 + free 392ð

+ pool 3687ð48 (limit 41943ð4)

ð: large: 2ð97152 = hdr 16472 + used 494656 + free 297ð4

+ pool 155812ð (limit 54525952)

where:

small is the total number of bytes currently managed by the memory
manager for the small arena.

large is the total number of bytes currently managed by the memory
manager for the large arena.

 Appendix C. Data Explorer Library Routines 317

 DXPrintTimes

hdr is the amount of memory space used by internal data structures.

used is the amount of memory space allocated for use.

free is the amount of memory previously used and available for reuse.

pool is the amount of memory space allocated to Data Explorer but not yet
used.

limit is the largest amount of memory that can be managed by the memory
manager.

1 Prints one line for every individual allocated block, stating its size and
address.

2 In addition to the information for allocated blocks (how = 1), prints the same
information for every freed block.

 Return Value
None.

 See Also
DXAllocate, DXFree

12.3, “Memory Allocation” on page 116.

 DXPrintTimes

 Function
Prints time marks.

 Syntax
#include <dx/dx.h>

void DXPrintTimes()

 Functional Details
Prints a merged summary of the “global” time events recorded by DXMarkTime and
the “local” time events recorded by DXMarkTimeLocal since the last call to
DXPrintTimes.

For each global event, the following are printed:

� The identifying tag that was specified by the DXMarkTime call
� The time of the last previous global event
� The difference in time between that previous event and this event
� The time of this event.

For each local event, the following are printed:

� The processor on which the event occurred

� The time of the last previous local event on this processor or the last previous
global event, whichever occurred later

� The difference in time between that previous event and this event

318 IBM Visualization Data Explorer: Programmer’s Reference

 DXProcessorId

� The time of this event.

All times are printed in seconds. In addition, on some architectures the difference
in user and system times are printed, as recorded by the operating system. These
times are not printed on the IBM POWER Visualization System, and appear as
zeros.

 Return Value
None.

 See Also
DXGetTime, DXMarkTime, DXMarkTimeLocal, DXTraceTime

12.2, “Timing” on page 116.

 DXProcessorId

 Function
Returns the identifier of the current processor in a multiprocessor machine.

 Syntax
#include <dx/dx.h>

int DXProcessorId() Library Routines

 Functional Details
The processor identifier is a number ranging from 0 to n-1, where n is the number
of processors in use. This routine is not generally needed by modules.

 Return Value
Returns the processor identifier. Always returns 0 (zero) for a single processor
machine.

 See Also
DXProcessors

12.8, “Parallelism” on page 123.

 Appendix C. Data Explorer Library Routines 319

 DXProcessors

 DXProcessors

 Function
Returns the number of processors.

 Syntax
#include <dx/dx.h>

int DXProcessors(int n)

 Functional Details
Queries the number of processors available for running tasks, if n=ð, and may be
used to determine task allocation for parallelism.

Values of n!=ð are ignored and reserved for future use.

 Return Value
Returns the number of processors.

 See Also
DXAddTask, DXCreateTaskGroup, DXExecuteTaskGroup, DXProcessorId

12.8, “Parallelism” on page 123.

 DXProcessParts

 Function
Applies a function to every constituent Field (part) of a specified Object.

 Syntax
#include <dx/dx.h>

Object DXProcessParts(Object object, Field (\process)(Field, Pointer, int),
Pointer args, int size, int copy, int preserve)

 Functional Details
If the input Object is a Field, this routine returns the result of the process function
on that Field.

If the input Object is a Group and copy is 1, this routine recursively makes a copy
of the Group and all subgroups. In this case, the order of the Fields in the Groups
is preserved if preserve is 1. If this is not required, set preserve to 0 and a more
efficient traversal algorithm will be used.

If the input Object is a Group and copy is 0, it operates directly on the Groups of
the input object.

In either case, for every Field f that is a member of a Group, it makes a call of the
form process(f, args, size) and places the result of that call in the output in place

320 IBM Visualization Data Explorer: Programmer’s Reference

 DXProcessParts

of f. The process function is intended to return a Field which is the processed
version of input Field f.

Regardless of the value of the copy parameter, the Field passed to the process
function is the Field from the original Object and not a copy.

The size parameter specifies the size of the block pointed to by args. If size is
nonzero, it makes a copy of the argument block and places it in global memory
before passing it to process. The argument must be in global memory because
DXProcessParts may run in parallel; however, if the pointer passed is, for example,
just a pointer to an Object that is already in global memory, then size can be given
as 0. args should not contain pointers to local memory.

If the process function returns NULL, and preserve is 1 or the Field was part of a
Series Group or was the entire input Object, the NULL return value is replaced with
an empty Field.

 Return Value
Returns the Object, a copy of the Object, or a processed version of it, depending
on the parameters; otherwise, it returns NULL and sets an error code.

 See Also
DXGetPart, DXGetPartClass, DXSetPart

“Parts” on page 100. Library Routines

 Appendix C. Data Explorer Library Routines 321

 DXPt, DXVec

 DXPt, DXVec

 Function
Constructs a Point or a Vector with the specified coordinates.

 Syntax
#include <dx/dx.h>

Point DXPt(double x, double y, double z)
Point DXVec(double x, double y, double z)

 Functional Details
A Point or Vector is defined as

typedef struct point {
float x, y, z;

} Point, Vector;

 Return Value
Return the point or vector.

 See Also
“Points and Vectors” on page 124.

322 IBM Visualization Data Explorer: Programmer’s Reference

 DXQueryAmbientLight

 DXQueryAmbientLight

 Function
Returns the color of an Ambient Light.

 Syntax
#include <dx/dx.h>

Light DXQueryAmbientLight(Light l, RGBColor \color)

 Functional Details
Determines whether l is an Ambient Light and returns in \color the information
specified when the Light was created.

An RGBColor is defined as follows:

typedef struct rgbcolor {
float r, g, b;

} RGBColor;

 Return Value
Returns l (if it is an Ambient Light) or NULL (if it is another type) without setting an
error code; otherwise, returns NULL and sets an error code.

 Library Routines

 See Also
DXNewAmbientLight

15.8, “Light Class” on page 156.

 DXQueryArrayCommon, DXQueryArrayCommonV

 Function
Return a type, category, rank, and shape to which all of the Arrays can be
converted.

 Syntax
#include <dx/dx.h>

Error DXQueryArrayCommon(Type \type, Category \category, int \rank, int \shape
int n, Array a, ...)

Error DXQueryArrayCommonV(Type \type, Category \category, int \rank, int \shape
int n, Array \alist)

 Functional Details
All Arrays a or alist are converted to a common type, category, rank, and shape if
a common conversion exists. Both routines set \type, \category, \rank, and
\shape to the new converted values if the pointers to these parameters are not
NULL.

 Appendix C. Data Explorer Library Routines 323

 DXQueryArrayCommon, DXQueryArrayCommonV

Arrays with items that have one or more dimensions of shape = 1 are reduced in
that dimension to a smaller rank. For example, an array of 1 × n matrices, rank =
2, shape = [1,n], is reduced to an Array of vectors rank = 1, shape = [n]. This rank
and shape are then used for comparison.

Note: This reduction is always performed. The resulting rank may be less than
the rank of all Arrays given. (A single 1 × n matrix results in a rank of 1.)
Table 6 and Table 7 summarize the conversions allowed between types
and between categories.

The resulting rank and shape are the reduced versions created as previously
described. The resulting type is the simplest type that is sufficient for all Arrays.
The resulting category is the simplest category that is sufficient for all Arrays.

The shape Array must be preallocated with sufficient memory to store the returned
rank integers. This will not exceed the maximum rank of the given arrays.

Table 6. Summary of Type Conversions

Byte

Unsigned
Byte

Short

Unsigned
Short

Int

Unsigned
Int

Float

Double

Byte A CNS A CNS A CNS A A

Unsigned
Byte

CNS A A A A A A A

Short CNS CNS A CNS A CNS A A

Unsigned
Short

CNS CNS CNS A A A A A

Int CNS CNS CNS CNS A CNS A A

Unsigned
Int

CNS CNS CNS CNS CNS A A A

Float CNS CNS CNS CNS CNS CNS A A

Double CNS CNS CNS CNS CNS CNS CNS A

Notes:

CNS = Conversion not supported
A = ANSI 'C' type conversion-semantics

Table 7. Summary of Category Conversions

 Real Complex

Real Conversion Conversion

Complex CNS Conversion

Notes:

CNS = Conversion not supported
Real→Complex: a → a + 0i

 Return Value
Return OK and sets the non-NULL parameters; otherwise, returns ERROR and sets an
error code.

324 IBM Visualization Data Explorer: Programmer’s Reference

 DXQueryArrayConvert, DXQueryArrayConvertV

 See Also
DXArrayConvert, DXArrayConvertV, DXExtractFloat, DXExtractInteger,
DXExtractNthString, DXExtractParameter, DXExtractString,
DXQueryArrayConvert, DXQueryArrayConvertV, DXQueryParameter

11.8, “Extracting Module Parameters” on page 108.

 DXQueryArrayConvert, DXQueryArrayConvertV

 Function
Determine if the given Array can be converted to an Array with the given type,
category, rank, and shape.

 Syntax
#include <dx/dx.h>

Error DXQueryArrayConvert(Array a, Type type, Category category, int rank, ...)
Error DXQueryArrayConvertV(Array a, Type type, Category category, int rank, int \shape)

 Functional Details
The Array can be converted only if type, category, rank, and shape are all
compatible with a.

rank and shape are compatible if the rank and shape of a and the given rank and
shape differ only by dimensions that have a shape of 1. For example, an Array of 1
× n matrices is compatible with an Array of vectors.

Table 6 on page 324 and Table 7 on page 324 summarize the conversions
allowed between types and categories.

 Library Routines

 Return Value
Return OK or returns NULL and set an error code.

 See Also
DXArrayConvert, DXArrayConvertV, DXExtractFloat, DXExtractInteger,
DXExtractNthString, DXExtractParameter, DXExtractString, DXQueryParameter

11.8, “Extracting Module Parameters” on page 108.

 DXQueryConstantArray

 Function
Determines whether an Array contains constant data, and, if so, returns both the
number of items and in the array and the data value.

 Appendix C. Data Explorer Library Routines 325

 DXQueryDistantLight

 Syntax
#include <dx/dx.h>

Array DXQueryConstantArray (Array a, int \num, Pointer data)

 Functional Details
DXQueryConstantArray determines if Array a contains constant data. If so, if num is
not NULL, the number of items contained in a is returned in \num. If data is not
NULL, the constant value contained in a will be copied to the block of memory
pointed to by data. In this case data should point to a block of memory large
enough to hold one element of a; this size can be determined by calling
DXGetItemSize(a).

DXQueryConstantArray considers both Constant Array and Regular Array Objects
with zero delta values to be constant.

The value stored in a may also be accessed by a call to DXGetConstantArrayData.
This call returns a pointer to the internal memory of a, providing a read-only copy
of the data without the need to allocate a block of memory.

 Return Value
Returns a if a contains constant data or NULL (without setting an error code) if a is
an Array that does not contain constant data; otherwise, returns NULL and sets an
error code.

 See Also
DXGetConstantArrayData, DXGetItemSize, DXNewConstantArray,
DXNewRegularArray

“Constant Arrays” on page 105.

 DXQueryDistantLight

 Function
Returns information about a distant Light.

 Syntax
#include <dx/dx.h>

Light DXQueryDistantLight(Light l, Vector \direction, RGBColor \color)

 Functional Details
Determines whether l is a distant Light and returns in \direction and \color the
information specified when the light was created. The light source is located at an
infinite distance from the scene in the direction specified by direction.

326 IBM Visualization Data Explorer: Programmer’s Reference

 DXQueryGridConnections

 Return Value
Returns l (if it is a Distant Light) or NULL (if it is another type) without setting an
error code; otherwise, returns NULL and sets an error code.

 See Also
DXNewDistantLight

15.8, “Light Class” on page 156.

 DXQueryGridConnections

 Function
Returns information about a connections grid.

 Syntax
#include <dx/dx.h>

Array DXQueryGridConnections(Array a, int \n, int \counts)

 Functional Details
This routine can be used to check whether a connections Array is a regular grid.

Returns NULL if a is not an Array of regular grid connections of the sort constructed
by DXMakeGridConnections (i.e., a Mesh Array containing only terms of type Path
Array). If n is not NULL, returns the number of dimensions in the grid in \n. If
counts is not NULL, returns the number of points along each axis in the Array
pointed to by counts.

This routine is typically used to recognize “connections” components that are fully
regular and, in most cases, much simpler to handle than regular or partially regular
connections.

 Library Routines

 Return Value
Returns a if it is a grid connections Array or returns NULL but does not set an error
code.

 See Also
DXMakeGridConnections, DXMakeGridConnectionsV, DXMakeGridPositions,
DXMakeGridPositionsV, DXQueryGridPositions

“Creating Positions and Connections Grids” on page 103.

 DXQueryGridPositions

 Function
Returns information about a positions grid.

 Appendix C. Data Explorer Library Routines 327

 DXQueryHashElement

 Syntax
#include <dx/dx.h>

Array DXQueryGridPositions(Array a, int \n, int \counts,
float \origin, float \deltas)

 Functional Details
Returns NULL if a is not a regular grid of the sort constructed by
DXMakeGridPositions (i.e. a Product Array containing n terms, each term being a
TYPE_FLOAT, n-dimensional Regular Array). If n is not NULL, it returns the number of
dimensions in the grid in \n. If counts is not NULL, it returns the number of points
along each delta vector in the Array pointed to by counts. If origin is not NULL, it
returns the n-dimensional origin in the Array pointed to by origin. If deltas is not
NULL, it returns the n n-dimensional delta vectors in the Array pointed to by deltas.

This routine is commonly used to determine whether the “positions” components
are fully regular and to provide an easy mechanism for accessing information that
describes the regular-positions grid. The information returned by
DXQueryGridPositions often makes it possible to process regular positions Arrays
without explicit expansion.

Array handles provide a simple mechanism for accessing individual elements of a
regular grid without expansion.

 Return Value
Returns a (if a is a regular grid) or NULL (if it is not) without setting an error code.

 See Also
DXCreateArrayHandle, DXMakeGridConnections, DXMakeGridConnectionsV,
DXMakeGridPositions, DXMakeGridPositionsV, DXQueryGridConnections

“Creating Positions and Connections Grids” on page 103.

 DXQueryHashElement

 Function
Searches a hash table for an element matching a specified key.

 Syntax
#include <dx/dx.h>

Element DXQueryHashElement(HashTable hashTable, Key searchKey)

 Functional Details
If a hash function was provided when the table was created, that function is used to
derive a long integer pseudokey from searchKey; otherwise, the first long integer of
searchKey is assumed to be the pseudokey. If a compare function was provided
when the hash table was created, then more than one element may be stored with
the same pseudokey. DXQueryHashElement will use this compare function to return
the element that matches the searchKey.

328 IBM Visualization Data Explorer: Programmer’s Reference

 DXQueryOriginalSizes, DXQueryOriginalMeshExtents

Key is defined as:

typedef Pointer Key;

 Return Value
Returns the element if found or returns NULL, but does not set an error code.

 See Also
DXCreateHash

13.5, “Hashing” on page 139.

 DXQueryOriginalSizes, DXQueryOriginalMeshExtents

 Function
Returns information about the size of the original Field used as the input to DXGrow.

 Syntax
#include <dx/dx.h>

Field DXQueryOriginalSizes(Field f, int \positions, int \connections)
Field DXQueryOriginalMeshExtents(Field f, int \offsets, int \sizes)

 Functional Details Library Routines

Returns information about the size of the original Field used as the input to DXGrow.
The parameter f names a Field that was produced by DXGrow. In the case of
DXQueryOriginalSizes, if positions is not NULL, the number of positions in the
original Field is returned in \positions. If connections is not NULL, the number of
interpolation elements in the original Field is returned in \connections. This is
particularly useful in the case of irregular data.

In the case of data defined on a regular mesh of connections,
DXQueryOriginalMeshExtents can be used to obtain the offsets of the original Field
relative to the grown Field, and the sizes of the original Field. If offsets is not
NULL, the offset in each dimension of the original Field is returned in the Array
pointed to by offsets; if sizes is not NULL, the size in each dimension of the
original Field is returned in the Array pointed to by offsets.

Typically, data is grown so that neighborhood information is available during the
calculation of a result for some original point (or connection) in the Field. The
information returned by these routines identifies the portion of the grown Field that
belonged to the original Field and that will remain after a later call to DXShrink.
Thus, the caller can use this information to process only that portion of the Field
that will remain after a later call to DXShrink.

 Return Value
Returns f if it is a grown field or returns NULL (without setting an error code) if it
not; otherwise, returns NULL and sets an error code.

 Appendix C. Data Explorer Library Routines 329

 DXQueryParameter

 See Also
DXGrow, DXShrink

13.4, “Growing and Shrinking Partitioned Data” on page 137.

 DXQueryParameter

 Function
Determines whether an Object can be converted to a specified value type.

 Syntax
#include <dx/dx.h>

Object DXQueryParameter(Object o, Type t, int dim, int \count)

 Functional Details
If the conversion can be performed, the number of resulting elements is returned in
\count if it is not NULL.

For successful conversion, Object o must be an Array or a String. If o is an Array,
then its Category must be CATEGORY_REAL, its rank must be either 0 or 1, and it
must have at least 1 item contained within.

If dim is greater than 1, then o’s rank must be 1 and its shape must match dim in
order for this conversion to be successful. If dim is either 0 or 1, then both rank 0
and rank 1 shape 1 Arrays will match in size.

Once it is known that the sizes match, the Array’s Type is examined to determine
whether it can be converted to the Type specified by t. In general, smaller types
can be converted to larger types in the following hierarchies: TYPE_BYTE,
TYPE_SHORT, TYPE_INT, TYPE_FLOAT, TYPE_DOUBLE, TYPE_UBYTE, TYPE_USHORT,
TYPE_UINT.

Signed and unsigned types of the same size (e.g., TYPE_BYTE and TYPE_UBYTE)
cannot be converted, nor can a signed type ever be converted to an unsigned type.
Unsigned types, however, can be converted to larger signed types (e.g.,
TYPE_UBYTE to TYPE_SHORT).

If o is a String, t must be TYPE_STRING and dim must be either 0 or 1. If dim is 0,
the String contained in o must contain only a single character.

 Return Value
Returns o if the conversion can be made or returns NULL without setting an error
code.

 See Also
DXExtractFloat, DXExtractInteger, DXExtractNthString, DXExtractParameter,
DXExtractString, DXQueryArrayConvert

11.8, “Extracting Module Parameters” on page 108.

330 IBM Visualization Data Explorer: Programmer’s Reference

 DXQueryPickCount

 DXQueryPickCount

 Function
Returns the number of picks resulting from a poke.

 Syntax
#include <dx/dx.h>

Error DXQueryPickCount(Field picks, int poke, int \pickCount)

 Functional Details
The input to the routine is a Field (picks, containing pick information) and a poke
number (poke). The pick Field is created by the Pick tool. The pick count is
returned in (\pickCount).

 Return Value
Returns OK or returns NULL and sets an error code. Errors include requesting a pick
count for a nonexistent poke.

 See Also
DXGetPickPoint, DXQueryPokeCount, DXQueryPickPath, DXTraversePickPath

13.6, “Pick-Assistance Routines” on page 142. Library Routines

 Appendix C. Data Explorer Library Routines 331

 DXQueryPickPath

 DXQueryPickPath

 Function
Returns information about a pick path.

 Syntax
#include <dx/dx.h>

Error DXQueryPickPath(Field picks, int poke, int pick,
int \pathLength, int \\path, int \elementId, int \vertexId)

 Functional Details
For the specified Field, poke number, and pick, this routine returns:

� the length of the pick path (in pathLength)
� the pick path (in path)
� the index of the picked element (in elementId)
� the index of the closest vertex of the picked element (in terms of screen space)

to the poke (in vertexId).

The input to the routine is a Field (picks, containing pick information), a poke
number (poke), and the number of the pick in that poke. The pick Field is created
by the Pick tool.

 Return Value
Returns OK or returns NULL and sets an error code. Errors include a nonexistent
poke number and a nonexistent pick number.

 See Also
DXGetPickPoint, DXQueryPickCount, DXQueryPokeCount, DXTraversePickPath

13.6, “Pick-Assistance Routines” on page 142.

 DXQueryPokeCount

 Function
Returns the number of pokes for a specified Field.

 Syntax
#include <dx/dx.h>

Error DXQueryPokeCount(Field picks, int \pokeCount)

 Functional Details
For the specified Field, this routine returns the number of pokes (in pokeCount).

The input to the routine is a Field (picks) containing pick information. The pick
Field is created by the Pick tool. The poke count is returned in (\pokeCount).

332 IBM Visualization Data Explorer: Programmer’s Reference

 Return Value
Returns OK or returns NULL and sets an error code.

 See Also
DXGetPickPoint, DXQueryPickCount, DXQueryPickPath, DXTraversePickPath

13.6, “Pick-Assistance Routines” on page 142.

 Library Routines

 Appendix C. Data Explorer Library Routines 333

 DXReadyToRun

 DXReadyToRun

 Function
Allows an asynchronous module to signal if it is ready to execute again.

 Syntax
#include <dx/dx.h>

Error DXReadyToRun(Pointer id)

 Functional Details
Allows an asynchronous module to signal if it is ready to execute again. id is the
module identifier returned by DXGetModuleId.

A module normally does not reexecute unless one of its inputs has changed.

DXReadyToRun is normally called from the input handler routine set up with
DXRegisterInputHandler or from a signal handler set up with the signal() system
call.

If Data Explorer’s Execute on Change option is active, this call will cause the
network to reexcute immediately. Otherwise, the next time the user executes the
network, this module will then be executed.

It is the module writer’s responsibility to determine if the network was reexecuted if
one of its inputs has changed because its cached output was reclaimed and needs
to be regenerated or because DXReadyToRun was called.

 Return Value
Returns OK, or returns ERROR and sets the error code to indicate an error.

 See Also
DXCheckRIH, DXCompareModuleId, DXCopyModuleId, DXGetModuleId,
DXRegisterInputHandler, DXSetCacheEntry

12.11, “Asynchronous Services” on page 129.

 DXReAllocate

 Function
Changes the size of a previously allocated block of storage.

 Syntax
#include <dx/dx.h>

Pointer DXReAllocate(Pointer x, unsigned int n)

334 IBM Visualization Data Explorer: Programmer’s Reference

 DXReference

 Functional Details
Changes the size of the previously allocated block of storage pointed to by x by n
bytes. The pointer x must have been returned from either DXAllocate,
DXAllocateZero, DXAllocateLocal, DXAllocateLocalZero, or a previous call to
DXReAllocate. If x is NULL, a global memory block is allocated as if DXAllocate
was called. The number of bytes n must be greater than 0. The user is
responsible for freeing the allocated space by calling DXFree. The block is copied if
necessary, invalidating any pointers to the old storage.

 Return Value
Returns a pointer to the new block, or returns NULL and sets the error code to
indicate an error such as out of memory or a corrupted storage area.

 See Also
DXAllocate, DXAllocateLocal, DXAllocateLocalZero, DXAllocateZero, DXFree,
DXPrintAllocate

12.3, “Memory Allocation” on page 116.

 DXReference

 Function
Indicates that there is a reference to a specified Object.

 Library Routines

 Syntax
#include <dx/dx.h>

Object DXReference(Object o)

 Functional Details
Indicates that there is a reference to Object o. The Object is guaranteed to not be
deleted until this reference is released, using the DXDelete routine.

In general, one does not need to use DXReference, because the Data Explorer
library routines such as DXSetMember and DXSetComponentValue manage an
Object’s reference count themselves.

Objects returned to the executive by modules should not be referenced. Objects
returned to the executive are considered “owned” by the executive, and so it
references these Objects.

 Return Value
Returns o, or returns NULL and sets the error code to indicate an error.

 See Also
DXDelete, DXSetCacheEntry, DXUnreference

“Object Routines” on page 119.

 Appendix C. Data Explorer Library Routines 335

 DXRegisterInputHandler

 DXRegisterInputHandler

 Function
Assigns a handler routine for input coming from an open file descriptor.

 Syntax
#include <dx/dx.h>

Error DXRegisterInputHandler(Error (\proc)(int, Pointer), int fd, Pointer arg)

 Functional Details
Assigns a handler routine for input coming from an open file descriptor. This
function associates the routine proc with the file descriptor fd and may be used to
accept input from a socket. When any input is available on fd, the routine proc is
called and passed fd and arg.

The file descriptor is checked for input between module executions. Input from fd
does not interrupt modules; fd is not checked for input before returning from
DXRegisterInputHandler.

Calling DXRegisterInputHandler with proc=NULL unregisters the handler.

 Return Value
Returns OK, or returns ERROR and sets the error code to indicate an error.

 See Also
DXReadyToRun

12.11, “Asynchronous Services” on page 129.

 DXRemove

 Function
Deletes a component from a Field.

 Syntax
#include <dx/dx.h>

Object DXRemove(Object o, char \name)

 Functional Details
Deletes a component of the specified name, for each Field in Object o. Object o
can be a single Field or any Object that can contain Fields (for example, Group or
Series). For a single Field, this is equivalent to calling DXDeleteComponentValue.

336 IBM Visualization Data Explorer: Programmer’s Reference

 DXRename

 Return Value
It is an error if no components of the specified name are found in any of the Fields
of o. Returns o on success, or returns NULL and sets the error code to indicate an
error.

 See Also
DXDeleteComponentValue, DXExists, DXExtract, DXInsert, DXRename, DXReplace,
DXSwap

11.10, “Component Manipulation” on page 110.

 DXRename

 Function
Renames a component in a Field.

 Syntax
#include <dx/dx.h>

Object DXRename(Object o, char \oldname, char \newname)

 Functional Details
Renames a component of the specified oldname to newname, for each Field in
Object o. Object o can be a single Field or any Object that can contain Fields (for
example, Groups or Series). If a newname already exists in a Field, it is replaced.

 Library Routines

 Return Value
It is an error if no components of the specified name are found in any of the Fields
of o. Returns o on success, or returns NULL and sets the error code to indicate an
error.

 See Also
DXExists, DXExtract, DXGetComponentValue, DXInsert, DXRemove, DXReplace,
DXSetComponentValue, DXSwap

11.10, “Component Manipulation” on page 110.

 DXRender

 Function
Renders an Object into an image.

 Syntax
#include <dx/dx.h>

Field DXRender(Object o, Camera c, char \format)

 Appendix C. Data Explorer Library Routines 337

 DXReplace

 Functional Details
Renders all objects in o using the Camera defined by c. It returns a new image
Field containing the result. This routine performs the transformation, shading, and
the tiling steps.

If format is specified as NULL, a generic floating-point image is created; this is the
most flexible format with respect to processing by other modules. Alternatively,
format may be specified as a character string identifying a hardware-specific format
that may be used only for display on a particular hardware device. format currently
must begin with “X” for an image that will be displayed on an X server image
window, or “FB” for an image that will be displayed on an IBM 7246 Video
Controller. Any other string will generate a generic floating-point image.

A renderable Field must have at least a “positions” and a “colors” component. For
anything other than scattered points, a “connections” component is needed. Many
other components and attributes affect the output of DXRender. For additional
details on the rendering process, see Chapter 15, “Rendering” on page 149.

 Return Value
Returns the image, or returns NULL and sets the error code to indicate an error.

 See Also
DXApplyTransform, DXGetCameraMatrix, DXSetAttribute

Chapter 15, “Rendering” on page 149.

 DXReplace

 Function
Adds a component from one Field to another.

 Syntax
#include <dx/dx.h>

Object DXReplace(Object o, Object add, char \src, char \dst)

 Functional Details
Adds a component from one Field to another. For each Field in Object o, the src
component of the corresponding Field in Object add is placed in the Field as the
dst component.

Objects o and add can be single Fields or any Object that can contain Fields (for
example, Groups or Series). If they are anything other than simple Fields, the
Object hierarchies must match exactly.

Objects o and add can be the same object.

Object add can be an Array or an Object where each Field in o corresponds to an
Array in add. In this case, the Array is added as the dst component of the Field
and src is not required.

338 IBM Visualization Data Explorer: Programmer’s Reference

 DXResetError

 Return Value
It is an error if no components of name src are found in any of the Fields of add.
Returns o on success, or returns NULL and sets the error code to indicate an error.

 See Also
DXExists, DXExtract, DXGetComponentValue, DXInsert, DXRemove, DXRename,
DXSetComponentValue, DXSwap

11.10, “Component Manipulation” on page 110.

 DXResetError

 Function
Resets the error state.

 Syntax
#include <dx/dx.h>

void DXResetError()

 Functional Details
Resets the error state. This should be used after correcting an error so that
subsequent queries of the error state do not return an incorrect indication. Library Routines

 Return Value
None.

 See Also
DXGetError, DXSetError

12.1, “Error Handling and Messages” on page 114

 DXRGB

 Function
Constructs an RGB color structure with the given components.

 Syntax
#include <dx/dx.h>

RGBColor DXRGB(double r, double g, double b)

 Functional Details
Fills in all three members of an RGB Color structure with the values r, g, and b at
one time. RGB Colors are typically scaled between 0.0 and 1.0.

An RGBColor is defined as follows:

 Appendix C. Data Explorer Library Routines 339

 DXRibbon

typedef struct rgbcolor {
float r, g, b;

} RGBColor;

 Return Value
Returns the RGB color value.

 See Also
DXColorNameToRGB

“Colors” on page 125.

 DXRibbon

 Function
Produces a ribbon of the given width from a path or group of paths.

 Syntax
#include <dx/dx.h>

Object DXRibbon(Object o, double width)

 Functional Details
Produces a ribbon of the width width from a path or group of paths in Object o.
The ribbon is perpendicular to the normal and parallel to the tangent at each point
on the path, where the normals are provided by the “normals” component if present
or approximated from the path otherwise. The normals (given or computed) are
translated to the generated vertices and associated with the ribbon for shading. If
the direction of the normals changes too rapidly, breaks in the ribbon may occur.

For additional details on ribbons, see Ribbon in IBM Visualization Data Explorer
User’s Reference.

 Return Value
Returns the ribbon, or returns NULL and sets the error code to indicate an error.

 See Also
DXTube

14.3, “Path Operations” on page 146.

DXRotateX, DXRotateY, DXRotateZ, DXScale, DXTranslate, DXMat

 Function
Manipulate Transform matrices.

340 IBM Visualization Data Explorer: Programmer’s Reference

 Syntax
#include <dx/dx.h>

Matrix DXRotateX(Angle angle)
Matrix DXRotateY(Angle angle)
Matrix DXRotateZ(Angle angle)
Matrix DXScale(double x, double y, double z)
Matrix DXTranslate(Vector v)
Matrix DXMat(double a, double b, double c,

double d, double e, double f,
double g, double h, double i,
double j, double k, double l)

 Functional Details
Manipulate Transform matrices. DXRotateX, DXRotateY, and DXRotateZ return a
Matrix that specifies a rotation about the x, y, or z axis by angle angle in radians.

DXScale returns a Matrix that specifies a scaling by amounts x, y, and z along the
x, y, and z axes.

DXTranslate returns a Matrix that specifies a translation by v.

DXMat returns a Matrix with the specified components.

A Matrix is defined as follows:

typedef struct matrix {
/\ xA + b \/

 float A[3][3];
 float b[3];
} Matrix;

An Angle is in radians and is defined as follows:

typedef double Angle;

 Library Routines

 Return Value
Returns the resulting Matrix.

 See Also
DXAdjointTranspose, DXApply, DXApplyTransform, DXConcatenate,
DXDeterminant, DXInvert, DXNewXform, DXTranspose

“Transformation Matrices” on page 126.

 Appendix C. Data Explorer Library Routines 341

 DXSaveInvalidComponent

 DXSaveInvalidComponent

 Function
Creates a new invalid-component Array containing the information stored in an
invalid-component handle, and stores it in a given field.

 Syntax
#include <dx/dx.h>

Error DXSaveInvalidComponent(Field field, InvalidComponentHandle handle)

 Functional Details
The new Array is stored in field under the component name given when handle
was created. The invalid data may be referential or dependent, and the
invalid-data component will receive an appropriate “dep” or “ref” attribute.

This routine deletes existing invalid components.

 Return Value
Returns OK or returns ERROR and sets an error code.

 See Also
DXCreateInvalidComponentHandle, DXFreeInvalidComponentHandle

13.3, “Invalid Data” on page 133.

 DXScalarConvert

 Function
Converts the contents of an Array into scalar floating-point values.

 Syntax
#include <dx/dx.h>

Array DXScalarConvert(Array a)

 Functional Details
Creates a new Array with the contents of Array a converted to scalar floating-point
values, using the same conversion routines as DXStatistics.

 Return Value
Returns a copy of the converted Array or returns a if it is already scalar float;
otherwise, returns NULL and sets an error code.

342 IBM Visualization Data Explorer: Programmer’s Reference

 DXSetAllInvalid

 See Also
DXStatistics

11.8, “Extracting Module Parameters” on page 108.

 DXSetAllInvalid

 Function
Sets all elements invalid.

 Syntax
#include <dx/dx.h>

Error DXSetAllInvalid(InvalidComponentHandle handle)

 Functional Details
Sets the validity state of all elements in invalid-component handle handle to
DATA_INVALID.

 Return Value
Returns OK or returns ERROR and sets an error code.

 See Also Library Routines

DXCreateInvalidComponentHandle, DXFreeInvalidComponentHandle

13.3, “Invalid Data” on page 133.

 DXSetAllValid

 Function
Sets all elements valid.

 Syntax
#include <dx/dx.h>

Error DXSetAllValid(InvalidComponentHandle handle)

 Functional Details
Sets the validity state of all elements in invalid-component handle handle to
DATA_VALID.

 Return Value
Returns OK or returns ERROR and sets an error code.

 Appendix C. Data Explorer Library Routines 343

 DXSetAttribute, DXDeleteAttribute

 See Also
DXCreateInvalidComponentHandle, DXFreeInvalidComponentHandle

13.3, “Invalid Data” on page 133.

 DXSetAttribute, DXDeleteAttribute

 Function
Add or remove a named attribute from an Object.

 Syntax
#include <dx/dx.h>

Object DXSetAttribute(Object o, char \name, Object value)
Object DXDeleteAttribute(Object o, char \name)

 Functional Details
If value is not NULL, DXSetAttribute adds an attribute/value pair to Object o. The
reference count of the attribute Object value is incremented. For DXSetAttribute,
name specifies the name of the associated attribute and value represents its value.
If name specifies an attribute that the Object o already has, then its value is
replaced by value.

If value is NULL, the attribute referred to by name is removed from the Object o, if it
exists.

DXDeleteAttribute deletes the attribute.

 Return Value
Returns o or returns NULL without setting an error code.

 See Also
DXSetComponentAttribute, DXSetFloatAttribute, DXSetIntegerAttribute,
DXSetStringAttribute

“Object Routines” on page 119.

344 IBM Visualization Data Explorer: Programmer’s Reference

 DXSetBackgroundColor, DXGetBackgroundColor

 DXSetBackgroundColor, DXGetBackgroundColor

 Function
Operate on a scene background color.

 Syntax
#include <dx/dx.h>

Camera DXSetBackgroundColor(Camera c, RGBColor \background)
Camera DXGetBackgroundColor(Camera c, RGBColor background)

 Functional Details
DXSetBackgroundColor sets a scene background color for use at render time.
DXRender applies background to all pixels at the start of rendering so that
unobscured pixels will have this color in the final image. The unset default
background color is black, {0,0,0}.

DXGetBackgroundColor returns the value of the camera background color in
\background. DXRender initializes the output image to this color when using
camera c.

 Return Value
Return c or return NULL and set an error code.

 Library Routines

 See Also
DXNewCamera, DXRender

15.7, “Camera Class” on page 155.

 DXSetCacheEntry, DXSetCacheEntryV

 Function
Set a cache entry.

 Syntax
#include <dx/dx.h>

Error DXSetCacheEntry(Object out, double cost,
char \function, int key, int n, ...)

Error DXSetCacheEntryV(Object out, double cost,
char \function, int key, int n, Object \in)

 Functional Details
Create or alter a cache entry to store a reference to out. The cache entry is
indexed by a key created from function, key, n, and the Objects in the Array in.
The parameter function makes the key unique to the caller; key allows the caller to
have multiple cache entries with the same function, and n and in allow the cache
entry to be related to the Objects that were used to create it. Setting a cache entry
to NULL removes the entry and deletes the Object.

 Appendix C. Data Explorer Library Routines 345

 DXSetCacheEntry, DXSetCacheEntryV

The out parameter must be a Data Explorer Object. Private Objects may be used
to store arbitrary user data in the cache.

The entry may be automatically deleted at any time because of memory constraints
unless cost is set to a value equal to or greater than CACHE_PERMANENT.

Notes:

1. Because Data Explorer modules follow pure function semantics, the cache
should not be used to store a state that affects the output of the module. A
module must always be able to recreate the Object from the same set of
inputs; the cache should be used only as an optimization tool.

2. On a multiprocessor machine, processor local information should not be stored
in the cache, since its contents may be retrieved on another processor.

3. The cache is local to one machine and cannot be used to communicate
information between modules on different machines when running in distributed
mode.

Because Objects in the cache are candidates for deletion at any time, DXReference
should be called before caching an Object if that Object is to be used later.

If you have called DXReference on the Object before putting it in the cache, call
DXDelete when the Object is no longer being used; the latter call will not delete the
Object from the cache. (To delete an Object from the cache, set the cache entry to
NULL with DXSetCacheEntry.)

 Return Value
Return OK or return NULL and set an error code.

 See Also
DXDelete, DXGetCacheEntry, DXGetCacheEntryV, DXGetObjectTag, DXNewPrivate,
DXReference

12.5, “Cache” on page 121.

346 IBM Visualization Data Explorer: Programmer’s Reference

 DXSetClippedObjects

 DXSetClippedObjects

 Function
Sets the Object to be rendered and the Object with which to clip it during the
rendering process.

 Syntax
#include <dx/dx.h>

Clipped DXSetClippedObjects(Clipped c, Object render, Object clipping)

 Functional Details
Given an existing Clipped Object c—consisting of an Object to be rendered
(render) and an Object to do the clipping (clipping)—this routine replaces either or
both. If render is not NULL, the Object to be clipped is replaced by render. If
clipping is not NULL, the clipping Object is replaced by clipping.

 Return Value
Returns c or returns NULL and sets an error code.

 See Also
DXGetClippedInfo, DXNewClipped

15.6, “Clipped Class” on page 155.

 Library Routines

 DXSetComponentAttribute

 Function
Adds or removes a named attribute from a component of a Field.

 Syntax
#include <dx/dx.h>

Field DXSetComponentAttribute(Field f, char \name, char \attribute, Object value)

 Functional Details
Adds an attribute/value pair to the component if the component name exists in the
Field f, and value is not NULL. attribute specifies the name of the associated
attribute and value represents its value. If attribute specifies an attribute that the
component already has, then its value is replaced by value.

If value is NULL, then the attribute referred to by attribute is removed from the
component if it exists.

 Appendix C. Data Explorer Library Routines 347

 DXSetComponentValue

 Return Value
Returns f on success; returns NULL and does not set an error code if the
component specified by name does not exist; returns NULL and sets an error code if
f is not a Field.

 See Also
DXGetComponentAttribute, DXSetAttribute, DXSetFloatAttribute,
DXSetIntegerAttribute, DXSetStringAttribute

11.1, “Field Class” on page 97.

 DXSetComponentValue

 Function
Adds a component to a Field.

 Syntax
#include <dx/dx.h>

Field DXSetComponentValue(Field f, char \name, Object value)

 Functional Details
Sets the name component of Field f to value. If name is NULL, value can be
accessed only by DXGetEnumeratedComponentValue. If value is NULL, the name
component will be deleted.

When DXSetComponentValue overwrites an existing component, all attributes
associated with the prior value are copied to the new value and they supersede
any attributes already attached to the new value. If this result is not the one
desired, the earlier component value should be removed prior to setting the new
one.

Components of Fields are typically Arrays and contain geometrical and topological
information and associated data. These components are interrelated (e.g., an
association of data with either the points defined in the “positions” component or
the elements defined in the “connections” component). Their relationships are
specified through attributes, which should be set as the components are inserted
into the Field. After all components are inserted, call DXEndField, which will add
any additional attributes (and ancillary components) that are necessary.

 Return Value
Returns f or returns NULL and sets an error code.

 See Also
DXDeleteComponent, DXGetComponentValue, DXGetEnumeratedComponentValue,
DXNewField, DXSetComponentAttribute

11.1, “Field Class” on page 97.

348 IBM Visualization Data Explorer: Programmer’s Reference

 DXSetConnections

 DXSetConnections

 Function
Assigns a specified Array as the “connections” component of a specified Field.

 Syntax
#include <dx/dx.h>

Field DXSetConnections(Field f, char \type, Array a)

 Functional Details
This routine serves as a shortcut to simplify the installation of a “connections”
component to a Field. It is equivalent to a call to DXSetComponentValue to insert the
component into the Field, followed by DXSetComponentAttribute to set the
component “element type.”

 Return Value
Returns f or returns NULL and sets an error code.

 See Also
DXGetConnections, DXSetComponentAttribute, DXSetComponentValue

“Connections” on page 107. Library Routines

 DXSetElementInvalid

 Function
Sets the validity state of a specified element.

 Syntax
#include <dx/dx.h>

Error DXSetElementInvalid(InvalidComponentHandle handle, int index)

 Functional Details
Sets the validity state of element index in the invalid-component handle handle to
DATA_INVALID.

 Return Value
Returns OK or returns ERROR and sets an error code.

 See Also
DXCreateInvalidComponentHandle, DXFreeInvalidComponentHandle

13.3, “Invalid Data” on page 133.

 Appendix C. Data Explorer Library Routines 349

 DXSetElementValid

 DXSetElementValid

 Function
Sets the validity state of a specified element.

 Syntax
#include <dx/dx.h>

Error DXSetElementValid(InvalidComponentHandle handle, int index)

 Functional Details
Sets the validity state of element index in the invalid-component handle handle to
DATA_VALID.

 Return Value
Returns OK or returns ERROR and sets an error code.

 See Also
DXCreateInvalidComponentHandle, DXFreeInvalidComponentHandle

13.3, “Invalid Data” on page 133.

 DXSetEnumeratedMember

 Function
Adds an Object to a Group by index.

 Syntax
#include <dx/dx.h>

Group DXSetEnumeratedMember(Group g, int n, Object value)

 Functional Details
Sets the value of the nth member of Group g to value. The parameter n must
refer to an existing member of the Group or to the first nonexistent member. That
is, the indices of Group members must always be contiguous starting at 0. If value
is NULL, the nth member of g will be deleted. If g is typed, the Object to be added,
value, must be the same type as g.

 Return Value
Returns g or returns NULL and sets an error code.

 See Also
DXGetEnumeratedMember, DXGetMemberCount, DXNewGroup, DXSetMember

“Generic Operations” on page 98.

350 IBM Visualization Data Explorer: Programmer’s Reference

 DXSetError, DXErrorReturn, DXErrorGoto

DXSetError, DXErrorReturn, DXErrorGoto

 Function
Set an error code and an explanatory message.

 Syntax
#include <dx/dx.h>

Error DXSetError(ErrorCode e, char \message, ...)
#define DXErrorReturn(e,s) {DXSetError(e,s); return ERROR;}
#define DXErrorGoto(e,s) {DXSetError(e,s); goto error;}

 Functional Details
Modules that return ERROR should in many cases also set the error code and error
message. DXSetError provides the interface to do this, and needs to be called only
once for each error.

If a Data Explorer function returns an error and sets an error code, the caller should
usually return ERROR without using one of these routines, since the error message
set by the Data Explorer function will usually be more informative. If the error code
is set by the Data Explorer function and the calling program proceeds without
returning ERROR, DXResetError should be called.

If the Data Explorer function does not set the error code, it is the calling function’s
responsibility to do so using one of these routines.

The message may be a printf format string, in which case additional arguments as
required by the format string must be specified. Messages beginning with the
pound sign, #, are reserved for system use.

Additional information can be added to an error message using the DXAddMessage
function.

DXErrorReturn calls DXSetError and returns from the caller with return value ERROR.

DXErrorGoto calls DXSetError and goes to the label “error.” This is useful when
some clean-up activity is required (e.g., freeing allocated memory). It is the caller’s
responsibility to provide the “error” label in the code.

The error code e must be one of the following:

ERROR_ASSERTION ERROR_INTERNAL ERROR_NO_CAMERA
ERROR_BAD_CLASS ERROR_INVALID_DATA ERROR_NO_MEMORY
ERROR_BAD_PARAMETER ERROR_MISSING_DATA ERROR_NOT_IMPLEMENTED
ERROR_BAD_TYPE ERROR_UNEXPECTED

 Library Routines

 Return Value
Always return ERROR.

 Appendix C. Data Explorer Library Routines 351

 DXSetErrorExit

 See Also
DXAddMessage, DXMessage, DXResetError, DXWarning

12.1, “Error Handling and Messages” on page 114.

 DXSetErrorExit

 Function
Determines the action taken when DXSetError is called in a stand-alone program.

 Syntax
#include <dx/dx.h>

Void DXSetErrorExit(int level);

 Functional Details
Valid arguments for level are:

ð = store error message. Use DXPrintError() to print when ready.

1 = print error message and return.

2 = print error message and exit.

This routine is intended for those using Data Explorer library routines in their own
programs, and for use only in stand-alone programs. By default, DXInitModules
sets level to 1 (one). DXSetErrorExit affects the behavior of DXSetError only
outside those built-in Data Explorer modules called with DXCallModule.

 Return Value
No return value.

 See Also
DXGetErrorExit

352 IBM Visualization Data Explorer: Programmer’s Reference

 DXSetFloatAttribute

 DXSetFloatAttribute

 Function
Adds a named attribute with a floating-point value to an Object.

 Syntax
#include <dx/dx.h>

Object DXSetFloatAttribute(Object o, char \name, double x)

 Functional Details
Creates an Array containing the floating-point value x and then adds an
attribute/value pair to the Object o. name specifies the name of the attribute and x
represents its value. If name specifies an attribute that the Object o already has,
then its previous value is replaced.

 Return Value
Returns o or returns NULL and sets an error code.

 See Also
DXGetFloatAttribute, DXSetAttribute, DXSetComponentAttribute,
DXSetIntegerAttribute, DXSetStringAttribute

“Object Routines” on page 119.

 Library Routines

 DXSetGroupType, DXSetGroupTypeV

 Function
Associate a type with a Group.

 Syntax
#include <dx/dx.h>

Group DXSetGroupType(Group g, Type t, Category c, int rank, ...)
Group DXSetGroupTypeV(Group g, Type t, Category c, int rank, int \shape)

 Functional Details
Associate a type t, category c, rank, and shape, (hereafter referred to as simply
type), with Group g. When the Group type is set, all current members are checked
for type, and all members added subsequently are checked for type. The type of a
Group may be retrieved by DXGetType.

The type is one of the following:

TYPE_BYTE TYPE_HYPER TYPE_SHORT
TYPE_UBYTE TYPE_INT TYPE_USHORT
TYPE_DOUBLE TYPE_UINT TYPE_STRING
TYPE_FLOAT

The category is either CATEGORY_REAL or CATEGORY_COMPLEX.

 Appendix C. Data Explorer Library Routines 353

 DXSetIntegerAttribute

Array Objects are always typed. Fields are typed if they contain a “data”
component; their type is the same as that of the “data” component. Series,
MultiGrids, and Composite Fields are typed if they contain typed Fields.
DXSetGroupType may be used to explicitly type generic Groups. If typed, all Fields
contained in the Group must match the type. Other Objects do not contain type
information. DXSetGroupType needs to be used if the member Fields are
manipulated so that the type of their “data” components, and therefore the Field
type, changes.

 Return Value
Returns g or returns NULL and sets an error code.

 See Also
DXNewGroup, DXSetEnumeratedMember, DXSetMember

“Generic Operations” on page 98.

 DXSetIntegerAttribute

 Function
Adds a named attribute with an integer value to an Object.

 Syntax
#include <dx/dx.h>

Object DXSetIntegerAttribute(Object o, char \name, int x)

 Functional Details
Creates an Array containing the integer value x and then adds an attribute/value
pair to the Object o. name specifies the name of the attribute and x represents its
value. If name specifies an attribute that the Object o already has, then its previous
value is replaced.

 Return Value
Returns o or returns NULL and sets an error code.

 See Also
DXGetIntegerAttribute, DXSetAttribute, DXSetComponentAttribute,
DXSetFloatAttribute, DXSetStringAttribute

“Object Routines” on page 119.

354 IBM Visualization Data Explorer: Programmer’s Reference

 DXSetMember

 DXSetMember

 Function
Adds a member to a Group.

 Syntax
#include <dx/dx.h>

Group DXSetMember(Group g, char \name, Object value)

 Functional Details
Adds value as a member of Group g. The name may be NULL, in which case a
new member is added that may be accessed only using DXGetEnumeratedMember. If
name is the same as the name of an existing member, then the new member will
have the same index in the Field as the old member and the value of that member
is overwritten with the new value. Setting a member to NULL deletes the member.

If the Group is typed, and the new Object value is typed, then value must be of
the same type as the Group. This is generally the case for Series, Composite
Fields, and MultiGrids. The first time DXSetMember is called for one of these
generally typed Groups with a typed value, DXSetMember sets the type of the Group
to be the type of the Object.

 Return Value Library Routines

Returns g or returns NULL and sets an error code.

 See Also
DXGetEnumeratedMember, DXGetGroupClass, DXGetMember, DXNewGroup,
DXSetEnumeratedMember, DXSetGroupType

“Generic Operations” on page 98.

 DXSetMeshOffsets

 Function
Sets the offset of a partition within the original Field after partitioning.

 Syntax
#include <dx/dx.h>

MeshArray DXSetMeshOffsets(MeshArray a, int \offsets)

 Functional Details
In the case where a Mesh Array is used to define a regular grid of connections that
is a part of a partitioned Field, it is useful to know the offset of the partition within
the original Field. This routine sets the offset values to offsets along each
dimension of the mesh a. For DXSetMeshOffsets, the parameter is a pointer to an
Array of integers, one for each dimension of the mesh, specifying the offset along

 Appendix C. Data Explorer Library Routines 355

 DXSetOrthographic, DXGetOrthographic

that dimension of this partition within the original Field. DXSetMeshOffsets should
be called by the partitioning process.

 Return Value
Returns a or returns NULL and sets an error code.

 See Also
DXGetMeshArrayInfo, DXGetPathOffset, DXNewMeshArray, DXNewMeshArrayV

“Mesh Arrays” on page 105.

 DXSetOrthographic, DXGetOrthographic

 Function
Sets and retrieves an orthographic camera view.

 Syntax
#include <dx/dx.h>

Camera DXSetOrthographic(Camera c, double width, double aspect)
Camera DXGetOrthographic(Camera c, double width, double aspect)

 Functional Details
A camera defines the position and orientation of the viewer, the volume of interest
of the object being viewed, and the size of the image to contain the resulting view.

DXSetOrthographic defines the volume of interest for an orthographic camera c.
This can be thought of as a box that is centered on the to point, with its z axis
parallel to the to-from vector, and infinite in length. Its y axis is perpendicular to
the to-from vector in the direction of the up vector. Its x axis is perpendicular to its
y and z axes. The x and y dimensions of the box are given by the width and
aspect parameters of the camera respectively, where aspect is defined as the
ration of the height to width.

In orthographic projection, objects do not appear smaller as they get more distant,
and in fact, distance between the object and viewer have no effect on the
appearance of the object. The distance between the to and from points is
irrelevant; only the direction is important.

DXGetOrthographic returns the width and aspect parameters of an orthographic
camera c. If width is not NULL, the camera width is returned in \width. If aspect is
not NULL, the camera aspect is returned in \aspect.

 Return Value
DXSetOrthographic returns the camera or returns NULL and sets an error code.

DXGetOrthographic returns the parameters or returns NULL (if the camera is not
orthographic) and sets an error code (if c is not a valid camera).

356 IBM Visualization Data Explorer: Programmer’s Reference

 DXSetPart

 See Also
DXGetCameraMatrix, DXNewCamera, DXRender, DXSetPerspective,
DXSetResolution, DXSetView

15.7, “Camera Class” on page 155.

 DXSetPart

 Function
Adds a Field to an Object.

 Syntax
#include <dx/dx.h>

Object DXSetPart(Object o, int n, Field field)

 Functional Details
Performs a depth-first traversal of the Object c, and replaces the nth occurrence of
a subObject with class CLASS_FIELD with the Field field given. If the root of the
Object given is not one of CLASS_GROUP, CLASS_XFORM, CLASS_CLIP, or
CLASS_SCREEN, this function has no effect.

For applying a function to every Field in a Group, DXProcessParts is a more
efficient interface.

The parts of a Group may be indexed by calling DXSetPart with successive values
of n, starting at 0 until NULL is returned, provided the replacement part contains the
same number of subObjects of CLASS_FIELD. This is because the replacement part
will be traversed (and counted) in subsequent calls to DXSetPart.

 Library Routines

 Return Value
Returns o or returns NULL and sets an error code.

 See Also
DXGetPart, DXGetPartClass, DXProcessParts

“Parts” on page 100.

 DXSetPathOffset

 Function
Sets the offset of a Path Array within the original Field after partitioning.

 Syntax
#include <dx/dx.h>

PathArray DXSetPathOffset(PathArray a, int offset)

 Appendix C. Data Explorer Library Routines 357

 DXSetPendingCmd

 Functional Details
Sets the offset value for a portion of the Path Array relative to the original grid to
offset. In the case where a Path Array a is used to define a regular grid of
connections that is a part of a partitioned Field, it is useful to know the offset of the
partition within the original Field.

Path Arrays are typically used as constituents in Mesh Arrays that define regular or
partially regular connections grids of one or more dimensions. In that case, the
mesh offsets of the partition within the original mesh are accessed at the Mesh
Array level through calls to DXSetMeshOffsets and DXGetMeshOffsets.

 Return Value
Returns a or returns NULL and sets an error code.

Returns o or returns NULL and sets an error code.

Returns OK or returns ERROR and sets an error code.

 See Also
DXGetMeshOffsets, DXGetPathArrayInfo, DXNewPathArray, DXSetMeshOffsets

“Path Arrays” on page 104

 DXSetPendingCmd

 Function
Enters a task into a list of tasks to be run at the end of each graph (visual program)
execution.

 Syntax
#include <dx/dx.h>

Error DXSetPendingCmd(char \major, char \minor, int(\task)(Private),
 Private data);

 Functional Details
The task to be run (\task) is identified by two character strings:

\major typically contains the calling module’s ID.

\minor typically indicates which of several discrete tasks the module has entered.

When execution of the graph is completed, the tasks in the list are executed in the
order in which they are received. (If tasks are entered by two different modules,
the order in which the modules run determines the order in which the tasks are
called.)

When \task is called, it is passed \data as a parameter. The specified task is
called at the end of each execution until it is removed from the pending-task list.
Removal can be achieved by calling the routine again, with the same strings for
\major and \minor, but setting \task to NULL.

358 IBM Visualization Data Explorer: Programmer’s Reference

 DXSetPerspective, DXGetPerspective

 Return Value
Returns OK or returns ERROR and sets and error code.

 See Also
DXGetModuleId

12.6, “Pending Commands” on page 122.

 DXSetPerspective, DXGetPerspective

 Function
Set or retrieve a perspective view.

 Syntax
#include <dx/dx.h>

Camera DXSetPerspective(Camera c, double fov, double aspect)
Camera DXGetPerspective(Camera c, float \fov, float \aspect)

 Functional Details
A camera defines the position and orientation of the viewer, the volume of interest
of the Object being viewed, and the size of the image to contain the resulting view.

DXSetPerspective defines the volume of interest of a perspective camera c. This is
a pyramid with an apex at the from position, and a base centered on to point,
perpendicular to the to-from vector. The width of the base is defined by the angle
formed by the sides of the pyramid at the apex and the distance between the to
and from points. This angle is also known as the “field of view” and is specified by
the fov parameter.

The fov is defined as twice the tangent of half the angle (e.g, for a 90-degree
sweep, the fov setting should be 2 * tan(45-degrees), or 2.0). The fov can also be
thought of as the ratio of the width of the base to the distance from the viewer (e.g.,
for a view of a 20-meter wide area from a distance of 10 meters, the fov setting
should be 20/10, or 2.0). The height is defined by width of the base times the
aspect. With a perspective camera, objects appear smaller with increasing
distance.

DXGetPerspective returns the fov and aspect parameters of a perspective camera
c. If fov is not NULL, returns the camera fov in \fov. If aspect is not NULL, returns
the camera aspect ratio in \aspect.

 Library Routines

 Return Value
DXSetPerspective returns the camera or returns NULL and sets an error code.

DXGetPerspective returns as follows:

� If the object is a perspective camera: returns the camera and the camera
parameters.

� If the object is not a perspective camera: returns NULL without setting an
error code.

� If the object is not a valid camera: returns NULL and sets an error code.

 Appendix C. Data Explorer Library Routines 359

 DXSetResolution, DXGetCameraResolution

 See Also
DXGetCameraMatrix, DXNewCamera, DXRender, DXSetOrthographic,
DXSetResolution, DXSetView

15.7, “Camera Class” on page 155.

 DXSetResolution, DXGetCameraResolution

 Function
Set or retrieve the resolution of a Camera.

 Syntax
#include <dx/dx.h>

Camera DXSetResolution(Camera c, int hres, double pix_aspect)
Camera DXGetCameraResolution(Camera c, int Xresolution, int Yresolution)

 Functional Details
A Camera defines the position orientation of the viewer, the volume of interest of
the object being viewed, and the size of the image to contain the resulting view.

The horizontal size of the image containing the resulting view is defined by the
resolution in pixels; the vertical size is determined by the resolution * aspect.
This is camera aspect, not pix_aspect; see DXSetPerspective and
DXSetOrthographic. The same aspect ratio is used for both the size of the image
and the volume of the interest to prevent the objects from being stretched in one of
the dimensions.

If the display pixels are not square, pix_aspect can be used to compensate. Pixels
are not square when the ratio of the number of pixels in the x and y dimensions
does not equal the width:height ratio of the screen.

pix_aspect prevents objects from appearing stretched in one dimension (e.g.
preventing a circle from becoming an ellipse on a screen with rectangular pixels).
Pixels are assumed to be pix_aspect times as tall as they are wide. Most screens
have square pixels and it is rarely necessary to set pix_aspect to a value other
than 1.

DXSetResolution, for camera c, sets the horizontal resolution to hres and the pixel
aspect ratio to pix_aspect.

DXGetCameraResolution, for camera c, if Xresolution is not NULL, returns the
resolution in \Xresolution. If Yresolution is not NULL, returns the resolution *
aspect in \Yresolution. Again, this is camera aspect.

 Return Value
DXSetResolution returns the Camera or returns NULL and an error code.

DXGetCameraResolution returns the parameters or returns NULL and sets an error
code.

360 IBM Visualization Data Explorer: Programmer’s Reference

 DXSetScreenObject

 See Also
DXGetCameraMatrix, DXNewCamera, DXRender, DXSetOrthographic,
DXSetPerspective, DXSetView

15.7, “Camera Class” on page 155.

 DXSetScreenObject

 Function
Sets the Object that a screen transform is to be applied to.

 Syntax
#include <dx/dx.h>

Screen DXSetScreenObject(Screen s, Object o)

 Functional Details
Replaces the Object the screen transformation is to be applied to with Object o,
given an existing screen object s.

 Return Value
Returns s or returns NULL and sets an error code if s is not a screen object.

 Library Routines

 See Also
DXGetScreenInfo, DXNewScreen

15.5, “Screen Class” on page 154.

 DXSetSeriesMember

 Function
Adds an indexed member to a Series Object.

 Syntax
#include <dx/dx.h>

Series DXSetSeriesMember(Series s, int n, double position, Object o)

 Functional Details
Adds the Object o as the nth member (as specified by the zero-based index n) to
the Series s. It also sets the Series position to the floating-point value position.
A Series is intended to represent a single Field sampled across some parameter,
such as time or temperature (position contains the value of this sampled
parameter).

Generally, members of a Series s must be added sequentially, with indices starting
at 0. If, however, an already existing index is given in n, then that member in s will
be replaced by the Object o. The type of a Series is set the first time a typed
member is added; subsequent members are required to match this type.

 Appendix C. Data Explorer Library Routines 361

 DXSetStringAttribute

The index n provides a convenient mechanism for indexing the members of a
Series. The position value is actually a piece of metadata to be associated with
each member of the Series, which when used with the values associated with the
other members, provides a means of generating intermember data (e.g., when
using the Streakline module).

DXSetSeriesMember does not enforce any restrictions on the Series position value;
duplicate or non-monotonic values can be set. However, many Realization
modules require the position values to form a monotonic sequence, and if the value
does represent time, some modules also require the values to be positive.

For an example of one use of Series, see “Streakline” on page 323 in IBM
Visualization Data Explorer User’s Reference.

 Return Value
Returns NULL and sets an error code.

 See Also
DXGetMemberCount, DXGetSeriesMember, DXNewSeries, DXSetEnumeratedMember,
DXSetMember, Streakline

“Series Groups” on page 99.

 DXSetStringAttribute

 Function
Adds a named attribute with a string value to an Object.

 Syntax
#include <dx/dx.h>

Object DXSetStringAttribute(Object o, char \name, char \x)

 Functional Details
Creates a String containing the string value x and then adds an attribute/value pair
to the Object o. name specifies the name of the attribute and x represents its
value. If name specifies an attribute that the Object o already has, then its previous
value is replaced.

 Return Value
Returns o or returns NULL and sets an error code.

 See Also
DXGetStringAttribute DXSetAttribute, DXSetComponentAttribute,
DXSetFloatAttribute, DXSetIntegerAttribute

“Object Routines” on page 119.

362 IBM Visualization Data Explorer: Programmer’s Reference

 DXSetView, DXGetView

 DXSetView, DXGetView

 Function
Specify Camera position and orientation.

 Syntax
#include <dx/dx.h>

Camera DXSetView(Camera c, Point from, Point to, Vector up)
Camera DXGetView(Camera c, Point \from, Point \to, Vector \up)

 Functional Details
A camera defines the position and orientation of the viewer, the volume of interest
of the object being viewed, and the size of the image to contain the resulting view.

The position and orientation of the view are defined by where the viewer is
standing, the from position, where the viewer is looking, the to position, and the tilt
of the viewer’s head, the up vector.

The image is always in a plane perpendicular to the from-to vector. The up vector
is projected onto this plane and the Object and camera (the up vector) are rotated
around the from-to vector until up is aligned with the image y axis. It is not
necessary that the from-to vector and the up vector be perpendicular; if they are
coincident, up becomes undefined and the top of the object, relative to the image,
becomes undefined.

DXSetView sets the parameters from, to, and up for camera c.

DXGetView, for camera c, if from is not NULL, returns in from the from position. If
to is not NULL, it returns in to the to position. If up is not NULL, it returns in up the
up vector.

 Library Routines

 Return Value
DXSetView returns NULL and sets an error code.

DXGetView returns the camera parameters or returns NULL and sets an error code.

 See Also
DXGetCameraMatrix, DXNewCamera, DXRender, DXSetOrthographic,
DXSetPerspective, DXSetResolution

15.7, “Camera Class” on page 155.

 DXSetXformObject

 Function
Sets the Object to which a transform is applied.

 Appendix C. Data Explorer Library Routines 363

 DXShrink

 Syntax
#include <dx/dx.h>

Xform DXSetXformObject(Xform x, Object o)

 Functional Details
Replaces the object to be transformed, given an existing Xform object x. If o is not
NULL, then the object to be transformed contained in the Xform object x is replaced
by o.

 Return Value
Returns x or returns NULL and sets an error code.

 See Also
DXGetXformInfo, DXNewXform

15.4, “Xform Class” on page 154.

 DXShrink

 Function
Removes information added to an Object by DXGrow.

 Syntax
#include <dx/dx.h>

Object DXShrink(Object object)

 Functional Details
Removes information from Object object added onto each partition of Composite
Field members of object by DXGrow.

Each “original component” in object is renamed “component,” replacing any
existing components of that name. To prevent this, the “original component” can
be deleted with DXRemove or DXDeleteComponent before DXShrink is called.

 Return Value
Returns the Object with added data removed or returns NULL and sets an error
code.

 See Also
DXDeleteComponent, DXGrow, DXRemove

13.4, “Growing and Shrinking Partitioned Data” on page 137.

364 IBM Visualization Data Explorer: Programmer’s Reference

 DXStatistics

 DXStatistics

 Function
Returns statistical information about a specified Object.

 Syntax
#include <dx/dx.h>

Error DXStatistics(Object o, char \component, float \min, float \max,
 float \avg, float \sigma)

 Functional Details
Returns statistical information about all specified components (component) of Object
o. If min is not NULL, this routine returns the minimum value in \min. If max is not
NULL, the routine returns the maximum value in \max. If avg is not NULL, it routine
returns the average value in \avg. If sigma is not NULL, it returns the standard
deviation in \sigma. The “component statistics” component is added to Fields for
which it does not already exist. If Object o is an Array, the routine ignores
component and returns statistics for the Array.

 Return Value
Returns OK or returns ERROR and sets an error code.

 Library Routines

 See Also
“Standard Components” on page 107.

 DXSwap

 Function
Interchanges two components in a Field.

 Syntax
#include <dx/dx.h>

Object DXSwap(Object o, char \name1, char \name2)

 Functional Details
Interchanges the component values for each Field in Object o, if both components
(name1 and name2) exist. Object o can be a single Field or any Object that can
contain Fields, such as Groups or Series.

 Return Value
Returns o or returns NULL and sets an error code. It is an error if any Field of
Object o contains one of the named components but not the other.

 Appendix C. Data Explorer Library Routines 365

 See Also
DXExists, DXExtract, DXGetComponentValue, DXInsert, DXRemove, DXRename,
DXReplace, DXSetComponentValue

11.10, “Component Manipulation” on page 110.

366 IBM Visualization Data Explorer: Programmer’s Reference

 DXTraceTime

 DXTraceTime

 Function
Enables or disables the accumulation of time marks.

 Syntax
#include <dx/dx.h>

void DXTraceTime(int t)

 Functional Details
Enables (t is 1) or disables (t is 0) the accumulation of time marks by DXMarkTime
and DXMarkTimeLocal and the printing of timing messages by DXPrintTimes.

 Return Value
None.

 See Also
DXGetTime, DXMarkTime, DXMarkTimeLocal, DXPrintTimes

12.2, “Timing” on page 116.

 DXTraversePickPath Library Routines

 Function
Returns the subObject of the current Object selected by a pick path.

 Syntax
#include <dx/dx.h>

Object DXTraversePickPath(Object current, int index, Matrix \matrix)

 Functional Details
Traverses a data Object to reach the picked Field, element, and vertex. Given an
Object current (initially the root of the data Object), a pointer to a matrix matrix
(initially identity), and a path index index, returns the subObject of the current
Object.

When Xform Objects are encountered, the matrix associated with the Xform is
concatenated onto the matrix pointed to by the matrix parameter (if one was
passed in). When the end of the path is found (either by recognizing that the
returned Object is a Field or that the returned Object is the same as the current
Object), the caller is left with the picked Field and a transform carrying the
coordinate system of that Field to the eye coordinate system.

 Appendix C. Data Explorer Library Routines 367

 DXTrim

 Return Value
Returns the subObject or returns NULL and sets an error code.

 See Also
DXGetPickPoint, DXQueryPickCount, DXQueryPickPath, DXQueryPokeCount

13.6, “Pick-Assistance Routines” on page 142.

 DXTrim

 Function
Frees space allocated in an Array beyond that required for the number of items in
the Array.

 Syntax
#include <dx/dx.h>

Array DXTrim(Array a)

 Functional Details
Under some circumstances, more space than is necessary to hold the items added
to a may have been allocated. This can happen if you have called
DXAllocateArray. It can also happen when you call DXAddArrayData. This extra
space can be freed by calling DXTrim. The DXEndField routine automatically calls
DXTrim on all components of a Field.

 Return Value
Returns a or returns NULL and sets an error code.

 See Also
DXAddArrayData, DXAllocateArray, DXEndField

“Irregular Arrays” on page 101.

 DXTube

 Function
Produces a tube of specified diameter from a path or group of paths in a specified
Object.

 Syntax
#include <dx/dx.h>

Object DXTube(Object o, double diameter, int n)

368 IBM Visualization Data Explorer: Programmer’s Reference

 DXTypeCheck, DXTypeCheckV

 Functional Details
The cross section of the tube is an n-gon in a plane parallel to the normal and
perpendicular to the tangent at each point on the path, where the normals are
provided by a “normals” component if present or approximated from the path
otherwise. Normals to the tube are computed and associated with the tube for
shading.

For more information, see “Tube” on page 356 in IBM Visualization Data Explorer
User’s Reference. See also 2.4, “Memory Management” on page 13.

 Return Value
Returns the tube or returns NULL and sets an error code.

 See Also
DXRibbon

14.3, “Path Operations” on page 146.

 DXTypeCheck, DXTypeCheckV

 Function
Check that an Array meets a set of specifications.

 Syntax

 Library Routines

#include <dx/dx.h>

Array DXTypeCheck(Array a, Type type, Category category, int rank, ...)
Array DXTypeCheckV(Array a, Type type, Category category, int rank, int \shape)

 Functional Details
The routine returns a if that Array meets the specifications given by type, category,
rank, and shape. Otherwise, it returns NULL. The shape is specified by shape for
DXTypeCheckV or by the last rank arguments for DXTypeCheck. For DXTypeCheckV, if
shape is NULL, the type, category, and rank are checked, but the shape is not.

rank specifies the rank of the items in the Array: Scalars have rank 0, vectors have
rank 1, and so on.

shape has rank entries representing the list of dimensions of the structure. For rank
0 items (scalars) there is no shape. For rank 1 items (vectors) the shape is a
single number corresponding to the number of dimensions. For rank 2 structures,
the shape is two (2) numbers, and so on. shape specifies the rank of the items in
the Array: the number of dimensions in each item of the Array. Shape has entries
where each entry represents the size of the item in that dimension.

The type is one of the following:

TYPE_BYTE TYPE_HYPER TYPE_SHORT
TYPE_UBYTE TYPE_INT TYPE_USHORT
TYPE_DOUBLE TYPE_UINT TYPE_STRING
TYPE_FLOAT

 Appendix C. Data Explorer Library Routines 369

 DXTypeSize, DXCategorySize

The category is either CATEGORY_REAL or CATEGORY_COMPLEX.

 Return Value
Return a or returns NULL (e.g., if the type does not match).

 See Also
DXGetArrayInfo

11.3, “Array Class” on page 101.

 DXTypeSize, DXCategorySize

 Function
Return size information.

 Syntax
#include <dx/dx.h>

int DXTypeSize(Type t)
int DXCategorySize(Category c)

 Functional Details
DXTypeSize returns the size in bytes of a variable of type t.
DXCategorySize returns the size multiplier for category c.

For a variable of type t and category c, the size in bytes is DXTypeSize(t) \
DXCategorySize(c).

Note: This is the size of a single item of that type (e.g., a single component of a
3-vector). DXGetItemSize, in contrast, returns the size in bytes of the
3-vector.

The type is one of the following:

The category is either CATEGORY_REAL or CATEGORY_COMPLEX.

 Return Value
DXTypeSize returns the size in bytes. DXCategorySize returns the multiplier in
bytes.

 See Also
DXGetItemSize

“Setting Data Types” on page 120.

370 IBM Visualization Data Explorer: Programmer’s Reference

 DXUnreference

 DXUnreference

 Function
Removes a reference from an Object without deleting it.

 Syntax
#include <dx/dx.h>

Error DXUnreference(Object o)

 Functional Details
This routine is not normally used by module writers. DXDelete should be called to
remove a reference to an Object o.

DXUnreference allows an Object’s reference count to be decremented to 0 without
releasing its memory, which is not desirable under normal circumstances. (See
2.4, “Memory Management” on page 13.)

 Return Value
Returns OK or returns ERROR and sets an error code.

 See Also
DXDelete, DXReference

“Object Routines” on page 119.

 Library Routines

 DXUnsetGroupType

 Function
Unsets the type associated with a specified Group.

 Syntax
#include <dx/dx.h>

Group DXUnsetGroupType(Group g)

 Functional Details
When the Group type is set, all current members are checked for type, and all
members added subsequently are checked for type. DXUnsetGroupType will turn off
this type checking, and the Group will have no type.

Array Objects are always typed. Fields are typed if they contain a “data”
component; their type is the same as that of the “data” component. Series,
MultiGrids, and Composite Fields are typed if they contain typed members.
Generic Groups may be typed by explicitly calling DXSetGroupType. If typed, all
members contained in the Group must match the type. Other Objects do not
contain type information.

 Appendix C. Data Explorer Library Routines 371

 Return Value
Returns g or returns NULL and sets an error code.

 See Also
DXNewGroup, DXSetGroupType

“Generic Operations” on page 98.

372 IBM Visualization Data Explorer: Programmer’s Reference

 DXValidPositionsBoundaryBox

 DXValidPositionsBoundaryBox

 Function
Computes the boundary box of the valid positions of an Object o.

 Syntax
#include <dx/dx.h>

DXValidPositionsBoundaryBox(Object o, Point \box)

 Functional Details
If o contains any invalid positions, this routine adds (to o or to any of its
descendents that are Fields) a “valid box” component consisting of an Array of 2d

points that are the corners of a boundary box (where d is the dimensionality of the
data).

Point is defined as follows:

typedef struct point {
 float x,y,z;
} Point, Vector;

Notes:

1. For data of dimensionality three or less, the routine returns (in the Array
pointed to by box) the eight corner points. For dimensionalities less than three,
the extra dimensions of the box returned by the routine are treated as zero.

2. The boundary box returned by the routine is determined by combining the
boundary boxes of all Fields contained in o.

3. Transformations are considered in computing the boundary box, but clipping
objects are not. And the boundary box is not guaranteed to be the tightest
possible.

 Library Routines

 Return Value
Returns o or returns NULL and might or might not set an error code, depending on
the input. For example, it does not set an error code if a boundary box cannot be
defined for the given input.

 See Also
DXBoundingBox, DXChangedComponentValues, DXChangedComponentStructure,
DXEmptyField, DXEndField, DXEndObject, DXNeighbors, DXStatistics

12.1, “Error Handling and Messages” on page 114.

 Appendix C. Data Explorer Library Routines 373

 DXWarning

 DXWarning

 Function
Presents a warning message to the user.

 Syntax
#include <dx/dx.h>

void DXWarning(char \message, ...)

 Functional Details
The message may be a printf form string, in which case additional arguments may
be needed. The message string should not contain new-line characters, because
the DXWarning routine formats the message in a manner appropriate to the output
medium. For terminal output, this includes prefixing the message with the
processor identifier and appending a new line character.

 Return Value
None.

 See Also
DXSetError, DXErrorReturn, DXErrorGoto

12.1, “Error Handling and Messages” on page 114.

374 IBM Visualization Data Explorer: Programmer’s Reference

 Glossary

This glossary defines important abbreviations and
terms. It includes information from IBM Dictionary of
Computing (ZC20-1699).

A
Array . An ordered list of data items of the same type
represented by an Array Object. Arrays are either
irregular or compact. See also compact Array, irregular
Array.

attribute . A characteristic of an Object. Objects can
have attributes that are indexed by a string name and
have a value that is an Object. See also component
attribute.

C
cache . The cache service provides various parts of the
system with a means to store the results of
computations for later reuse. Each cache entry is
uniquely identified by a string function name, an integer
key (used by the executive to store multiple outputs for
a single module), the number of input parameters, and
the set of input parameter values.

camera . A camera defines the position and orientation
of the viewer, the volume of interest of the object being
viewed, and the size of the image to contain the
resulting view.

canvas . The large open area of the VPE window that
is used to build and edit visual programs.

clipping plane . A plane that divides a 3-dimensional
volume into a region that is rendered and a region that
is not rendered. This allows the inside of an object to
be seen.

compact array . Any one of five varieties of compact
encoding of array data. The varieties are:

 � regular
 � path
 � product
 � mesh
 � compact.

component . A basic part or classification of a Field;
each component is indexed by a string and its value is
an Object. See also component attribute.

component attribute . A characteristic of a
component. Components of a Field can have attributes
that are indexed by a string name and have a value that
is an Object.

Composite Field . A group of Fields that together is
treated a single Field. This type of Field is useful, for
example, for certain kinds of simulation data that are
represented by disjoint grids. A Composite Field is a
collection of compatible Fields, all having a “positions”
component of the same dimensionality, “data”
components of the same type, and “connections” with
the same “element type.” It is required that members be
disjoint and abutting.

connections . A component of a Field, specifying how
data points in that Field are joined together.

constant Array . An Array with a constant value.

contour . Lines on a surface that connect points with
the same data value.

D
dependent . A description of a component attribute.
One component is said to be dependent on another if
the items in the component arrays are in one-to-one
correspondence with each other.

E
executive . The component of the Data Explorer
system that manages the execution of modules
specified using the scripting language. This term is
often used to refer to the entire server portion of the
Data Explorer client-server model, including the
executive, modules, and data management
components.

export . To write an Object to a specified Data
Explorer-format external data file. For example,
importing an ASCII file can be slow. You can export
the data in a binary format for faster access. You can
also import data, operate on it, and then export the
transformed data for future use.

F
Field . A self-contained collection of information
necessary to represent scientific data. A Data Explorer
Field typically is made up of a series of components
and other information as required. It includes the data
itself in the form of a “data” component, a set of sample
points in the form of a “positions” component, optionally,
a set of interpolation elements in the form of a
“connections” component, and other information as
needed.

 Glossary

 Copyright IBM Corp. 1991-1997 375

filter . A program that converts data to a Data Explorer
format.

flat shading . A shading model in which each polygon
of an object is shaded using a single intensity value.
Contrast with Gouraud shading.

fork-join parallelism . A programming concept that
allows parallel processing. The fork statement splits a
single computation into multiple independent
computations. The join statement recombines two or
more concurrent computations into one.

G
glyph . A figure that is mapped to a particular variable.
The length, angle, or other attribute of the figure relates
to the value of the particular variable.

Gouraud shading . Also called intensity interpolation
shading. A shading model in which the intensity of
values of incident illumination on a polygon are
interpolated from intensity values at the vertices of the
polygon. Contrast with flat shading.

Group . A collection of Objects.

grow . Add information from neighboring partitions to a
Composite Field. Generally necessary only in a parallel
environment.

H
handle . A data structure that is a temporary local
identifier for an Object.

hash table . A table of Objects that is accessed with a
search key (the hash value).

hidden . A module input parameter that does not
appear by default in the module configuration dialog
box. Hidden parameters are typically those less
commonly used in visual programs.

I
Image window . IBM Data Explorer window that
displays the image generated by a visual program.

import . To read in an external data file.

interactor . A Data Explorer device used to manipulate
data in order to change the visual image produced by a
program.

See also interactor stand-in.

interactor stand-in . An icon used in the visual
program editor window to represent an interactor.

Stand-ins are named after the type of data they accept.
The five types are:

 � integer
 � scalar
 � string
 � selector
 � value.

interpolation element . An interpolation element
provides a means to interpolate between a specified set
of sample points. The set of interpolation elements for
a particular Field constitutes the “connections”
component.

invalid positions and connections . Marked positions
and connections that are ignored by modules.

irregular Array . An Array Object in which the data is
stored explicitly, as opposed to a compact Array.

isosurface . A surface in 3-dimensional space that
connects points with the same data value.

item . A single piece of data in an Array Object.

J
join . An operation that merges two or more
computation paths.

L
light . An Object that illuminates a scene.

M
macro . In IBM Data Explorer, a sequence of modules
that are be collected together. A macro cannot have
recursion at any level.

makefile . A file used by the UNIX** utility “make” that
contains a list of source files and commands required
for maintaining current versions of Data Explorer
programs. The modification times of the files determine
what files have changed since the last time “make” was
run, and therefore, what commands must be executed.

mdf . See module description file.

member . An individual unit in a group. A collection of
members makes a group.

mesh Array . A compact Array that encodes
multidimensional regularity of connections. It is a
product of connection Arrays. The product is a set of
interpolation elements in which the product has one
element for each pair of elements in the two
multiplicands, and the number of sample points in each

376 IBM Visualization Data Explorer: Programmer’s Reference

element is the product of the number of sample points
in each of the multiplicands’ elements.

module . A primitive function that is provided as part of
IBM Data Explorer, such as the Isosurface module.
The same term is used for the function’s icon, which is
its visible representation in the VPE window.

Module Builder . A graphical user interface to assist in
the creation of user-defined modules.

module description file (mdf) . A module description
file is used by a programmer who is adding a module to
Data Explorer to describe information about the module
that is needed by the system.

A module description file contains the name of the
module, a short description of it, a category for the user
interface to put the module in, and the names and
descriptions of the input and output parameters. The
module description file is used by the executive and the
user interface to name parameters. The module
description file is also used by the graphical user
interface to form a tool icon in the proper category with
the right number of input and output tabs.

MultiGrid . A MultiGrid Group is another kind of Group
that is treated as a single entity. Like a Composite
Field, all of the members of a MultiGrid Group must
have the same type of data and the same type of
connections. It is not required that members be disjoint
and abutting however. Overlapping grids can be used
along with the “invalid positions” and “invalid
connections” components to define which grid is valid in
a particular region.

N
netCDF . See Network Common Data Form.

Network Common Data Form (netCDF) . A data
abstraction that stores and retrieves scientific data
structures in self-describing, multiple dimensional
blocks. netCDF is accessible with C or FORTRAN.
netCDF is not a database management system.

O
Object . A region of global memory that contains an
identification of its type plus additional type-dependent
information.

P
parallelism . The concurrent execution of modules.

partition . A member of a Composite Field.

partitioned Field . A Composite Field.

path array . A compact Array that encodes linear
regularity of connections. It is a set of n − 1 line
segments, where the ith line segment joins points i and
i + 1.

pick . One Object that was picked using the mouse.

pick path . A list of integers that describe how to
traverse an Object’s hierarchy to reach a particular
picked object.

pick structure . A Field that identifies objects picked
using the mouse. It contains the components
“positions,” “pick paths,” “picks,” and “pokes.”

poke . One screen location that was poked, or
selected, by the user. One poke may result in none,
one, or more than one pick.

positions . A component of a Field, consisting of a set
of points.

private Object . Objects containing arbitrarily stored
data. These Objects can be stored in the cache for
later use.

product Array . A compact Array that encodes
multidimensional positional regularity. It is the set of
points obtained by summing one point from each of the
terms in all possible combinations.

pseudo key . Accesses Objects in a hash table.

R
realization . The representation of data in terms of
boundaries, surfaces, transparency, color, and other
graphical, image, and geometric characteristics.

regular Array . A compact Array that is a set of n
points lying on a line with constant spacing between
them, representing 1-dimensional regular positions.

rendering . The generation of an image from some
representation of an object. Rendering can be done
from a surface representation, or from volumetric
information.

ribbon . Ribbons are derived from lines (e.g.,
streamlines and streaklines). Ribbons may twist to
indicate vorticity.

 Glossary

 Glossary 377

S
scripting language . The IBM Data Explorer
command-line language. The scripting language is
available for users who choose to write visual programs
in a programming language. Data Explorer uses the
scripting language to manage the execution of modules
and to invoke visualization functions.

Series . A Series is intended to represent a single Field
sampled across some parameter, such as time or
temperature (e.g., a simulation of a CMOS device
across a temperature range. Members of a Series have
a position. A copy of the position is found in the “Series
position” attribute.

Every member of the Series must have the same
dimensionality, say n, the same data type, and the
same connections element type. Members are stored
in and retrieved from a Series Group by index rather
than by name. Members cannot be retrieved by Series
value.

shading . Applying lights to a surface during the
rendering process.

shrink . Generally necessary only in a parallel
environment; deletes the information, previously added
by Grow, from neighboring partitions of a Composite
Field. Composite Field members are returned to their
original size.

stand-in . See interactor stand-in.

streaklines . Lines, sometimes called rakes, that show
the path of particles over time.

string Object . A character string stored in an Object.

T
tiling . Combining shaded surface and volume
interpolation elements to produce an image.

tool . A general term used to describe any of the icons
used by IBM Data Explorer to build a visual program,
specifically modules, macros, or interactor stand-ins.

tube . Tubes are derived from lines (e.g., streamlines
and streaklines). Tubes may twist to indicate vorticity.

V
value . (1) A specific occurrence of an attribute (e.g.
for the attribute “color”). (2) A quantity assigned to a
constant, a variable, a parameter, or a symbol.

visual program . A user-specified interconnection of
Data Explorer modules that performs a sequence of
operations on data.

Visual Program Editor . Data Explorer graphical user
interface for creating and editing visual programs and
macros. See also canvas.

VPE. See Visual Program Editor.

volume . An object that fills a 3-dimensional space. A
solid ball is a volume. A surface, however, is infinitely
thin and does not fill space even though it exists in
three dimensions.

volume rendering . A technique for creating an image
that shows not just the surface of a 3-dimensional
object, but its contents as well. The interior details
being visualized may be physical, such as bone and
muscle in a human body or the structure of a machine
part, or they may be other characteristics such as fluid
flow, heat, or stress.

378 IBM Visualization Data Explorer: Programmer’s Reference

 Index

A
Add module example 32
Add module example for a parallel environment 68
Add2 module example 33
Add2Invalid module example 34
adding a module to Data Explorer 5
allocating memory 13
allocation routines (see memory allocation routines)
Array class

Array-handling routines 102
compact-Array routines 103
Constant Array routines 105
irregular-Arrays routines 101
Mesh Array routines 105
overview 103
Path Array routines 104
product Array routines 105
regular-Array routines 104
string list routines 102

Array class routines, generic operations
DXFreeArrayDataLocal 101, 233
DXGetArrayClass 101, 236
DXGetArrayData 101, 237
DXGetArrayDataLocal 101, 237
DXGetArrayInfo 101, 239
DXGetItemSize 101, 255
DXTypeCheck 101, 369
DXTypeCheckV 101, 369
overview 101

Array-handling routines
DXCreateArrayHandle 103, 214
DXFreeArrayHandle 103, 234
DXGetArrayEntries 103, 238
DXGetArrayEntry 103, 238
DXIterateArray 103, 285
overview 102

asynchronous modules 84
outboard example 89
special considerations for outboard 87

asynchronous services routines
DXReadyToRun 129, 334
DXRegisterInputHandler 129, 336
overview 129

AverageCell module example 44
AverageCell module example for a parallel

environment 71

B
basic data types 123

basic type-operations 126
build options of Module Builder 23

C
cache considerations 14
cache routines

DXCompareModuleID 122, 129, 209
DXCopyModuleID 122, 129, 213
DXFreeModuleId 122, 129
DXGetCacheEntry 122, 240
DXGetCacheEntryV 122, 240
DXGetModuleId 122, 129, 258
DXSetCacheEntry 122, 345
DXSetCacheEntryV 122, 345
overview 121

Camera class routines
DXGetBackgroundColor 156, 345
DXGetCameraMatrix 156, 241
DXGetCameraMatrixWithFuzz 156, 241
DXGetCameraResolution 156, 360
DXGetCameraRotation 156, 241
DXGetOrthographic 155, 356
DXGetPerspective 155, 359
DXGetView 155, 363
DXNewCamera 155, 299
DXSetBackgroundColor 155, 345
DXSetOrthographic 155, 356
DXSetPerspective 155, 359
DXSetResolution 155, 360
DXSetView 155, 363
overview 155

categories of Data Explorer modules
CATEGORY statement in a module description file 80
class

Array 101
Camera 155
Clipped 155
Field 97
Group 98
Light 156
Private 106
Screen 154
String 106
Xform 154

classes of Objects 118
Clipped class routines

DXGetClippedInfo 155, 242
DXNewClipped 155, 300
DXSetClippedObjects 155, 347
overview 155

 Glossary

 Copyright IBM Corp. 1991-1997 379

clipping routines
DXClipBox 146, 206
DXClipPlane 146, 208
overview 146

cmpFunc 140
color dependency 152
colors 125
compact-Array routines

DXMakeGridConnections 104, 289
DXMakeGridConnectionsV 104, 289
DXMakeGridPositions 104, 290
DXMakeGridPositionsV 104, 290
DXQueryGridConnections 104, 327
DXQueryGridPositions 104, 327
overview 103

compiling
a runtime-loadable module 8, 91
an inboard module 8, 85
an outboard module 8, 86

component manipulation 110
component manipulation routines

DXExists 110, 227
DXExtract 110, 228
DXInsert 110, 278
DXRemove 110, 336
DXRename 110, 337
DXReplace 110, 338
DXSwap 110, 365
overview 110

Composite Field routines
DXGetMeshOffsets 105, 257
DXNewCompositeField 100, 301
DXSetMeshOffsets 105, 355
overview 100

connections routines 107
DXAddLine 107, 192
DXAddLines 107, 192
DXAddQuad 107, 192
DXAddQuads 107, 192
DXAddTetrahedra 107, 192
DXAddTetrahedron 107, 192
DXAddTriangle 107, 192
DXAddTriangles 107, 192
DXGetConnections 107, 244
DXSetConnections 107, 349
overview 107

connections specification in worker routine of module
framework 26

connections, working with
AverageCell module example 44

Constant Array routines
DXGetConstantArrayData 106, 244
DXNewConstantArray 105, 302
DXNewConstantArrayV 105, 302
DXQueryConstantArray 105, 325
overview 105

constructing a point 124
constructing a vector 124
construction, Field (see Field construction)
conventions, module naming 6
counts, reference 14
creating connections 103
creating Data Explorer Objects 109
creating positions 103

D
Data Explorer data model 12

Array class 101
component manipulation 110
data component 12
data import and export 110
Field class 97
Field construction 106
Fields 12
Group class 98
Groups 12
module parameters 108
positions component 12

Data Explorer execution model 14
Data Explorer format file

export using DXExportDX 110, 228
import using DXImportDX 110, 275
overview 110

Data Explorer format files 110
data export overview 110
data import overview 110
data model (see Data Explorer data model)
data processing

grow and shrink 137
interpolation and mapping 132
invalid data 133
partitioning 132

data structure description
angles 125
basic operations for matrix, point, and vector data

types 126
colors 125
cubes 124
lines 124
point 124
quadrilaterals 124
tetrahedra 124
transformation matrices 126
triangles 124
vector 124

data type, setting 120
data types, basic 123
data, working with

Add module example 32
Add2 module example 33
Add2Invalid module example 34

380 IBM Visualization Data Explorer: Programmer’s Reference

debugging
a runtime-loadable module 91
an inboard module 85
an outboard module 86

default field
of INPUT statement 82

description field
of INPUT statement 82
of OUTPUT statement 83

developer's toolkit 158
doLeaf routine of module framework 18
DXAbortTaskGroup 123, 189
DXAdd 127, 189
DXAddArrayData 102, 190
DXAddBackColor 107, 194
DXAddBackColors 107, 194
DXAddColor 107, 194
DXAddColors 107, 194
DXAddFaceNormal 107, 191
DXAddFaceNormals 107, 191
DXAddFrontColor 107, 194
DXAddFrontColors 107, 194
DXAddLine 107, 192
DXAddLines 107, 192
DXAddMessage 115, 193
DXAddNormal 107, 194
DXAddNormals 107, 194
DXAddOpacities 107, 194
DXAddOpacity 107, 194
DXAddPoint 107, 194
DXAddPoints 107, 194
DXAddQuad 107, 192
DXAddQuads 107, 192
DXAddTask 123, 195
DXAddTetrahedra 107, 192
DXAddTetrahedron 107, 192
DXAddTriangle 107, 192
DXAddTriangles 107, 192
DXAdjointTranspose 127, 210
DXAllocate 116, 196
DXAllocateArray 102, 197
DXAllocateLocal 116, 196
DXAllocateLocalOnly 117, 196
DXAllocateLocalOnlyZero 117, 196
DXAllocateLocalZero 116, 196
DXAllocateZero 116, 196
DXApply 127, 210
DXApplyTransform 151, 198
DXArrayConvert 109, 199
DXArrayConvertV 109, 199
DXASSERT 115, 351
DXBeginLongMessage 115, 201
DXBoundingBox 108, 201
DXCallModule 128, 203
DXCategorySize 121, 370

DXChangedComponentStructure 108, 204
DXChangedComponentValues 108, 204
DXCheckRIH 128, 205
DXClipBox 146, 206
DXClipPlane 146, 208
DXColorNameToRGB 125, 208
DXCompareModuleID 122, 129, 209
DXComponentOpt 97, 209
DXComponentOptLoc 97, 209
DXComponentReq 97, 209
DXComponentReqLoc 97, 209
DXConcatenate 127, 210
DXCopy 119, 211
DXCopyAttributes 120, 212
DXCopyModuleID 122, 129, 213
DXCreateArrayHandle 103, 214
DXCreateHash 139, 214
DXCreateInvalidComponentHandle 134, 215
DXCreateTaskGroup 123, 216
DXCross 127, 189
DXCull 134, 217
DXDebug 116, 219
DXDelete 119, 220
DXDeleteAttribute 119, 344
DXDeleteComponent 97, 221
DXDeleteHashElement 140, 221
DXDestroyHash 140, 222
DXDeterminant 127, 210
DXDisplayX 156, 222
DXDisplayX12 156, 222
DXDisplayX24 156, 222
DXDisplayX8 156, 222
DXDiv 127, 189
DXDot 127, 189
DXEmptyField 108, 224
DXEnableDebug 116, 219
DXEndField 107, 224
DXEndLongMessage 115, 201
DXEndObject 108, 226
DXErrorGoto 115, 351
DXErrorReturn 115, 351
DXExecuteTaskGroup 123, 226
DXExists 110, 227
DXExportDX 110, 228
DXExtract 110, 228
DXExtractFloat 108, 229
DXExtractInteger 108, 230
DXExtractNthString 109, 230
DXExtractParameter 109, 231
DXExtractString 109, 232
DXFree 117, 233
DXFreeArrayDataLocal 101, 233
DXFreeArrayHandle 103, 234
DXFreeInvalidComponentHandle 135, 234
DXFreeModuleId 122, 129, 235

 Glossary

 Index 381

DXGeometricText 146, 236
DXGetArrayClass 101, 236
DXGetArrayData 101, 237
DXGetArrayDataLocal 101, 237
DXGetArrayEntries 103, 238
DXGetArrayEntry 103, 238
DXGetArrayInfo 101, 239
DXGetAttribute 119, 240
DXGetBackgroundColor 156, 345
DXGetCacheEntry 122, 240
DXGetCacheEntryV 122, 240
DXGetCameraMatrix 156, 241
DXGetCameraMatrixWithFuzz 156, 241
DXGetCameraResolution 156, 360
DXGetCameraRotation 156, 241
DXGetClippedInfo 155, 242
DXGetComponentAttribute 97, 242
DXGetComponentValue 97, 243
DXGetConnections 107, 244
DXGetConstantArrayData 106, 244
DXGetEnumeratedAttribute 119, 245
DXGetEnumeratedComponentAttribute 97, 245
DXGetEnumeratedComponentValue 97, 246
DXGetEnumeratedMember 98, 247
DXGetError 115, 247
DXGetErrorExit 128, 248
DXGetErrorMessage 115, 249
DXGetFloatAttribute 119, 249
DXGetFont 146, 251
DXGetGroupClass 98, 251
DXGetImageBounds 156, 252
DXGetImageSize 156, 252
DXGetIntegerAttribute 119, 253
DXGetInvalidComponentArray 135, 254
DXGetInvalidCount 135, 254
DXGetItemSize 101, 255
DXGetMember 98, 255
DXGetMemberCount 98, 256
DXGetMeshArrayInfo 105, 256
DXGetMeshOffsets 105, 257
DXGetModuleId 122, 129, 258
DXGetNextHashElement 140, 258
DXGetNextInvalidElementIndex 135, 259
DXGetNextValidElementIndex 135, 259
DXGetObjectClass 119, 260
DXGetObjectTag 120, 260
DXGetOrthographic 155, 356
DXGetPart 100, 261
DXGetPartClass 100, 262
DXGetPathArrayInfo 104, 262
DXGetPathOffset 104, 263
DXGetPerspective 155, 359
DXGetPickPoint 142, 264
DXGetPixels 156, 264
DXGetPrivateData 106, 265

DXGetProductArrayInfo 105, 265
DXGetRegularArrayInfo 104, 266
DXGetScreenInfo 154, 267
DXGetSeriesMember 99, 267
DXGetString 106, 268
DXGetStringAttribute 119, 269
DXGetTime 116, 269
DXGetType 120, 271
DXGetValidCount 135, 271
DXGetView 155, 363
DXGetXformInfo 154, 272
DXGrow 138, 273
DXGrowV 138, 273
DXImportDX 110, 275
DXImportNetCDF 111, 276
DXInitGetNextHashElement 140, 277
DXInitGetNextInvalidElementIndex 135, 278
DXInitGetNextValidElementIndex 135, 278
DXInitModules 128, 277
DXInsert 110, 278
DXInsertHashElement 139, 279
DXInterpolate 133, 280
DXInvalidateConnections 134, 280
DXInvalidateDupBoundary 134, 281
DXInvalidateUnreferencedPositions 134, 281
DXInvert 127, 210
DXInvertValidity 135, 282
DXIsElementInvalid 135, 283
DXIsElementInvalidSequential 135, 283
DXIsElementValid 135, 283
DXIsElementValidSequential 135, 283
DXIterateArray 103, 285
DXLCloseConnection 169
DXLConnectToRunningServer 169
DXLEndExecuteOnChange 173
DXLEndExecution 173
DXLength 126, 189
DXLExecuteOnce 173
DXLExecuteOnChange 173
DXLExitDX 169
DXLGetExecutionStatus 173
DXLGetSocket 169
DXLHandlePendingMessages 172
DXLInitializeXMainLoop 169
DXLink

execution control 173
initialization and exit 169
introduction 158
messaging routines 172
messaging system 170
program control 174
receiving messages 171
retrieving values 177
sending messages 171
setting variables 175
window control 178

382 IBM Visualization Data Explorer: Programmer’s Reference

DXLink developer's toolkit 158
DXLink routines

DXLCloseConnection 169
DXLConnectToRunningServer 169
DXLEndExecuteOnChange 173
DXLEndExecution 173
DXLExecuteOnce 173
DXLExecuteOnChange 173
DXLExitDX 169
DXLGetExecutionStatus 173
DXLGetSocket 169
DXLHandlePendingMessages 172
DXLInitializeXMainLoop 169
DXLIsMessagePending 172
DXLLoadMacroDirectory 175
DXLLoadMacroFile 175
DXLLoadVisualProgram 175
DXLRemoveMessageHandler 172
DXLSend 172
DXLSequencerCtl 173
DXLSetBrokenConnectionCallback 170
DXLSetErrorHandler 173
DXLSetMessageDebugging 169
DXLSetMessageHandler 172
DXLSetSynchronization 169
DXLSetValue 176
DXLStartDX 170
DXLSync 174
exDXLBeginMacroDefinition 175
exDXLEndMacroDefinition 175
exDXLExecuteOnceNamed 174
exDXLExecuteOnceNamedWithArgs 174
exDXLExecuteOnceNamedWithArgsV 174
exDXLExecuteOnChangeNamed 174
exDXLExecuteOnChangeNamedWithArgs 174
exDXLExecuteOnChangeNamedWithArgsV 174
exDXLLoadScript 175
uiDXLCloseAllColorMapEditors 178
uiDXLCloseAllImages 178
uiDXLCloseColorMapEditorByLabel 178
uiDXLCloseColorMapEditorByTitle 178
uiDXLCloseSequencer 178
uiDXLCloseVPE 178
uiDXLLoadConfig 175
uiDXLOpenAllImages 178
uiDXLOpenColorMapEditorByTitle 178
uiDXLOpenSequencer 178
uiDXLOpenVPE 178
uiDXLResetServer 174
uiDXLSetRenderMode 174
uiDXLSyncExecutive 174

DXLIsMessagePending 172
DXLLoadMacroDirectory 175
DXLLoadMacroFile 175
DXLLoadVisualProgram 175

DXLn 124, 286
DXLocalizeInterpolator 133, 287
DXLoopDone 287
DXLoopFirst 288
DXLRemoveMessageHandler 172
DXLSend 172
DXLSequencerCtl 173
DXLSetBrokenConnectionCallback 170
DXLSetErrorHandler 173
DXLSetMessageDebugging 169
DXLSetMessageHandler 172
DXLSetSynchronization 169
DXLSetValue 176
DXLStartDX 170
DXLSync 174
DXMakeFloat 110, 289
DXMakeGridConnections 104, 289
DXMakeGridConnectionsV 104, 289
DXMakeGridPositions 104, 290
DXMakeGridPositionsV 104, 290
DXMakeImage 156, 291
DXMakeInteger 110, 291
DXMakeString 110, 292
DXMakeStringList 102, 292
DXMakeStringListV 102, 292
DXMap 133, 293
DXMapArray 133, 294
DXMapCheck 133, 294
DXMarkTime 116, 295
DXMarkTimeLocal 116, 295
DXMat 126, 340
DXMax 127, 189
DXMessage 115, 296
DXMessageGoto 115, 193
DXMessageReturn 115, 193
DXMin 127, 189
DXModSetFloatInput 128
DXModSetIntegerInput 128, 203
DXModSetObjectInput 128, 203
DXModSetObjectOutput 128, 203
DXModSetStringInput 128, 203
DXMul 127, 189
DXNeg 126, 189
DXNeighbors 108, 297
DXNewAmbientLight 156, 297
DXNewArray 102, 298
DXNewArrayV 102, 298
DXNewCamera 155, 299
DXNewClipped 155, 300
DXNewCompositeField 100, 301
DXNewConstantArray 105, 302
DXNewConstantArrayV 105, 302
DXNewDistantLight 156, 302
DXNewField 97, 303
DXNewGroup 98, 304

 Glossary

 Index 383

DXNewInterpolator 133, 305
DXNewMeshArray 105, 306
DXNewMeshArrayV 105, 306
DXNewMultiGrid 99, 306
DXNewPathArray 104, 307
DXNewPrivate 106, 308
DXNewProductArray 105, 308
DXNewProductArrayV 105, 308
DXNewRegularArray 104, 309
DXNewScreen 154, 311
DXNewSeries 99, 312
DXNewString 106, 312
DXNewXform 154, 313
DXNormalize 126, 189
DXOutputRGB 156, 315
DXPartition 132, 316
DXPrint 106, 316
DXPrintAlloc 117, 317
DXPrintTimes 116, 318
DXPrintV 106, 316
DXProcessorId 123, 319
DXProcessors 123, 320
DXProcessParts 100, 320
DXPt 124, 322
DXQuad 124, 286
DXQueryAmbientLight 156, 323
DXQueryArrayCommon 109, 323
DXQueryArrayCommonV 109, 323
DXQueryArrayConvert 109, 325
DXQueryArrayConvertV 109, 325
DXQueryConstantArray 105, 325
DXQueryDebug 116, 219
DXQueryDistantLight 156, 326
DXQueryGridConnections 104, 327
DXQueryGridPositions 104, 327
DXQueryHashElement 139, 328
DXQueryOriginalMeshExtents 139, 329
DXQueryOriginalSizes 139, 329
DXQueryParameter 109, 330
DXQueryPickCount 142, 331
DXQueryPickPath 142, 332
DXQueryPokeCount 142, 332
DXReadyToRun 129, 334
DXReAllocate 117, 334
DXReference 120, 335
DXRegisterInputHandler 129, 336
DXRemove 110, 336
DXRename 110, 337
DXRender 337
DXReplace 110, 338
DXResetError 115, 339
DXRGB 125, 339
DXRibbon 147, 340
DXRotateX 126, 340
DXRotateY 126, 340

DXRotateZ 126, 340
DXSaveInvalidComponent 135, 342
DXScalarConvert 109, 342
DXScale 126, 340
DXSetAllInvalid 135, 343
DXSetAllValid 135, 343
DXSetAttribute 119, 344
DXSetBackgroundColor 155, 345
DXSetCacheEntry 122, 345
DXSetCacheEntryV 122, 345
DXSetClippedObjects 155, 347
DXSetComponentAttribute 97, 347
DXSetComponentValue 97, 348
DXSetConnections 107, 349
DXSetElementInvalid 135, 349
DXSetElementValid 135, 350
DXSetEnumeratedMember 98, 350
DXSetError 115, 351
DXSetErrorExit 128, 352
DXSetFloatAttribute 119, 353
DXSetGroupType 98, 353
DXSetGroupTypeV 98, 353
DXSetIntegerAttribute 119, 354
DXSetMember 98, 355
DXSetMeshOffsets 105, 355
DXSetModuleInput 128, 203
DXSetModuleOutput 128, 203
DXSetObjectTag 120, 260
DXSetOrthographic 155, 356
DXSetPart 100, 357
DXSetPathOffset 104, 357
DXSetPendingCmd 358
DXSetPerspective 155, 359
DXSetResolution 155, 360
DXSetScreenObject 154, 361
DXSetSeriesMember 99, 361
DXSetStringAttribute 119, 362
DXSetView 155, 363
DXSetXformObject 154, 363
DXShrink 139, 364
DXStatistics 108, 365
DXSub 127, 189
DXSwap 110, 365
DXTetra 124, 286
DXTraceTime 116, 367
DXTranslate 126, 340
DXTranspose 127, 210
DXTraversePickPath 142, 367
DXTri 124, 286
DXTrim 102, 368
DXTube 147, 368
DXTypeCheck 101, 369
DXTypeCheckV 101, 369
DXTypeSize 121, 370
DXUnreference 120, 371

384 IBM Visualization Data Explorer: Programmer’s Reference

DXUnsetGroupType 98, 371
DXValidPositionsBoundaryBox 373
DXValidPositionsBoundingBox 108
DXVec 124, 322
DXWarning 115, 374

E
edit options of Module Builder 23
ERR_CONT flag of a module description file 80
error codes 114
error handling and message routines

DXAddMessage 115, 193
DXASSERT 115, 351
DXBeginLongMessage 115, 201
DXDebug 116, 219
DXEnableDebug 116, 219
DXEndLongMessage 115, 201
DXErrorGoto 115, 351
DXErrorReturn 115, 351
DXGetError 115, 247
DXGetErrorMessage 115, 249
DXMessage 115, 296
DXMessageGoto 115, 193
DXMessageReturn 115, 193
DXQueryDebug 116, 219
DXResetError 115, 339
DXSetError 115, 351
DXValidPositionsBoundaryBox 373
DXWarning 115, 374
error codes 114
note on use 115
overview 114

error handling and messages 114
example modules

Add 32
Add for a parallel environment 68
Add2 33
Add2Invalid 34
asynchronous outboard 89
AverageCell 44
AverageCell for a parallel environment 71
Hello 6
Import 51
MakeX 38
MakeXEfficient 41
ShowPick 56

Example1_worker Routine 28
Example2_worker Routine 28
Example3_worker Routine 29
exDXLBeginMacroDefinition 175
exDXLEndMacroDefinition 175
exDXLExecuteOnceNamed 174
exDXLExecuteOnceNamedWithArgs 174
exDXLExecuteOnceNamedWithArgsV 174

exDXLExecuteOnChangeNamed 174
exDXLExecuteOnChangeNamedWithArgs 174
exDXLExecuteOnChangeNamedWithArgsV 174
exDXLLoadScript 175
exporting Data Explorer format files 110
extracting module parameters 108

F
Field class routines

DXComponentOpt 97, 209
DXComponentOptLoc 97, 209
DXComponentReq 97, 209
DXComponentReqLoc 97, 209
DXDeleteComponent 97, 221
DXGetComponentAttribute 97, 242
DXGetComponentValue 97, 243
DXGetEnumeratedComponentAttribute 97, 245
DXGetEnumeratedComponentValue 97, 246
DXNewField 97, 303
DXSetComponentAttribute 97, 347
DXSetComponentValue 97, 348
note on use 97, 98
overview 97

Field construction 106
connections routines 107
overview 106
points and dependent data 106
standard-components routines 107

file options of Module Builder 22
files, module description (see module description files)
filter

disadvantage of an external 51
using to import data 48
writing a 48

FLAG statement in a module description file
ERR_CONT 80
PERSISTENT 80
PIN 80
SIDE_EFFECT 80

freeing memory 13
fuzz attribute 153

G
generic Array operations 101
generic Group operations 98
geometric objects

clipping 146
path operations 146
text 146

getting started 5
global memory allocation 116
Group class

Composite Field routines 100
members routines 98

 Glossary

 Index 385

Group class (continued)
MultiGrid routines 99
overview 98
parts routines 100
Series Group routines 99

grow and shrink routines
DXGrow 138, 273
DXGrowV 138, 273
DXQueryOriginalMeshExtents 139, 329
DXQueryOriginalSizes 139, 329
DXShrink 139, 364
overview 137

growing partitioned data 137

H
hash table 139
hashFunc 140
hashing routines 139

cmpFunc 140
DXCreateHash 139, 214
DXDeleteHashElement 140, 221
DXDestroyHash 140, 222
DXGetNextHashElement 140, 258
DXInitGetNextHashElement 140, 277
DXInsertHashElement 139, 279
DXQueryHashElement 139, 328
hashFunc 140
overview 139

Hello module example
CATEGORY statement 6
compiling 8
DESCRIPTION statement 6
error checking 11
INPUT statement 6
linking 8
module description file 6
MODULE statement 6
OUTPUT statement 6
purpose 6
use in a visual program 9
using in a script 10

Help options of Module Builder 23

I
image-Field routines

DXDisplayX 156, 222
DXDisplayX12 156, 222
DXDisplayX24 156, 222
DXDisplayX8 156, 222
DXGetImageBounds 156, 252
DXGetImageSize 156, 252
DXGetPixels 156, 264
DXMakeImage 156, 291
DXOutputRGB 156, 315

image-Field routines (continued)
overview 156

import
Data Explorer format files 110
netCDF data 111

Import module example 51
import module, writing an 51
importing data

methods 48
routines 110
writing a filter 48
writing an import module 51

inboard modules
compiling 8, 85
debugging 85
linking 8, 85
overview 5

input data in worker routine of module framework 27
input parameters (default) in worker routine 28
INPUT statement in a module description file 81

default field 82
description field 82
name field 81
type field 82
visible attribute 81

input/output options of Module Builder 24
interpolation and mapping routines

DXInterpolate 133, 280
DXLocalizeInterpolator 133, 287
DXMap 133, 293
DXMapArray 133, 294
DXMapCheck 133, 294
DXNewInterpolator 133, 305
overview 132

invalid-data routines
DXCreateInvalidComponentHandle 134, 215
DXCull 134, 217
DXFreeInvalidComponentHandle 135, 234
DXGetInvalidComponentArray 135, 254
DXGetInvalidCount 135, 254
DXGetNextInvalidElementIndex 135, 259
DXGetNextValidElementIndex 135, 259
DXGetValidCount 135, 271
DXInitGetNextInvalidElementIndex 135, 278
DXInitGetNextValidElementIndex 135, 278
DXInvalidateConnections 134, 280
DXInvalidateDupBoundary 281
DXInvalidateDupBoundary. 134
DXInvalidateUnreferencedPositions 134, 281
DXInvertValidity 135, 282
DXIsElementInvalid 135, 283
DXIsElementInvalidSequential 135, 283
DXIsElementValid 135, 283
DXIsElementValidSequential 135, 283
DXSaveInvalidComponent 135, 342
DXSetAllInvalid 135, 343

386 IBM Visualization Data Explorer: Programmer’s Reference

invalid-data routines (continued)
DXSetAllValid 135, 343
DXSetElementInvalid 135, 349
DXSetElementValid 135, 350
examples 136
overview 133

irregular-Array routines
DXAddArrayData 102, 190
DXAllocateArray 102, 197
DXNewArray 102, 298
DXNewArrayV 102, 298
DXTrim 102, 368
note on use 102
overview 101

K
keys (pseudo) 139

L
leaks, memory 92
Light class routines

DXNewAmbientLight 156, 297
DXNewDistantLight 156, 302
DXQueryAmbientLight 156, 323
DXQueryDistantLight 156, 326
overview 156

linking
a runtime-loadable module 8, 91
an inboard module 8, 85
an outboard module 8, 86

LOADABLE statement in a module description file 81
local memory allocation 116

M
makefile

Data General AViiON 85, 86, 91
DEC Alpha 85, 86, 91
Hewlett-Packard 85, 86, 91
RISC System/6000 85, 86, 91
Silicon Graphics 85, 86, 91
Sun Microsystems 85, 86, 91

MakeX module example 38
MakeXEfficient module example 41
manipulation, component 110
mapping and interpolation routines

DXInterpolate 133, 280
DXLocalizeInterpolator 133, 287
DXMap 133, 293
DXMapArray 133, 294
DXMapCheck 133, 294
DXNewInterpolator 133, 305
overview 132

matrices, transformation 126
matrix data type, basic operations

DXAdjointTranspose 127, 210
DXConcatenate 127, 210
DXDeterminant 127, 210
DXInvert 127, 210
DXTranspose 127, 210

mdf (see module description files)
members routines

DXGetEnumeratedMember 98, 247
DXGetGroupClass 98, 251
DXGetMember 98, 255
DXGetMemberCount 98, 256
DXNewGroup 98, 304
DXSetEnumeratedMember 98, 350
DXSetGroupType 98, 353
DXSetGroupTypeV 98, 353
DXSetMember 98, 355
DXUnsetGroupType 98, 371
note on use 99
overview 98

memory
allocating 13
freeing 13
global 116
leaks 92
local 116
management 13

memory allocation routines 116
DXAllocate 116, 196
DXAllocateLocal 116, 196
DXAllocateLocalOnly 117, 196
DXAllocateLocalOnlyZero 117, 196
DXAllocateLocalZero 116, 196
DXAllocateZero 116, 196
DXFree 117, 233
DXPrintAlloc 117, 317
DXReAllocate 117
global 116
local 116
overview 116

memory leaks 92
menu bar of Module Builder 22
Mesh Array routines

DXGetMeshArrayInfo 105, 256
DXGetMeshOffsets 105, 257
DXNewMeshArray 105, 306
DXNewMeshArrayV 105, 306
DXSetMeshOffsets 105, 355
overview 105

messages and error handling routines
DXAddMessage 115, 193
DXASSERT 115, 351
DXBeginLongMessage 115, 201
DXDebug 116, 219
DXEnableDebug 116, 219

 Glossary

 Index 387

messages and error handling routines (continued)
DXEndLongMessage 115, 201
DXErrorGoto 115, 351
DXErrorReturn 115, 351
DXGetError 115, 247
DXGetErrorMessage 115, 249
DXMessage 115, 296
DXMessageGoto 115, 193
DXMessageReturn 115, 193
DXQueryDebug 116, 219
DXResetError 115, 339
DXSetError 115, 351
DXValidPositionsBoundaryBox 373
DXWarning 115, 374
error codes 114
note on use 115
overview 114

module access routines
DXCallModule 128, 203
DXCheckRIH 205
DXGetErrorExit 248
DXInitModules 277
DXModSetFloatInput 128
DXModSetIntegerInput 128, 203
DXModSetIntegerOutput 203
DXModSetObjectInput 128, 203
DXModSetObjectOutput 128, 203
DXModSetStringInput 128, 203
DXModSetStringOutput 203
DXSetErrorExit 352
DXSetModuleInput 128, 203
DXSetModuleOutput 128, 203
note on use 128
overview 127

Module Builder
build options 23
edit options 23
file options 22
Help options 23
input/output options 24
menu bar 22
module description 23
module framework 18
overview 18
parameter information 24
user interface 18
using 20

module description files 80
module description files (mdf) i, 23

Add2 example 33
Add2Invalid example 34
CATEGORY statement 80
examples 83
FLAGS statement 80
format 80
Hello example 6, 8

module description files (mdf) (continued)
INPUT statement 81
LOADABLE statement 81
MODULE statement 80
OPTIONS statement 82
OUTBOARD statement 81
OUTPUT statement 82
REPEAT statement 83

module examples (see example modules)
module framework of Module Builder

connections specification in worker routine 26
default input parameters in worker routind 28
doLeaf routine 18
Example1_worker Routine 28
Example2_worker Routine 28
Example3_worker Routine 29
input data in worker routine 27
output data in worker routine 27
positions specification in worker routine 26
prefixing m to module name 18
Traverse routine 18
worker routine 26

module naming conventions 6
module options of Module Builder 23
module parameter routines

DXArrayConvert 109, 199
DXArrayConvertV 109, 199
DXExtractFloat 108, 229
DXExtractInteger 108, 230
DXExtractNthString 109, 230
DXExtractParameter 109, 231
DXExtractString 109, 232
DXQueryArrayCommon 109, 323
DXQueryArrayCommonV 109, 323
DXQueryArrayConvert 109, 325
DXQueryArrayConvertV 109, 325
DXQueryParameter 109, 330
DXScalarConvert 109, 342
note on use 109
overview 108

module parameters, extracting 108
MODULE statement in a module description file 80
modules

adding to Data Explorer 5
asynchronous 84, 89
cache considerations 14
categories 6
description files (.mdf file) 80
exceptions to pure-function requirement 14
inboard 5, 8, 85
memory leaks 92
naming conventions 6
outboard 5, 8, 85, 86
persistent 87
pure-function requirement 14
runtime-loadable 8, 85, 91

388 IBM Visualization Data Explorer: Programmer’s Reference

modules (continued)
simple outboard 87
writing parallel 68

Multigrid Groups 99
MultiGrid routines

DXNewMultiGrid 99, 306
overview 99

N
name field

of INPUT statement 81
of OUTPUT statement 82

naming conventions, module 6
netCDF data routine

DXImportNetCDF 111, 276
overview 111

netCDF data routines 111
normals dependency 152

O
Object

class 96, 118
description 96
fuzz 153
subclasses 118
type 96

Object class
classes and subclasses 118
hierarchy 96
Object routines 119
overview 96, 117
type definitions 117
type routines 120

Object routines
DXCopy 119, 211
DXCopyAttributes 120, 212
DXDelete 119, 220
DXDeleteAttribute 119, 344
DXGetAttribute 119, 240
DXGetEnumeratedAttribute 119, 245
DXGetFloatAttribute 119, 249
DXGetIntegerAttribute 119, 253
DXGetObjectClass 119, 260
DXGetObjectTag 120, 260
DXGetStringAttribute 119, 269
DXReference 120, 335
DXSetAttribute 119, 344
DXSetFloatAttribute 119, 353
DXSetIntegerAttribute 119, 354
DXSetObjectTag 120, 260
DXSetStringAttribute 119, 362
DXUnreference 120, 371
overview 119

opacity dependency 152
OPTIONS statement in a module description file 82
order of vertices 124
outboard modules

asynchronous example 89
compiling 8, 86
debugging 86
linking 8, 86
overview 5
persistent 87
simple 87
special considerations 87

OUTBOARD statement in a module description file 81
output data in worker routine of module framework 27
OUTPUT statement in a module description file 82

cache attribute 82
description field 83
name field 82
type field 83

overlapping regions in partitioned data 137

P
parallel environment

Add module example 68
AverageCell module example 71
writing modules for 68

parallel module example 68, 71
parallelism routines

DXAbortTaskGroup 123, 189
DXAddTask 123, 195
DXCreateTaskGroup 123, 216
DXExecuteTaskGroup 123, 226
DXProcessorId 123, 319
DXProcessors 123, 320
overview 123

partitioned data, growing and shrinking 137
partitioned data, overlapping regions in 137
partitioning routines

DXPartition 132, 316
overview 132

parts routines
DXGetPart 100, 261
DXGetPartClass 100, 262
DXProcessParts 100, 320
DXSetPart 100, 357
overview 100

Path Array routines
DXGetPathArrayInfo 104, 262
DXGetPathOffset 104, 263
DXNewPathArray 104, 307
DXSetPathOffset 104, 357
overview 104

path operations routines
DXRibbon 147, 340
DXTube 147, 368

 Glossary

 Index 389

path operations routines (continued)
overview 146

PERSISTENT flag of a module description file 80
persistent outboard modules 87
perspective camera 155
Pick module 56
pick structure 56

picks 56
pokes 56

pick-assistance routines 142
DXGetPickPoint 142, 264
DXQueryPickCount 142, 331
DXQueryPickPath 142, 332
DXQueryPokeCount 142, 332
DXTraversePickPath 142, 367
Example 143
overview 142

picked Objects
ShowPick module example 56

picks (on an image object) 56
picks versus probes 56
PIN flag of a module description file 80
point data type, basic operations

DXAdd 127, 189
DXApply 127, 210
DXCross 127, 189
DXDiv 127, 189
DXDot 127, 189
DXLength 126, 189
DXMax 127, 189
DXMin 127, 189
DXMul 127, 189
DXNeg 126, 189
DXNormalize 126, 189
DXSub 127, 189

point, constructing a 124
pointer 116
points, point-dependent, and connection-dependent data

routines
DXAddBackColor 107, 194
DXAddBackColors 107, 194
DXAddColor 107, 194
DXAddColors 107, 194
DXAddFaceNormal 107, 191
DXAddFaceNormals 107, 191
DXAddFrontColor 107, 194
DXAddFrontColors 107, 194
DXAddNormal 107, 194
DXAddNormals 107, 194
DXAddOpacities 107, 194
DXAddOpacity 107, 194
DXAddPoint 107, 194
DXAddPoints 107, 194
overview 106

poke (in an image) 56

positions specification in worker routine of module
framework 26

positions, working with
MakeX module example 38
MakeXEfficient module example 41

prefixing m to module name routine of module
framework 18

printing Objects 106
Private Object routines

DXGetPrivateData 106, 265
DXNewPrivate 106, 308
overview 106

probes versus picks 56
Product Array routines

DXGetProductArrayInfo 105, 265
DXNewProductArray 105, 308
DXNewProductArrayV 105, 308
overview 105

pseudokeys 139

R
reference counts 14
regions, overlapping in partitioned data 137
Regular Array routines

DXGetRegularArrayInfo 104, 266
DXNewRegularArray 104, 309
overview 104

rendering
Camera class routines
Clipped class routines
color dependency 152
DXRender 150, 337
image Field routines 156
Light class routines
model 153
normals dependency 152
opacity dependency 152
overview 150
process of, using DXRender 337
Screen class routines 154
surface shading 151
tiling 152
transformation 150
using DXRender 150
Xform class routines 154

REPEAT statement in a module description file 83
RGBColor 125
runtime-loadable modules

compiling 8, 91
debugging 91
linking 8, 91

390 IBM Visualization Data Explorer: Programmer’s Reference

S
Screen class routines

DXGetScreenInfo 154, 267
DXNewScreen 154, 311
DXSetScreenObject 154, 361
overview 154

scripting language, using the Hello module 10
Series Groups 99
Series Groups routines

DXGetSeriesMember 99, 267
DXNewSeries 99, 312
DXSetSeriesMember 99, 361
overview 99

setting a data type 120
shading, surface 151
ShowPick module example 56
shrink and grow routines

DXGrow 138, 273
DXGrowV 138, 273
DXQueryOriginalMeshExtents 139, 329
DXQueryOriginalSizes 139, 329
DXShrink 139, 364
overview 137

shrinking partitioned data 137
SIDE_EFFECT flag of a module description file 80
simple outboard modules 87
single Array, posting
standard-components routines

DXBoundingBox 108, 201
DXChangedComponentStructure 108, 204
DXChangedComponentValues 108, 204
DXEmptyField 108, 224
DXEndField 107, 224
DXEndObject 108, 226
DXNeighbors 108, 297
DXStatistics 108, 365
DXValidPositionsBoundingBox 108
note on use 108
overview 107

string list routines
DXMakeStringList 102, 292
DXMakeStringListV 102, 292
overview 102

String Object routines
DXGetString 106, 268
DXNewString 106, 312
overview 106

String-list routines 102
subclasses of Objects 118
surface shading 151
system services

basic data types, description of 123
cache routines 121
error handling and messages 114
memory allocation 116

system services (continued)
Object class 117
overview 114
parallelism routines 123
Private Object routines 106
String class 106
timing 116

T
text routines 146

DXGeometricText 146, 236
DXGetFont 146, 251
overview 146

tiling
options 153
overview 152
rendering model 153

timing routines 116
DXGetTime 116, 269
DXMarkTime 116, 295
DXMarkTimeLocal 116, 295
DXPrintTimes 116, 318
DXTraceTime 116, 367
overview 116

toolkit, DXLink developer's 158
transformation

DXApplyTransform 150, 198
rendering 150

transformation matrices routines
DXMat 126, 340
DXRotateX 126, 340
DXRotateY 126, 340
DXRotateZ 126, 340
DXScale 126, 340
DXTranslate 126, 340
identity 126
overview 126

Traverse routine of module framework 18
type definitions of Objects 117
type field

of INPUT statement 82
of OUTPUT statement 83

type routines for Objects
DXCategorySize 121, 370
DXGetType 120, 271
DXPrint 106, 316
DXPrintV 106, 316
DXTypeSize 121, 370
overview 120

types
data 120, 123
setting data 120

 Glossary

 Index 391

U
uiDXLCloseAllColorMapEditors 178
uiDXLCloseAllImages 178
uiDXLCloseColorMapEditorByLabel 178
uiDXLCloseColorMapEditorByTitle 178
uiDXLCloseSequencer 178
uiDXLCloseVPE 178
uiDXLLoadConfig 175
uiDXLOpenAllImages 178
uiDXLOpenColorMapEditorByTitle 178
uiDXLOpenSequencer 178
uiDXLOpenVPE 178
uiDXLResetServer 174
uiDXLSetRenderMode 174
uiDXLSyncExecutive 174
using the Module Builder 20

V
vector data type, basic operations

DXAdd 127, 189
DXApply 127, 210
DXCross 127, 189
DXDiv 127, 189
DXDot 127, 189
DXLength 126, 189
DXMax 127, 189
DXMin 127, 189
DXMul 127, 189
DXNeg 126, 189
DXNormalize 126, 189
DXSub 127, 189

vector, constructing a 124
vertex ordering 124
visible attribute of INPUT statement 81

W
worker routine of module framework

connections specification in 26
default input parameters in 28
Example1_worker Routine 28
Example2_worker Routine 28
Example3_worker Routine 29
input data in 27
output data in 27
overview 26
positions specification 26

writing a filter 48
writing an import module 51
writing parallel modules 68

X
Xform class routines

DXGetXformInfo 154, 272

Xform class routines (continued)
DXNewXform 154, 313
DXSetXformObject 154, 363
overview 154

392 IBM Visualization Data Explorer: Programmer’s Reference

Readers' Comments — We'd Like to Hear from You

IBM Visualization Data Explorer
Programmer’s Reference
Version 3 Release 1 Modification 4

Publication No. SC38-0497-06

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? Ø Yes Ø No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction Ø Ø Ø Ø Ø

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SC38-0497-06 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Thomas J. Watson Research Center/Hawthorne
Data Explorer Development
P.O. Box 704
YORKTOWN HEIGHTS, NY
USA 10598-0704

Fold and Tape Please do not staple Fold and Tape

SC38-0497-06

IBM

Printed in U.S.A.

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber

SC38-ð497-ð6

	Cover
	Table of Contents
	List of Figures
	List of Tables
	About This Book
	Chapter 1. Overview
	Chapter 2. Writing a Simple Module
	Chapter 3. Module Builder
	Chapter 4. Working with Data
	Chapter 5. Working with Positions
	Chapter 6. Working with Connections
	Chapter 7. Importing Data
	Chapter 8. Using the Pick Structure
	Chapter 9. Writing Modules for a Parallel Environment
	Chapter 10. Making a Module Work
	Chapter 11. Working with Data Model Objects
	Chapter 12. System Services
	Chapter 13. Data Processing
	Chapter 14. Geometric Objects
	Chapter 15. Rendering
	Chapter 16. DXLink Developer's Toolkit
	Appendix A. Data Explorer Libraries
	Appendix B. Data Explorer Data Model Library: DXlite Routines
	Appendix C. Data Explorer Library Routies
	DXAbort...
	DXBegin...
	DXCopy...
	DXDebug...
	DXEmpty...
	DXFree...
	DXGeometric...
	DXGetFont...
	DXImport...
	DXL...
	DXMake...
	DXNeighbors...
	DXOutput...
	DXQuery...
	DXReady...
	DXSet...
	DXTrace...
	DXUnreference...
	DXValid...

	Glossary
	Index
	A ... Clipped
	clipping ... data
	debugging ... DXFreeModuleId
	DXGeometricText ... DXLink
	DXLink ... DXNewGroup
	DXNewInterpolator ... DXUnreference
	DXUnsetGroupType ... Group class
	Group class ... invalid-data routines
	invalid-data routines ... messages
	messages ... modules
	modules ... path operations routines
	path operations routines ... runtime-loadable modules
	Screen class routines ... types
	UVWX

