

IB
M

IBM Visualization Data Explorer

User’s Guide

Version 3 Release 1 Modification 4

SC38-0496-06

IBM IBM Visualization Data Explorer

User’s Guide

Version 3 Release 1 Modification 4

SC38-0496-06

 Note!

Before using this information and the product it supports, be sure to read the general information under “Notices” on page xiii.

Seventh Edition (May 1997)

This edition applies to IBM Visualization Data Explorer Version 3.1.4, to IBM Visualization Data Explorer SMP Version 3.1.4, and to
all subsequent releases and modifications thereof until otherwise indicated in new editions. Make sure you are using the correct
edition for the level of the product. Order publications through your IBM representative or the IBM branch office serving your locality.
Publications are not stocked at the address given below.

A form for readers’ comments appears at the back of this publication. If the form has been removed, address your comments to:

 IBM Corporation
Thomas J. Watson Research Center/Hawthorne
Data Explorer Development
P.O. Box 704
Yorktown Heights, NY 10598-0704

 USA

If you send information to IBM, you grant IBM a nonexclusive right to use or distribute that information, in any way it believes
appropriate, without incurring any obligation to you.

 Copyright International Business Machines Corporation 1991-1997. All rights reserved.
Note to U.S. Government Users — Documentation related to restricted rights — Use, duplication or disclosure is subject to
restrictions set forth in GSA ADP Schedule Contract with IBM Corp.

 Contents

Figures . ix

Tables . xi

Notices . xiii
Products, Programs, and Services . xiv
Trademarks and Service Marks . xiv
Copyright notices . xv

About This Guide . xxi
Who Should Use It . xxii
How To Use It . xxii
Typographic Conventions . xxiii
Related Publications and Sources . xxiii

IBM Publications . xxiii
Non-IBM Publications . xxiv
Other sources of information . xxiv

New Features in Data Explorer Version 3.1.4 xxvii
User Interface . xxviii

New Startup Behavior . xxviii
New Save Image Dialog in Image Window xxviii
New Data Prompter . xxviii
Pages . xxviii
Annotation . xxviii
Optimizing Caching . xxviii

Changes to Get and Set modules . xxix
New Window Management Functionality . xxix
Hardware Rendering . xxix
DXLink . xxix
Changed Modules . xxx
New Modules . xxxi
Backward Incompatibilities . xxxiii
HTML Documentation . xxxiv
Fixes . xxxiv

Chapter 1. Overview . 1
1.1 Overview of Data Explorer . 2
1.2 System Structure . 3

Graphical User Interface . 3
Executive . 4
Modules . 4
Data Management . 4
How the Data Model Facilitates Interoperability 4

Chapter 2. Introduction to Visualization . 7
2.1 Terminology . 8

Rendering . 8
Positions and Connections Dependence . 8
Connections and Interpolation . 9

 Copyright IBM Corp. 1991-1997 iii

Identifying Connections . 11
Invalid Data . 12
Fields . 12

2.2 Visual Programming: The Basics . 13

Chapter 3. Understanding the Data Model 15
3.1 Introduction to the Data Model . 16
3.2 Object Types . 17

Fields . 17
Arrays . 28
Groups . 34

Chapter 4. Data Explorer Execution Model 37
4.1 Data Flow . 38
4.2 Iterative Execution and Caching of Intermediate Results 40
4.3 Conditional Execution: Route and Switch 41
4.4 Iteration using the Sequencer . 43
4.5 Iteration using Looping . 44
4.6 Preserving Explicit State . 45
4.7 Advanced Looping Constructs . 50
4.8 External Asynchronous Data Sources . 54
4.9 Parallelism using Distributed Processing . 55
4.10 Parallelism for Data Explorer SMP . 56

Chapter 5. Graphical User Interface: Basics 57
5.1 Starting Data Explorer . 58

Using Environment Variables . 59
5.2 Understanding Data Explorer Windows . 60

Looking at Window Structure . 61
Using the Mouse . 62
Moving and Resizing Windows . 62
Selecting Pull-Down Menus and Pull-Down Menu Options 62
Selecting and Deselecting Items with the Mouse 63
Selecting a Choice in an Option Box . 63
Editing Text Fields . 64
Working with Windows . 65

5.3 Using Online Help . 65
User-Defined Help Files . 67

5.4 Executing a Visual Program . 67
Using the Sequencer . 68
Using a Data-Driven Sequencer . 70
Error Messages . 71

Chapter 6. Graphical User Interface: Important Windows 73
6.1 Using the Image Window . 74

Controlling the Image: View Control... 74
Undo, Redo, and Reset . 87
AutoAxes... . 88
Set Background Color... 89
Display Rotation Globe . 91
Rendering Options... . 91
Image Depth . 93
Changing the Rate of Frame Display: Throttle... 93
Changing the Title of an Image Window . 93

iv IBM Visualization Data Explorer: User’s Guide

Control Panel Access... 94
Saving an Image . 94
Printing an Image . 97

6.2 Using the VPE . 99
Creating a Visual Program . 100
Specifying Values for a Tool's Inputs . 103
Creating, Deleting, and Moving Tab Connections 104
Moving and Copying Tools . 105
Using Transmitters and Receivers . 106
Adding and Removing Input and Output Tabs 106
Entering Values in a Configuration Dialog Box 107
Revealing and Hiding Input Tabs . 110
Using the Compute Module Configuration Dialog Box 111
Locating Tools: The Find Tool Dialog Box 111
Customizing the VPE Window . 113
Adding Comments to a Visual Program . 114
Adding Annotation to a Visual Program . 115
Creating pages in the VPE . 115
Saving and Restoring a Visual Program . 115

6.3 Using the Colormap Editor . 119
Entering Values in a Colormap Editor . 121
Using Data-Driven Colormap Editors . 125

Chapter 7. Graphical User Interface: Control Panels, Interactors, and
Macros . 127

7.1 Using Control Panels and Interactors . 128
Building Control Panels . 129
Placing Interactors in a New Control Panel 130
Adding Interactors to an Existing Control Panel 130
Selecting, Moving, and Deleting Interactors 131
Changing the Size of an Interactor . 132
Locating Interactor Stand-ins . 132
Deleting Control Panels . 132
Saving and Restoring Control Panels . 132
Customizing a Control Panel . 133
Control Panels as Dialog Boxes . 138
Control Panel Access, Groups, and Hierarchies 138
Creating, Modifying, and Deleting Control Panel Groups 139
Restricting Control Panel Access . 140
Specifying a Startup Control Panel . 141
Opening Existing Control Panels . 141
Using Interactors . 142
Using Data-Driven Interactors . 147

7.2 Creating and Using Macros . 149
Creating Macros . 149
Loading Macros . 152
Using Macros in a Visual Program . 153
Viewing and Changing Macros . 154

Chapter 8. Graphical User Interface: Menus, Options, and the Message
Window . 155

8.1 Using the Primary Window Pull-Down Menus and Options 156
VPE Window Menu Bar . 156
Control Panel Menu Bar . 162

 Contents v

Image Window Menu Bar . 165
Colormap Menu Bar . 168
Menu Bar Menu Bar . 170
Message Window Menu Bar . 172

8.2 Using the Message Window . 174

Chapter 9. Graphical User Interface: For Advanced Users 177
9.1 Using Distributed Computation . 178

Creating, Modifying, and Deleting Execution Groups 178
Displaying the Tools in an Execution Group 180
Assigning Execution Groups to Workstations 181
Restrictions . 182

9.2 Loading and Using Outboard and Runtime-Loadable Modules 183
9.3 Connecting to the Server . 183

Resetting the Server . 185

Chapter 10. Data Explorer Scripting Language 187
10.1 Starting Data Explorer in Script Mode 188

Setting Environment Variables . 189
10.2 Understanding the Script Structure . 189
10.3 Language Delimiters . 191

Commenting Scripts . 191
Naming Variables and Macros . 192
Specifying Values in a Script . 193

10.4 Building Expressions and Statements 197
Arithmetic Expressions . 197
Assignment Statements . 198
Function Call Assignments . 199

10.5 Invoking Data Explorer Macros and Modules 200
Function Call Arguments . 200
Function Call Attributes . 202

10.6 Defining Macros . 204
Macro Header . 204
Macro Body . 205
Macro Examples . 205

10.7 Using Data Explorer Script Commands 206
Sequencer . 206
File Inclusion . 207
Prompts . 207

10.8 Understanding the Script Execution Model 208
Top-level Environment . 208
Function Execution . 208
Macro Expansion . 208
Variables Used in Macros . 208
Assignment and Function Call Semantics 209
Execution Example . 210

10.9 Running .net files in script mode . 210

Appendix A. Using Data Explorer: Some Useful Hints 211
A.1 Using Data Explorer Effectively . 212

Common Problems . 212
What is the Difference Between Image and Display? 212
How do I get more information? . 213
Memory Use . 213

vi IBM Visualization Data Explorer: User’s Guide

A.2 Visualization Techniques . 217
Animation . 217
Annotation . 218
Color Mapping . 219
Contours and Isosurfaces . 221
Mapping . 223
Normals and Shading . 224
Plots and Histograms . 227
Rubbersheet . 227
Transformations and Structuring . 228
Vector Fields . 229
Volume Rendering . 231

A.3 Design for Interactive Use . 232
Interactors and Control Panels . 232
Transmitters and Receivers . 234
Documentation . 235

A.4 Design for Video Output . 236
TV Line Resolution . 236
TV Color Resolution . 237
Animation and Frame Rates . 237

A.5 Presentation: Issues and Techniques . 238

Appendix B. Importing Data: File Formats 241
B.1 General Array Importer: Keyword Information from Data Files 242
B.2 Data Explorer Native Files . 244

Overview of the Native File Format . 244
Examples . 246
Syntax of the Native File Format . 268
Objects . 269
Group Objects . 270
Series Objects . 271
Multigrid Objects . 271
Composite Field Objects . 271
Field Objects . 272
Array Objects . 272
Constant Array Objects . 273
gridpositions Keyword . 274
Regular Array Objects . 274
Product Array Objects . 275
gridconnections Keyword . 275
Path Array Objects . 276
Mesh Array Objects . 276
Xform Objects . 277
String Objects . 277
Light Objects . 277
Camera Objects . 278
Clipped Objects . 278
Screen Objects . 278
Data Mode Clause . 278
Default Clause . 279
End Clause . 279

B.3 CDF Files . 279
B.4 netCDF Files . 281

Regular Grids . 281

 Contents vii

B.5 netCDF Files: Complex Fields . 282
Irregular Arrays . 282
Series Data . 284
Examples . 286

B.6 HDF Files . 288

Appendix C. Environment Variables and Command Line Options 291
C.1 Environment Variables . 292

Path Variables . 292
Other Environment Variables . 292

C.2 Command Line Options . 295

Appendix D. User Interface Configuration 299

Appendix E. Data Explorer Fonts . 307

Appendix F. Data Explorer Colors . 313

Appendix G. Accelerator Keys . 315

Glossary . 317

Index . 323

viii IBM Visualization Data Explorer: User’s Guide

 Figures

1. Examples of Data Dependency . 10
2. Example of a Field Object . 18
3. Shared Components among Different Fields 19
4. Order of Vertices in Triangles and Tetrahedra 21
5. Order of Vertices in Quads and Cuboids 21
6. Examples of Grid Types . 22
7. Use of Faces, Loops, and Edge Components 26
8. Example of an Irregular Array . 29
9. Example of a Regular Array . 29

10. Example of a Product Array . 30
11. Product Array of Two Regular Arrays . 31
12. Example of a Path Array . 31
13. Example of a Mesh Array . 32
14. Mesh Array of Two Path Arrays (with Regular Connections) 33
15. Example of a Constant Array . 33
16. Example of a Group . 34
17. Example of a Series Group . 35
18. Example 1 . 39
19. Example 2 . 41
20. Example 3 . 43
21. Example 4 . 44
22. Example 5 . 46
23. Example 6 . 48
24. Example 7 . 49
25. Example 8 . 51
26. Example 9 . 52
27. Example 10 . 53
28. Example 11 . 54
29. Example 12 . 55
30. Visual Program Editor Window . 61
31. Example of an Option Box . 64
32. Sample Help Window . 66
33. Sequence Control Panel . 68
34. Sequencer Frame Control Dialog Box . 69
35. View Control Dialog Box . 75
36. View Control Modes with Accelerator Keys 75
37. Set View Option Box . 76
38. Navigate Portion of the View Control Dialog Box 81
39. Camera Settings Portion of the View Control Dialog Box 83
40. 3-D Cursor with a Selected Point . 86
41. AutoAxes Configuration dialog box . 89
42. Expanded AutoAxes Configuration Dialog Box 90
43. Rendering Options Dialog Box . 92
44. Throttle Dialog Box . 94
45. Save Image Dialog Box . 95
46. Print Image Dialog Box . 98
47. VPE Window . 100
48. Example of a Tool Icon . 101
49. How Tabs Work . 104
50. Typical Configuration Dialog Box . 108

 Copyright IBM Corp. 1991-1997 ix

51. Typical Dialog Box for the Compute Module 111
52. Find Tool Dialog Box . 112
53. Grid Dialog Box . 114
54. Save As Dialog Box . 116
55. Open Dialog Box . 118
56. Fragment of Visual Program Using Colormap 120
57. Colormap Editor . 121
58. Colormap's Add Control Points Dialog Box 123
59. Generate Waveforms Dialog Box . 125
60. Control Panel Window . 129
61. Set Attributes Dialog Box . 135
62. Set Attributes Dialog Box for a Selector Interactor 136
63. Set Interactor Label Dialog Box . 137
64. Control Panel Group Dialog Box . 139
65. Control Panel Access Dialog Box . 140
66. Stepper Style . 142
67. Dial Style . 143
68. Slider Style . 143
69. Text Style . 144
70. String Interactor . 144
71. Sample Vector List Interactor . 145
72. Selector Interactor (Radio-button Style) 146
73. FileSelector Interactor . 147
74. File Selection Dialog Box . 148
75. Example of a Macro . 150
76. Input Configuration Dialog Box . 151
77. Macro Name Dialog Box . 152
78. MapAndDeform Macro Icon . 154
79. Execution Group Dialog Box . 179
80. Execution Group Assignment Dialog Box 182
81. Start Server Dialog Box . 184
82. Start Server Options Dialog Box . 184
83. Data Imbedded in a Header Section . 245
84. Header Referring to Data in Another File 245
85. Header and Data in the Same File . 246
86. Regular Grid Example . 248
87. Regular Skewed Grid Example . 249
88. Warped Regular Grid Example . 250
89. Irregular Grid Example . 252
90. Product Array Example with Irregular Points in the XY Plane 256
91. Product Array Example with Irregular Points in the Z Direction 257
92. Example of Faces, Loops, and Edges 263
93. Example of Faces, Loops, and Edges with a Hole 263
94. Example of a Surface Using Faces, Edges, and Loops 266

x IBM Visualization Data Explorer: User’s Guide

 Tables

1. Standard Field Components . 19
2. Component attributes . 25
3. Object attributes . 25
4. Look Option Menu . 81
5. Data Explorer Command Line Options 295
6. Command Line Options for Developers 297
7. Resource Configuration Table . 299
8. roman_ext Font Characters (Part 1) . 309
9. roman_ext Font Characters (Part 2) . 310

10. Additional Symbols \001 - \035 . 310
11. European National Language Symbols and Characters \200 to \255 . . 311
12. Summary of Data Explorer Accelerator Keys 315

 Copyright IBM Corp. 1991-1997 xi

xii IBM Visualization Data Explorer: User’s Guide

 Notices

Products, Programs, and Services . xiv
Trademarks and Service Marks . xiv
Copyright notices . xv

 Copyright IBM Corp. 1991-1997 xiii

Products, Programs, and Services
References in this publication to IBM* products, programs, or services do not imply
that IBM intends to make these available in all countries in which it operates. Any
reference to an IBM product, program, or service is not intended to state or imply
that only IBM’s product, program, or service may be used. Any functionally
equivalent product, program, or service that does not infringe any of IBM’s
intellectual property rights may be used instead. Evaluation and verification of
operation in conjunction with other products, except those expressly designated by
IBM, is the user’s responsibility.

IBM may have patents or pending patent applications covering subject matter in
this document. The furnishing of this document does not give the user any license
to those patents. License inquiries should be sent, in writing, to:

International Business Machines Corporation
IBM Director of Licensing
500 Columbus Avenue
Thornwood, New York 10594
USA

Trademarks and Service Marks
The following terms, marked by an asterisk (*) at their first occurrence in this
publication, are trademarks or registered trademarks of the IBM Corporation in the
United States and/or other countries.

AIX
IBM
IBM Power Visualization System
RISC System/6000
Visualization Data Explorer

The following terms, marked by a double asterisk (**) at their first occurrence in this
publication, are trademarks of other companies.

AViiON Data General Corporation
DEC Digital Equipment Corporation
DGC Data General Corporation
Graphics Interchange Format (GIF) CompuServe, Inc.
Hewlett-Packard Hewlett-Packard Company
HP Hewlett-Packard Company
iFOR/LS Apollo Computer, Inc.
Motif Open Software Foundation
NetLS Apollo Computer, Inc.
Network Licensing Software Apollo Computer, Inc.
OpenWindows Sun Microsystems, Inc.
OSF Open Software Foundation, Inc.
PostScript Adobe Systems, Inc.
X Window System Massachusetts Institute of Technology

xiv IBM Visualization Data Explorer: User’s Guide

 Copyright notices
IBM Visualization Data Explorer contains software copyrighted as follows:

� E. I. du Pont de Nemours and Company

 Copyright 1997 E. I. du Pont de Nemours and Company

Permission to use, copy, modify, distribute, and sell this software and its
documentation for any purpose is hereby granted without fee, provided that the
above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the
name of E. I. du Pont de Nemours and Company not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior
permission. E. I. du Pont de Nemours and Company makes no representations
about the suitability of this software for any purpose. It is provided “as is”
without express or implied warranty.

E. I. du Pont de Nemours and Company disclaims all warranties with regard to
this software, including all implied warranties of merchantability and fitness, in
no event shall E. I. du Pont de Nemours and Company be liable for any
special, indirect or consequential damages or any damages whatsoever
resulting from loss of use, data or profits, whether in an action of contract,
negligence or other tortious action, arising out of or in connection with the use
or performance of this software.

� National Space Science Data Center

 Copyright 1990-1994 NASA/GSFC

National Space Science Data Center
NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771 USA
(NSI/DECnet -- NSSDCA::CDFSUPPORT)
(Internet -- CDFSUPPORT@NSSDCA.GSFC.NASA.GOV)

� University Corporation for Atmospheric Research/Unidata

 Copyright 1993, University Corporation for Atmospheric Research

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose without fee is hereby granted, provided that the
above copyright notice appear in all copies, that both that copyright notice and
this permission notice appear in supporting documentation, and that the name
of UCAR/Unidata not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission. UCAR
makes no representations about the suitability of this software for any purpose.
It is provided “as is” without express or implied warranty. It is provided with no
support and without obligation on the part of UCAR Unidata, to assist in its use,
correction, modification, or enhancement.

 � NCSA

NCSA HDF version 3.2r4
March 1, 1993

NCSA HDF Version 3.2 source code and documentation are in the public
domain. Specifically, we give to the public domain all rights for future licensing
of the source code, all resale rights, and all publishing rights.

 Notices xv

We ask, but do not require, that the following message be included in all
derived works:

Portions developed at the National Center for Supercomputing Applications at
the University of Illinois at Urbana-Champaign, in collaboration with the
Information Technology Institute of Singapore.

THE UNIVERSITY OF ILLINOIS GIVES NO WARRANTY, EXPRESSED OR
IMPLIED, FOR THE SOFTWARE AND/OR DOCUMENTATION PROVIDED,
INCLUDING, WITHOUT LIMITATION, WARRANTY OF MERCHANTABILITY
AND WARRANTY OF FITNESS FOR A PARTICULAR PURPOSE

� Gradient Technologies, Inc. and Hewlett-Packard Co.

 Copyright Gradient Technologies, Inc. 1991,1992,1993
 Copyright Hewlett-Packard Co. 1988,1990

June, 1993

UNIX is a registered trademark of UNIX Systems Laboratories, Inc.

Gradient is a registered trademark of Gradient Technologies, Inc.

NetLS and Network Licensing System are trademarks of Apollo Computer, Inc.,
a subsidiary of Hewlett-Packard Co.

� Sam Leffler and Silicon Graphics

 Copyright 1988-1996 Sam Leffler
 Copyright 1991-1996 Silicon Graphics, Inc.

Permission to use, copy, modify, distribute, and sell this software and its
documentation for any purpose is hereby granted without fee, provided that (i)
the above copyright notices and this permission notice appear in all copies of
the software and related documentation, and (ii) the names of Sam Leffler and
Silicon Graphics may not be used in any advertising or publicity relating to the
software without the specific, prior written permission of Sam Leffler and Silicon
Graphics.

THE SOFTWARE IS PROVIDED “AS-IS” AND WITHOUT WARRANTY OF
ANY KIND, EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT
LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE
FOR ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL
DAMAGES OF ANY KIND, OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER OR NOT ADVISED
OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF LIABILITY,
ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

 � Compuserve Incorporated

The Graphics Interchange Format  is the copyright property of Compuserve
Incorporated. GIF(SM) is a Service Mark property of Compuserve Incorporated.

� Integrated Computer Solutions, Inc.

Motif Shrinkwrap License

READ THIS LICENSE AGREEMENT CAREFULLY BEFORE USING THE
PROGRAM TAPE, THE SOFTWARE (THE “PROGRAM”), OR THE
ACCOMPANYING USER DOCUMENTATION (THE “DOCUMENTATION”).

xvi IBM Visualization Data Explorer: User’s Guide

THIS AGREEMENT REPRESENTS THE ENTIRE AGREEMENT
CONCERNING THE PROGRAM AND DOCUMENTATION POSAL,
REPRESENTATION, OR UNDERSTANDING BETWEEN THE PARTIES WITH
RESPECT TO ITS SUBJECT MATTER. BY BREAKING THE SEAL ON THE
TAPE, YOU ARE ACCEPTING AND AGREEING TO THE TERMS OF THIS
AGREEMENT. IF YOU ARE NOT WILLING TO BE BOUND NY THE TERMS
OF THIS AGREEMENT, YOU SHOULD PROMPTLY RETURN THE
CONTENTS, WITH THE TAPE SEAL UNBROKEN; YOUR MONEY WILL BE
REFUNDED.

1. License: ISC remains the exclusive owner of the Program and the
Documentation. ICS grant to Customer a nonexclusive, nontransferable (except
as provided herein) license to use, modify, have modified, and prepare and
have prepared derivative works of the Program as necessary to use it.

2. Customer Rights: Customer may use, modify and have modified and prepare
and have prepared derivative works of the Program in object code form as is
necessary to use the Program. Customer may make copies of the Program up
to the number authorized by ICS in writing, in advance. There shall be no fee
for Statically linked copies of the Motif libraries. Statically linked copies are
object code copies integrated within a single application program and
executable only with that single application. Run Time copies require payment
of ICS' then applicable fee. Run Time copies are copies which include any
portion of a linkable object file (“.o” file), library file (“.a” file), the window
manager (mwm manager), the U.I.L. compiler, a shared library, or any tool or
mechanism that enables generation of any portion of such components; other
copies will require payment of ICS' applicable fees. TRANSFERS TO THIRD
PARTIES OF COPIES OF THE LICENSED PROGRAMS, OR OF
APPLICATIONS PROGRAMS INCORPORATING THE PROGRAM (OR ANY
PORTION THEREOF), REQUIRE ICS' RESELLER AGREEMENT. Customer
may not lease or lend the Program to any party. Customer shall not attempt to
reverse engineer, disassemble or decompile the program.

3. Limited Warranty: (a) ICS warrants that for thirty (30) days from the delivery
to Customer, each copy of the Program, when installed and used in
accordance with the Documentation, will conform in all material respects to the
description of the Program's operations in the Documentation. (b) Customer's
exclusive remedy and ICS' sole liability under this warranty shall be for ICS to
attempt, through reasonable efforts, to correct any material failure of the
Program to perform as warranted, if such failure is reported to ICS within the
warranty period and Customer, at ICS' request, provides ICS with sufficient
information (which may include access to Customer's computer system for use
of Customer's copies of the Program by ICS personnel) to reproduce the defect
in question; provided, that if ICS is unable to correct any such failure within a
reasonable time, ICS may, at its sole option, refund to the Customer the license
fee paid for the Product. (c) ICS need not treat minor discrepancies in the
Documentation as errors in the Program, and may instead furnish correction to
the Program. (d) ICS does not warrant that the operation of the Program will be
uninterrupted or error-free, or that all errors will be corrected. (e) THE
FOREGOING WARRANTY IS IN LIEU OF, AND ICS DISCLAIMS, ALL OTHER
WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
THE WARRANTIES OF MERCHANTABILITY AND FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT WILL ICS BE LIABLE FOR ANY
INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT

 Notices xvii

LIMITATION LOST PROFITS, ARISING OUT OF THE USE OR INABILITY TO
USE THE PROGRAM OR DOCUMENTATION.

4. Term and Termination: The term of this agreement shall be indefinite;
however, this Agreement may be terminated by ICS in the event of a material
default by Customer which is not cured within thirty (30) days after the receipt
of notice of such breech by ICS. Customer may terminate this Agreement at
any time by destruction of the Program, the Documentation, and all other
copies of either of them. Upon termination, Customer shall immediately cease
use of, and return immediately to ICS, all existing copies of the Program and
Documentation, and cease all use thereof. All provisions hereof regarding
liability and limits thereon shall survive the termination of this the Agreement.

5. U.S. GOVERNMENT LICENSES. If the Product is provided to the U.S.
Government, the Government acknowledges receipt of notice that the Product
and Documentation were developed at private expense and that no part of
either of them is in the public domain. The Government acknowledges ICS'
representation that the Product is “Restricted Computer Software” as defined in
clause 52.227-19 of the Federal Acquisition Regulations (the “FAR” and is
“Commercial Computer Software” as defined in Subpart 227.471 of the
Department of Defense Federal Acquisition Regulation Supplement (the
“DFARS”). The Government agrees that (i) if the software is supplied to the
Department of Defense, the software is classified as “Commercial Computer
Software” . and that the Government is acquiring only “Restricted Rights” in the
software and its documentation as that term is defined in Clause
252.227-7013(c)(1) of the DFARS and (ii) if the software is supplied to any unit
or agency of the Government other than the Department of Defense, then
notwithstanding any other lease or license agreement that may pertain to, or
accompany the delivery of, the computer software and accompanying
documentation, the rights of the Government regarding its use, reproduction
and disclosure are as set forth in Clause 52.227-19(c)(2) of the FAR. All copies
of the software and the documentation sold to or for use by the Government
shall contain any and all notices and legends necessary or appropriate to
assure that the Government acquires only limited right in any such
documentation and restricted rights in any such software.

6. Governing Law: This license shall be governed by and construed in
accordance with the laws of the Commonwealth of Massachusetts as a contract
made and performed therein.

� OMRON Corporation, NTT Software Corporation, and MIT

 Copyright 1990, 1991 by OMRON Corporation, NTT Software Corporation,
and Nippon Telegraph and Telephone Corporation
 Copyright 1991 by the Massachusetts Institute of Technology

Permission to use, copy, modify, distribute, and sell this software and its
documentation for any purpose is hereby granted without fee, provided that the
above copyright notice appear in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the
names of OMRON, NTT Software, NTT, and M.I.T. not be used in advertising
or publicity pertaining to distribution of the software without specific, written
prior permission. OMRON, NTT Software, NTT, and M.I.T. make no
representations about the suitability of this software for any purpose. It is
provided “as is” without express or implied warranty.

xviii IBM Visualization Data Explorer: User’s Guide

OMRON, NTT SOFTWARE, NTT, AND M.I.T. DISCLAIM ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE, INCLUDING ALL IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO EVENT SHALL
OMRON, NTT SOFTWARE, NTT, OR M.I.T. BE LIABLE FOR ANY SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER
TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE
USE OR PERFORMANCE OF THIS SOFTWARE.

 Notices xix

xx IBM Visualization Data Explorer: User’s Guide

 About

About This Guide

Who Should Use It . xxii
How To Use It . xxii
Typographic Conventions . xxiii
Related Publications and Sources . xxiii

IBM Publications . xxiii
Non-IBM Publications . xxiv
Other sources of information . xxiv

 Copyright IBM Corp. 1991-1997 xxi

This manual is a guide to using IBM Visualization Data Explorer\ for:

� manipulating and controlling data visualizations
� importing various kinds of data for visualization
� creating and customizing visual programs with the Visual Program Editor
� using the Data Explorer scripting language to create visual programs.

Who Should Use It
This Guide is intended for users of different degrees of knowledge and experience
with graphical programs:

Non-programmers The non-programmer can learn how to use previously
created visual programs to examine data sets (e.g.,
modifying one or more inputs to a visual program and
saving and restoring the results).

Programmers The programmer can learn how to use:

� the visual programming interface to create visual
programs and applications.

� the scripting language to create visualizations.

This Guide assumes that you have some knowledge of the operating system and
the X Window System** being used, as well as of OSF**/Motif**. For more
information, see IBM AIXwindows User’s Guide or the appropriate window system
documentation.

In this Guide, any reference to the X Window System means any window server
that supports the X11 protocol, including Sun’s OpenWindows**.
The Motif window manager, mwm, has been used in many figures and examples in
this Guide. Please use the appropriate window manager for your system, such as
vuewm (Hewlett-Packard), 4dwm (SGI), or olwm (Sun). Since title bars and
window borders are features of a window manager, the appearance of your
windows may differ slightly from those in the figures and examples.

How To Use It
� Chapter 1, “Overview” on page 1, describes IBM Visualization Data

Explorer—an integrated visualization environment—and its main features.
� Chapter 2, “Introduction to Visualization” on page 7 introduces the basic

terminology and working principle of Data Explorer.
� Chapter 3, “Understanding the Data Model” on page 15, presents a formal

description of Data Explorer’s underlying data model. (Users who do not
require such a description, however, should find the informal treatment in
Chapter 2, “Introduction to Visualization” on page 7 sufficient for their
purposes.)

� Chapter 4, “Data Explorer Execution Model” on page 37 describes the Data
Explorer execution model.

� The next five chapters deal with various aspects of the Data Explorer graphical
user interface:

– Chapter 5, “Graphical User Interface: Basics” on page 57
– Chapter 6, “Graphical User Interface: Important Windows” on page 73
– Chapter 7, “Graphical User Interface: Control Panels, Interactors, and

Macros” on page 127

xxii IBM Visualization Data Explorer: User’s Guide

 About

– Chapter 8, “Graphical User Interface: Menus, Options, and the Message
Window” on page 155

– Chapter 9, “Graphical User Interface: For Advanced Users” on page 177

If you intend to use only existing visual programs, see
– 5.4, “Executing a Visual Program” on page 67
– 6.1, “Using the Image Window” on page 74
– 6.3, “Using the Colormap Editor” on page 119.
– 7.1, “Using Control Panels and Interactors” on page 128

� Chapter 10, “Data Explorer Scripting Language” on page 187 presents a more
traditional approach to creating data visualizations. In this connection, see also
Chapter 1, “Data Explorer Tools” on page 1 in IBM Visualization Data Explorer
User’s Reference.

� Appendix A, “Using Data Explorer: Some Useful Hints” on page 211 describes
some of the ways to use Data Explorer more effectively.

� Appendix B, “Importing Data: File Formats” on page 241 discusses various
data formats that Data Explorer can import, including Data Explorer’s native
format.

� The remaining appendixes contain information of varying interest to different
users:

– Appendix C, “Environment Variables and Command Line Options” on
page 291

– Appendix D, “User Interface Configuration” on page 299
– Appendix E, “Data Explorer Fonts” on page 307
– Appendix F, “Data Explorer Colors” on page 313
– Appendix G, “Accelerator Keys” on page 315.

 Typographic Conventions
Boldface Identifies commands, keywords, files, directories, messages from the

system, and other items whose names are defined by the system.

Italic Identifies parameters with names or values to be supplied by the user.

Monospace Identifies examples of specific data values and text similar to what you
might see displayed or might type at a keyboard or that you might write
in a program.

Related Publications and Sources

 IBM Publications
� IBM Visualization Data Explorer User’s Guide, SC38-0496

Details the main features of Data Explorer, including the data model, data
import, the user interface, the Image window, and the visual program editor.
and the scripting language. Of particular interest to programmers: chapters on
the data model and the scripting language.

� IBM Visualization Data Explorer User’s Reference, SC38-0486

Contains detailed descriptions of Data Explorer’s tools.

Note: Consult this reference if you are creating visual programs or scripts.

� IBM Visualization Data Explorer Programmer’s Reference, SC38-0497

 About This Guide xxiii

Contains detailed descriptions of the Data Explorer library routines.

Note: Consult this reference if you are writing your own modules for Data
Explorer.

 Non-IBM Publications
The following treat various aspects of computer graphics and visualization:

Adobe Systems Incorporated, PostScript Language Reference Manual, 2nd
Ed., Addison-Wesley Publishing Company, Massachusetts, 1990.

Aldus Corporation and Microsoft Corporation, Tag Image File Format
Specification, Revision 5.0, Aldus Corporation, Washington, 1988.

Arvo, Jim, ed., Graphics Gems II, Academic Press, Inc., Boston,
Massachusetts, 1991.

Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F., Computer Graphics:
Principles and Practice, Addison-Wesley Publishing Company; Massachusetts,
1990.

Friedhoff, Richard M., and Benzon, William, Visualization: The Second
Computer Revolution, New York, Harry N. Abrams, Inc., 1989.

Glassner, Andrew, ed., Graphics Gems, Academic Press, Inc., Boston,
Massachusetts, 1990.

Hill, F.S., Jr., Computer Graphics. Macmillan Publishing Company, New York,
1990.

Kirk, David, ed., Graphics Gems III, Academic Press, Inc., Boston,
Massachusetts, 1992.

Robin, Harry, The Scientific Image: from cave to computer, Harry N. Abrams,
Inc., New York, 1992.

Rogers, David F., Procedural Elements for Computer Graphics, McGraw-Hill
Book Company, New York, 1985.

Rogers, David F. and Adams, J.Alan, Mathematical Elements for Computer
Graphics, 2nd Ed., New York, McGraw-Hill Book Company, 1990.

SIGGRAPH Conference Proceedings, Association for Computing Machinery,
Inc.: A Publication of ACM SIGGRAPH, New York, various years.

Tufte, Edward, The Visual Display of Quantitative Information, Graphics Press,
Cheshire, Connecticut, 1983.

Other sources of information
For additional ideas, consult the “DX Repository,” available through anonymous
FTP (ftp.tc.cornell.edu. in directory pub/Data.Explorer), and gopher
(ftp.tc.cornell.edu. port 70). This public software resource includes information
and visual programs contributed by Data Explorer users from around the world.
We encourage you to contribute your innovations and ideas to the Repository, in
the form of new modules, macros, visual programs, and tips and tricks you discover
as you learn and master Data Explorer.

On the Internet, the newsgroup comp.graphics.apps.data-explorer is used by
customers around the word to share information and ask questions. This
newsgroup is also followed by Data Explorer developers.

xxiv IBM Visualization Data Explorer: User’s Guide

 About

If you have access to the World Wide Web, you can find the Data Explorer home
page at http://www.almaden.ibm.com/dx/.

 About This Guide xxv

xxvi IBM Visualization Data Explorer: User’s Guide

 New

New Features in Data Explorer Version 3.1.4

User Interface . xxviii
New Startup Behavior . xxviii
New Save Image Dialog in Image Window xxviii
New Data Prompter . xxviii
Pages . xxviii
Annotation . xxviii
Optimizing Caching . xxviii

Changes to Get and Set modules . xxix
New Window Management Functionality . xxix
Hardware Rendering . xxix
DXLink . xxix
Changed Modules . xxx
New Modules . xxxi
Backward Incompatibilities . xxxiii
HTML Documentation . xxxiv
Fixes . xxxiv

 Copyright IBM Corp. 1991-1997 xxvii

 User Interface

New Startup Behavior
With this release, when you type dx, a different initial panel will appear, giving you
access to various parts of Data Explorer, such as the Data Prompter, the Tutorial,
the Visual Program Editor, etc.

To bypass the Startup window and go directly to the Visual Program Editor (as in
previous versions of Data Explorer) either type dx -edit at the prompt or set your
DXARGS environment variable to -edit.

New Save Image Dialog in Image Window
The Save Image dialog has been improved to make it easier for users to save
images at a specific size on the printed page.

New Data Prompter
The Data Prompter has a new initial window, which allows you to specify what kind
of data you have (dx format, image format, ...). You can access the Data Browser
from this window to view your data before attempting to import it. If you have
“general array” format data, then choose the “Grid or Scattered file” button, which
will lead to the interface which was called the Data Prompter in previous versions of
Data Explorer.

Once your data has been imported, there is an option to either describe or visualize
your data. If you choose the “Test Import” option, then the data will be imported
and characteristics about it (such as dimensionality, number of points, ...) will be
reported to you. If you choose the “Visualize Data” option, then a general purpose
visual program will be run on your data. You can then inspect and modify this
visual program.

 Pages
In the VPE, you can now segment your visual program into “pages”, which are
disconnected sets of modules. Modules in one page communicate with modules in
other pages using transmitters and receivers. You can name pages and control the
ordering of pages. See the Edit menu of the VPE.

 Annotation
You can add comments directly onto the canvas of the VPE. This option is
available from the Edit menu of the VPE.

 Optimizing Caching
There is now an option in the Edit menu of the VPE called Output Cacheability ->
Optimize Cache. If you choose this option, Data Explorer will use a heuristic to
optimally set the caching behavior of each tool in the visual program.

xxviii IBM Visualization Data Explorer: User’s Guide

 New

Changes to Get and Set modules
In this release, the Get and Set modules have been replaced by GetLocal/SetLocal
and GetGlobal/SetGlobal. Briefly, the difference between these pairs of modules is
that the Global pair maintains state between executions, while the Local pair do
not. (Remember that a single loop in the visual program is considered a single
execution). If you do not do anything to modify your visual program, any Get/Set
pairs which you have will be replaced by GetGlobal and SetGlobal, and the visual
program will run as it did before. However, in many cases you can replace your
Get/Set pair by GetLocal and SetLocal for performance advantages. One way to
know if you can do this is if you are using the First module to reset Get on each
execution. If so, then you can certainly replace your Get and Set by GetLocal and
SetLocal (and the First module is no longer necessary, as GetLocal automatically
resets on each new execution).

See “GetLocal” on page 151, “SetLocal” on page 300, “GetGlobal” on page 149,
and “SetGlobal” on page 299 in IBM Visualization Data Explorer User’s Reference
for more detailed information.

Assign Get/Set Scope → Convert All modules under the Edit pulldown in the VPE
is available for helping change Get/Set modules to the new GetGlobal/SetGlobal,
GetLocal/SetLocal options.

New Window Management Functionality
The SuperviseWindow and SuperviseState modules (see “SuperviseState” on
page 332 and “SuperviseWindow” on page 336 in IBM Visualization Data Explorer
User’s Reference) implement important new functionality for users, allowing you
much more control over the effect of mouse and keyboard actions in a Display
window. This allows you not only to define the behavior for given mouse or
keyboard events, but also allows you to implement direct interaction without the use
of the Image tool. Thus direct interaction is now possible without the Data Explorer
User Interface.

 Hardware Rendering
True transparency is now supported for OpenGL platforms (previously only
screen-door transparency was supported).

Anti-aliasing of lines, and multiple-pixel-width lines is now supported in OpenGL
and GL. To specify anti-aliasing of lines, pass the object to be rendered through the
Options module, setting an attribute of “antialias” with a value of “lines”. To specify
multiple pixel width lines, pass the object to be rendered through Options, setting
an attribute of “line width”, with value set to the number of pixels.

 DXLink
A number of new routines which allow execution of named macros, and control
over window management (e.g. opening and closing image windows) have been
added. See Chapter 16, “DXLink Developer's Toolkit” on page 157 in IBM
Visualization Data Explorer Programmer’s Reference.

 New Features in Data Explorer Version 3.1.4 xxix

 Changed Modules
This section contains only summaries. See IBM Visualization Data Explorer User’s
Reference for details.

AutoAxes
There are new inputs to AutoAxes which allow you to explicitly specify
tick locations, and optionally, to specify labels to be associated with
those locations. Thus for example, if one of your axes represents the
months, with integers 1 to 12, you could indicate to AutoAxes to place
ticks at each integer from 1 to 12 and to label them “jan”, “feb”, Plot
and ColorBar similarly now allow you to specify tick location and label.

AutoAxes no longer scales the input object. This should make using
probes in an image which includes axes easier. There is a break with
backward compatibility in that for some viewpoints the axes may not lie
completely within the image; you will need to change the viewpoint to be
slightly farther away from the object.

AutoGlyph, Glyph
“cube” and “square” glyphs have been added.

ColorBar
Has new inputs which allow you to specify precise tick locations and
labels for the ticks (see AutoAxes).

Compute, Compute2
Now perform string operations, such as strcmp, strlen, strstr, etc.
Compute also provides a “random” function.

Display
Now has output called “where”. This is the identifier for the window into
which the image was displayed. See ReadImageWindow on page xxxii.

Export
Now exports VRML 2.0 data.

Get/Set
Are replaced by GetLocal/SetLocal and GetGlobal/SetGlobal. See
“Changes to Get and Set modules” on page xxix.

Histogram
Now will create 2- and 3-dimensional histograms for vector data.

Image
Now has new output called “where”. This is the identifier for the window
into which the image was displayed. See ReadImageWindow on
page xxxii. Also, if you choose the Rerender Image option to render the
image at a higher (or lower) resolution, screen objects such as captions
and color bars will now be WYSIWYG. See ScaleScreen on page xxxii.

Include
Has a new input called “pointwise”. If this input is set, then Include will
remove the connections of the input before removing points. Thus only
those positions with data values outside the specified range will be
removed. The default behavior (and previous behavior) is to also
remove all connections (and positions referenced by those connections)
containing at least one invalid point.

xxx IBM Visualization Data Explorer: User’s Guide

 New Inquire
Has several new inquiries: “is image”, “is connection”, “object tag”,
“connection type”, “valid count”, “invalid count”

Integer, IntegerList, Scalar, ScalarList, Vector, VectorList
Each of these data-driven interactors now has a “refresh” input. This
input resets the interactor, as if it is running for the first time, regardless
of the current output value with respect to the range of the current input
to the interactor.

Pick
Has new inputs locations and camera. These inputs are intended for
use when picking is done in an image window created using
SuperviseWindow, rather than the Image tool.

Plot
Has new inputs which allow you to specify precise tick locations and
labels for the ticks (see AutoAxes on page xxxiii).

ReadImage
ReadImage supports miff images. If the .miff file contains a sequence of
images, they will be read in as an image series. ReadImage has a new
input, “colortype”, which allows control over the pixel format used
internally to represent the loaded image. It also has a new input,
delayed, which specifies whether images stored in image-with-colormap
format should be imported as a delayed colors image.

WriteImage
Supports MIFF output, which is a run-length-encoded format that
supports image sequences. Supports GIF output of any image.

 New Modules
This section contains only summaries. See IBM Visualization Data Explorer User’s
Reference for details.

AutoGrid
This module provides much of the function of the existing module
Regrid. However it automatically will construct a grid for you rather than
requiring you to create one.

Categorize
Categorizes data, replacing the categorized component by a list of
indices into a lookup component. Among other things, allows string data
to be categorized.

CategoryStatistics
Computes statistics on categorical data.

ChangeGroupMember
Allows you to insert a new member into a group, or replace a member
of a group.

ChangeGroupType
Allows you to change the type of a group (for example from a generic
group to a series)

 New Features in Data Explorer Version 3.1.4 xxxi

CopyContainer
Allows you to copy the header of an object.

Describe
This module is used to “describe” an input object. For example, it will tell
you the structure of the object (how many data points, the bounding box,
etc.) It can also tell you whether or not it is ready to be rendered (i.e., is
a valid input to the image tool).

DXLInputNamed
Similar to DXLInput, but allows you to specify the name of the DXLink
variable by passing it into the module rather than via the configuration
dialog box for the module.

ImportSpreadsheet
Imports tabular (spreadsheet) data.

Legend
Creates a legend bar, which is similar to a color bar, but which
associates colors with strings.

The Legend module also accepts a colormap for the second parameter
(colorlist). If a colormap is given, then the colors corresponding to the
integers 0, ..., n-1, where n is the number of items in the stringlist (first
parameter) are assumed.

Lookup
Use one object to lookup the value of another object in a field. This
module is especially useful with categorical data.

QuantizeImage
Allows you to create a “delayed colors” image from any image. You
specify the number of colors to use and the module will choose the best
set of colors to represent the image.

ReadImageWindow
Allows you to obtain the image (that is, the field of pixels) from a Display
or Image window. (ReadImageWindow is called internally by the Image
tool, when necessary to save a displayed image)

ScaleScreen
Scales all screen objects (i.e. captions, color bars, text glyphs) by a
specified amount. Used internally by the Image tool to make sure that
rerendered images remain WYSIWYG.

SimplifySurface
Reduces the number of triangles in a surface.

SuperviseState
Used with SuperviseWindow to create and manage windows. This pair
of modules allows you to directly specify what actions should take place
for a given mouse or keyboard event in the window. This is in contrast
to the use of the Image window, where mouse actions are predefined by
Data Explorer (i.e. rotation or pan/zoom mode).

SuperviseWindow
See SuperviseState on page xxxii.

xxxii IBM Visualization Data Explorer: User’s Guide

 New

 Backward Incompatibilities
There are a few backward incompatibilities with previous versions of Data Explorer.

AutoAxes
No longer scales the object to be smaller. This means that you may
need to zoom out a bit in order to see all of the axes labels.

DXLink
Because of the new startup behavior (see “New Startup Behavior” on
page xxviii), DXLink programs may need to add “-edit” or “-image” to the
startup command string.

Get and Set
Have been replaced by GetGlobal, GetLocal, SetGlobal, and SetLocal.
See “Changes to Get and Set modules” on page xxix.

Plot
There is a backward incompatibility with regard to the aspect parameter
of Plot. This parameter now defaults to 1.0, meaning that the ratio of the
y to x axis length will be made equal to one. Previously, no scaling was
automatically done if aspect was not set. The previous default behavior
can be obtained by specifying aspect as “inherent”.

ReadImage
The ReadImage module now will store all images read in as three bytes,
rather than than three floating point numbers. This will only affect visual
programs in which the colors themselves are expected to be floats. This
default behavior can be overridden either with an environment variable
or an input parameter. In addition, images which are stored in a format
such that the colors are specified as lookups into a table will be read in
as “delayed colors”. (Some modules may not perform properly on
delayed colors images.) This default behavior may also be overridden
with either an environment variable or an input parameter. See
“ReadImage” on page 250 in IBM Visualization Data Explorer User’s
Reference for more information.

Transmitters and Receivers
Version 3.1.4 prevents Transmitter and Output nodes, and Receiver and
Input nodes from sharing names. These name collisions were permitted
in earlier versions and could lead to incorrect behavior. Now, colliding
nodes will be renamed automatically and you will be notified.

Save Image from Image Window
By default, SaveImage in PostScript format will now nearly fill the page,
and will automatically choose portrait or landscape orientation.

WriteImage (and Image)
A gamma correction factor of 2 is applied to all images when they are
written out. This can be changed if desired by using the format
parameter of WriteImage or the SaveImage dialog of the Image tool.
Previously, images were not gamma corrected when saved.

DXSHMEM environment variable
In versions of Data Explorer prior to 3.1.4, DXSHMEM, if set to anything,
would force shared memory to be used. In version 3.1.4, DXSHMEM
must be set to anything other than -1 for shared memory to be used; if

 New Features in Data Explorer Version 3.1.4 xxxiii

set to -1, then the data segment will be extended, for architectures for
which this is permissible.

 HTML Documentation
For the HTML version of the complete Data Explorer documentation, point your
web browser at $DXROOT/html/index.htm.

 Fixes
Creating an outboard module on an SGI will no longer fail due to lack of resources
resulting from fork.

SelectorList interactors can now contain more entries.

Cache management has been improved.

It is now possible to save texture-mapped images, both from the Image window and
by capturing the output of Display. See ReadImageWindow on page xxxii.

xxxiv IBM Visualization Data Explorer: User’s Guide

 Chapter 1. Overview

 Overview 1.1 Overview of Data Explorer . 2
1.2 System Structure . 3

Graphical User Interface . 3
Executive . 4
Modules . 4
Data Management . 4
How the Data Model Facilitates Interoperability 4

 Copyright IBM Corp. 1991-1997 1

This book describes the IBM Visualization Data Explorer\, which you can use in a
workstation environment. Data Explorer is a visualization system that can be used
in many application areas and with a variety of data representations to extract
useful information from complex data.

1.1 Overview of Data Explorer
The Data Explorer graphical user interface allows end users to perform tasks at
various levels of sophistication. For example, a user can use the user interface to
apply data and adjust input values to an existing visualization process. A slightly
more advanced user can construct a new visualization process, called a visual
program, by connecting a network of Data Explorer’s modules. An expert
programmer can create new modules, using C or FORTRAN, for use with the
system modules. Besides the user interface, Data Explorer also provides a
scripting language interface, for users who want to build their own visualization
functions in a more traditional programming style.

Data Explorer’s graphical user interface provides an integrated online help facility.
This facility provides users with online access to the Data Explorer user manuals,
as well as with context-sensitive help information. In addition to the help
information provided with Data Explorer, the online help facility allows users to
document various aspects of their particular visual programs. Other users of these
visual programs then have online access to this program-specific documentation.

Data Explorer provides an extensive set of modules that you can use to visualize
your data. For example, the Isosurface, Streamline, and AutoColor modules
perform the standard visualization functions of creating constant-value surfaces,
tracing particle paths through velocity fields, and coloring objects based on a data
value, respectively.

In addition to these expected functions, Data Explorer also provides tools to
perform more sophisticated manipulation of data. The Map module is a general
purpose module that can map a data field onto an arbitrary object—whether it is a
streamline, an isosurface, or even another data field’s computational mesh. The
Compute module can perform arithmetic or trigonometric operations point-by-point
not only on your data but also on the grid itself. Thus warping a grid, for example,
is a simple matter of entering an expression.

Even standard tools, such as Isosurface, operate on multiple types of input grids.
For example, if the input field to Isosurface is 2-dimensional, the module
automatically creates contour lines.

The Data Explorer renderer can handle opaque or translucent surfaces, translucent
volumes, and opaque or translucent lines or points—all in the same image. In
addition, data on different computational or observational grids can be visualized
together, allowing you to correlate disparate data fields without requiring you to
force the data onto the same grid.

The power and interoperability of the modules is possible because of the underlying
data model, which is capable of describing a wide variety of types of input data.
Because the data itself is self-describing, modules can be flexible in the types of
data they accept, and can perform their actions appropriately based on their input.

2 IBM Visualization Data Explorer: User’s Guide

 1.2 System Structure Overview

Data Explorer is designed as a client-server model. The Data Explorer client-server
architecture incorporates system components such as TCP/IP, sockets, X Window
System, and Motif.

In this client-server model, the user interface is the client. The executive, modules,
and data management components, often referred to collectively as the executive,
make up the server portion. The user interface client can be on a different platform
from the server (executive), and the executive can run on multiple platforms
simultaneously (distributed processing). Data Explorer allows you to switch among
servers running on different hardware platforms.

The Data Explorer system can be thought of as consisting of four “layers,” each
with its own defined interface. These layers are described in the order in which you
are likely to encounter them:

� Graphical user interface
 � Executive
 � Modules
 � Data management.

Graphical User Interface
The graphical user interface is built upon the X Window and Motif standards.
These tools manage multiple application windows that allow a user to create and
control the visualization process easily and effectively. The graphical user interface
provides two levels of service. First, non-programmers or users with fixed
requirements can execute previously created visual programs. These visual
programs may consist of various menus, dials, sliders, and other interactors that
provide fixed functions. Second, programmers can create customized visualizations
by using the interface to interconnect modules in flexible ways, and to create new
combinations of modules in the form of macros.

The Data Explorer graphical user interface lets you create or work with a visual
program to easily realize sample, select, and transform data during visualization.
You can use the Visual Program Editor (VPE) to create new scenarios by simply
connecting module icons on the screen in any logical sequence.

Data Explorer provides the following primary windows:

Visual Program Editor Lets you create and alter visual programs.

Control Panel Lets you set and control the variable input parameters of
the tools used in a visual program.

Image Window Displays the image created by a visual program and
allows direct interaction with the visualized image.

Help Window Provides online access to the Data Explorer user manual
and context-sensitive help information.

Data Explorer provides a Colormap Editor window that lets you map colors to
specified data values and display the results in the visual image. The system also
provides a Sequencer window, which has many uses, including controlling how a
sequence of images is displayed (with forward and backward direction, repetition,
and so on).

 Chapter 1. Overview 3

These windows are discussed in detail in Chapter 5, “Graphical User Interface:
Basics” on page 57. In addition, Data Explorer provides two stand-alone utilities:

Data Prompter: a point-and-click interface for describing a data set for importing.
(See IBM Visualization Data Explorer QuickStart Guide.)

Module Builder: a point-and-click interface for describing the interface to a
user-written module. The Module Builder creates the necessary makefiles
and a template .c file for the module. (See IBM Visualization Data Explorer
Programmer’s Reference.)

 Executive
The executive is the component of the system that manages the execution of the
modules specified in the scripting language. This scripting language is generated
by the graphical user interface to invoke visualization functions for visual programs.
Users can also use the scripting language to write their own programs, as
described in Chapter 10, “Data Explorer Scripting Language” on page 187.

 Modules
Data Explorer provides an extensive, powerful set of highly interoperable
visualization modules. The modules used for visualization functions are available:

� As nodes, through the use of their icons in a visual programming network.

� As function calls, available in the scripting language interface provided by the
executive layer.

� For integrated applications, as part of the visualization library programming
interface. (See 12.10, “Module Access” on page 127 in IBM Visualization Data
Explorer Programmer’s Reference for information on this use of modules.)

 Data Management
The data management layer is the portion of the programming interface that
provides modules with access to the data model, which is discussed in Chapter 3,
“Understanding the Data Model” on page 15. This layer includes general system
services as well as routines for creating and managing the set of data objects. The
data management layer also provides an application programming interface (API)
for adding new modules to Data Explorer and for accessing the power and flexibility
of the data model.

Detailed information on this API can be found in IBM Visualization Data Explorer
Programmer’s Reference.

How the Data Model Facilitates Interoperability
The Data Explorer data model is not simply a convenient way to represent data
objects. It also allows Data Explorer tools to be more powerful than they would be
otherwise.

Tools can be used in multiple ways, because the components of the data set are
described using a common structure. There is no distinction between “data,”
“positions,” and “colors” in how they are represented within a Data Explorer field
object. (For more information on Data Explorer fields, see Chapter 3,
“Understanding the Data Model” on page 15.) For example, you can use the
Compute module to operate on the data to extract the magnitude, or x component
of a vector (e.g., operate on the positions of a grid to warp the grid or on the colors

4 IBM Visualization Data Explorer: User’s Guide

of a field to negate an image). This also means that the user has the capability of
modifying or inspecting all aspects of a data object.

Tools can be used on any object in Data Explorer; there is no distinction between
“data objects” and “geometry objects.” An isosurface or an image is represented in
the same way in which an imported data field is represented. So for example, you
can:

� create an isosurface (contour lines) of a mapped isosurface
� create an isosurface from an image
� map onto glyphs, streamlines, isosurfaces, etc.

The Data Model also ensures that the fidelity of the original data is maintained
throughout the visualization process. In particular, all of the following are preserved
throughout:

� the original coordinate space of the data
� the original range of data values (not scaled to 0 to 255, for example)
� attributes of the data (dependency on positions or connections)
� the presence of missing or invalid data.

Finally, the data model ensures that Data Explorer users and developers can add
new components or new attributes without modifying current modules.

 Overview

 Chapter 1. Overview 5

6 IBM Visualization Data Explorer: User’s Guide

Chapter 2. Introduction to Visualization

2.1 Terminology . 8
Rendering . 8
Positions and Connections Dependence . 8
Connections and Interpolation . 9
Identifying Connections . 11
Invalid Data . 12
Fields . 12

2.2 Visual Programming: The Basics . 13

 Visualization

 Copyright IBM Corp. 1991-1997 7

This chapter is not a substitute for the detailed information in the rest of this Guide,
but it does summarize some important terms and concepts that may be new to you
if you have not used a scientific visualization application before. So we suggest the
following:

� Read this section first, concentrating on topics that are unfamiliar.
� Follow the tutorials in IBM Visualization Data Explorer QuickStart Guide.
� Start using Data Explorer. A good place to begin is the set of example

“networks” (or “visual programs”) in the directory
/usr/lpp/dx/samples/programs. You can open up any visual program file and
study how the different modules are interconnected and then run the visual
programs to observe the visual output.

� Use the online Help system to get more information about these example visual
programs and Data Explorer tools. This system also contains hypertext
references to additional information.

The printed documentation contains detailed information, including graphics,
sample code, and data examples.

 2.1 Terminology
Many of the terms used in Data Explorer are borrowed from traditional scientific
disciplines, others come from computer graphics, and a few have been coined by
the Data Explorer software developers for lack of any widely accepted term.
Important Data Explorer terms are defined in the Glossary.

 Rendering
The process of rendering an image involves a computer calculation of the amount
of light falling on each visible surface of the objects in the “scene,” as seen from
the point of view of the computer “camera” (the viewer's eye point). During the
rendering process, surface properties of objects are taken into account as are the
colors of both the objects and the “lights” shining on them. In other words, a
computer graphics renderer samples the scene in front of the camera at the
resolution of the computer monitor on which the scene is to be displayed. Its
sample space is the 3-dimensional “world” containing the objects. But the image
renderer does not create a 3-dimensional picture; it only calculates the colors of the
dots that can be seen on the 2-dimensional monitor screen from the chosen point
of view. Any parts of objects that cannot be seen from that point of view are
neither sampled nor rendered, nor are they stored in the image file or displayed on
the monitor. This 2-dimensional image may appear 3-dimensional to our eyes
because of shading, occlusion of distant objects by closer ones, and other visual
cues that, in the real world, indicate dimensionality. Like any image, it is a
representation, however real it may appear.

Positions and Connections Dependence
The concept of sampling should be familiar to anyone who has ever collected data
on some kind of grid. For example, a botanist may lay down a series of square
grid markers over an area of interest then count the numbers of species of grasses
growing inside each grid square. The number so collected becomes a sample
value or datum associated with that grid marker. A single number like this, whether
floating point or integer, is called a scalar. If the wind velocity and direction at, say,
the center of each grid square is also measured, the botanist would record a vector

8 IBM Visualization Data Explorer: User’s Guide

quantity as a second datum sampled at the same place. A vector encodes both
direction and magnitude with two or more numeric “vector components.”

In this example, the locations of the corners of each grid marker are recorded as an
array of 2-dimensional coordinates that define the sampling area dimensions and
the sampling resolution. In computer graphics terms, these spatial location points
are called vertices (singular: vertex); in Data Explorer, they are referred to as
“positions”. Loosely, everyone calls them “points.”

Four coordinate positions can be connected by a quadrilateral to define a grid
element. The quadrilateral itself is called a connection in Data Explorer (we will
discuss other connection types in a moment). Since the botanist collected one set
of data per grid element, such data are termed connection-dependent data. This
implies that the data value is assumed by Data Explorer to be constant within that
element.

Consider another technique for data sampling: on a larger scale, remote-sensing
satellites can resolve various features of the Earth down to some finite level of
resolution. In this case, the grid positions are identified by a latitude-longitude
coordinate pair, and the data values may encode such things as surface reflectance
in the ultraviolet. By associating each data value with a latitude-longitude position,
we produce position-dependent data.

This implies that data values should be interpolated between positions, using the
connections (grid) if one is present. Data Explorer works equally well with
position-dependent and connection-dependent data (see Figure 1 on page 10).
Generally, the decision about which dependency the data has is made by you at
the time of data collection or simulation. (There is a simple way in Data Explorer to
convert either dependency to the other. See “Post” on page 242 in IBM
Visualization Data Explorer User’s Reference.)

We can extend our data sampling into three dimensions where appropriate. In that
case, we identify each grid position with three coordinates. These coordinates form
the corners of “volumetric” elements and the entire sample space is called a
volume. A volumetric element may be a rectangular prism (like a cube) or a
tetrahedron (a solid with four triangular faces, not necessarily equilateral).

 Visualization

Connections and Interpolation
In the cases just discussed, we made the implicit assumption that there is a logical
connectivity between adjacent members of our 2-dimensional or 3-dimensional grid
positions. The path connecting grid positions is called a connection in Data
Explorer. For a surface (2- or 3-dimensional positions connected by 2-dimensional
connections), we could choose to make triangular or quadrilateral connections (i.e.,
triangles or quads). Quads require four positions for each connection and triangles
three. Data Explorer supports these element types as well as cubes, tetrahedra,
and lines.

Suppose we first choose to link adjacent positions in the botanist’s sample area
with line connections. The grid markers were 1 meter on a side. Given a sampling
area of 5 meters by 3 meters, the entire sample would be 15 meters square; there
would be 24 positions (6 in X, and 4 in Y). On such a plot, we see that a position
located at [x=0,y=0] is connected to its neighbor at [x=1,y=0]. We can imagine that
it is meaningful to draw associations between data values at adjacent grid positions
considering that so many natural phenomena are continuous rather than discrete.

 Chapter 2. Introduction to Visualization 9

Figure 1. Examples of Data Dependency

We assume that the grasses are free to spread across the area and the wind is
free to blow in any direction over the area.

Previously, we assumed that samples were measured at the center of each grid
square; that is, the botanist used quad connections to associate sets of four
positions into 4-sided elements, then measured data values at the center of each
connection element, yielding connection-dependent data. Now, assume that the
botanist measures temperature values at each grid position. Temperature would
then be position-dependent data. It's perfectly acceptable to have both kinds of
data in the same data set. We will see how this works when we discuss Fields.

Assume that the first grid position (sampling point) lies precisely at the position
coordinate [x=0,y=0]. We take a measurement and record the value. Then we
measure the temperature at [x=1,y=0]. Later, we ask, what was the temperature at
[x=0.5,y=0]? Quite honestly, we do not know, because our sampling resolution was
not fine enough for us to give a definitive answer. However, if we make the
assumption (very often, a perfectly reasonable assumption, but not always!) that
our grid overlaid a continuous set of values, we can derive the expected data value
by interpolation between known values. If we use line connections to connect
adjacent points, we realize by looking at our mesh that a straight line connects the
grid point [x=0,y=0] and [x=1,y=0] and that halfway along this line lies the grid point
[x=0.5,y=0]. We can further assume that the data value at this midpoint is the
average of the data values at known sample points bordering this location. By
linear interpolation, we calculate a reasonable value for the temperature at
[x=0.5,y=0].

10 IBM Visualization Data Explorer: User’s Guide

We need to define polygonal connections over the 2-D grid if we wish to find the
value at the point [x=0.2,y=0.7]. With line connections between adjacent pairs of
grid points, we can only reasonably perform interpolations along those linear
boundaries but not into the middle of our grid elements. By defining areas bounded
by three or more points, we can perform interpolation across the area (the polygon
surface) using weighting functions that take into account the data values at all
points surrounding the area. In fact, this is the same process used by an
image-rendering program: it interpolates from known values (at the vertices) across
the faces of polygons and computes the appropriate color at all visible points on the
surface, at the resolution allowed by the output device (digital file, computer
monitor, etc.).

 Visualization

 Identifying Connections
In Data Explorer, we identify connections in the following way. List the sample
point location vertices in any order: that list is called the “positions” as we
discussed above. Consider each point in the positions list to have an ordinal
number, starting at 0 for the first point in the list (these ordinal numbers are not
explicitly listed in a Data Explorer file). A connection is denoted by a “list of lists” of
numbers in which each entry represents the ordinal values of the points that are to
be connected, listed in the order they are to be connected. So for example, if the
first point in the positions list is “0.0 0.0” and the second point is “1.0 0.0”, we
denote a line connection between these two points by “0 1”, indicating that a line
joins point 0 (first point in the positions list) to point 1 (the second point in the list).

As mentioned above, a triangle connection must reference three positions and a
quad references four positions. For complete examples of position and connection
lists, see Chapter 3, “Understanding the Data Model” on page 15.

As a direct extension of this concept, when we define volumetric elements like
cubes and tetrahedra, we can perform 3-dimensional interpolation and derive a
reasonable data value for any point in a sample volume. The good news about all
of this interpolation is that Data Explorer already knows how to do the necessary
calculations. As a researcher, your job is to define your data space to Data
Explorer—its positions, connections, and data-dependency—but you do not have to
worry about the details of how the interpolation is actually performed.

The connections list is optional if it makes no sense to connect your sample points;
for example, if you are studying gas molecules, there may be no meaningful
interconnecting lines between separate molecules. Nevertheless, you may wish to
define “line” connections linking the atoms within each molecule, in order to
visualize interatomic bonds or protein backbones; or you may define cubic
volumetric elements in the space around the nucleus if you wish to visualize
electronic potential fields, for instance.

In any case, you must define a set of connections before you can perform
interpolation operations between sampled data values. This is true both for
position-dependent data and for connection-dependent data. Once again, positions
are discrete points in space, and connections are logical paths between those
points representing reasonable interpolation paths between the sampled data
values. If you do not have connection information available, you can use the
Connect or Regrid modules to create connections for scattered point data.

If you work with regular grids, the “connections” can be defined in a simple way by
Data Explorer regardless of the import format you are using. See Chapter 3,

 Chapter 2. Introduction to Visualization 11

“Understanding the Data Model” on page 15 in this Guide and Chapter 5,
“Importing Data” on page 61 in IBM Visualization Data Explorer QuickStart Guide.

If your work requires irregular grids, you will need to carefully read the section of
this manual that describes the format of Data Explorer element types. You may
need to write a filter program to convert the connection list output from your finite
element program to the format required by Data Explorer before you can import
and visualize data sampled on arbitrary structures.

 Invalid Data
Sometimes in the process of collecting or analyzing data, certain regions or
positions have no data value associated with them. For example, an instrument
may have a “data drop-out” or a simulation may (for whatever reason) produce an
invalid entry. Of course, if you are explicitly listing your positions or connections,
you can simply leave those positions out when you create your data file. However,
if you have a regular grid (for which you simply list the origin of the grid and the
delta in each dimension), this is not convenient. Data Explorer has a way to easily
handle this situation, using “invalid positions” and “invalid connections” components.
These components are discussed in Chapter 3, “Understanding the Data Model” on
page 15, but briefly, when present in a Field, they instruct any module processing
that Field to completely ignore any position or connection identified in that
component. For example, an “invalid positions” component may list the integers 0,
15, and 23. This instructs Data Explorer to ignore the positions 0, 15, and 23 (and
the data associated with those positions).

You can create these components in a Data Explorer format file (see Appendix B,
“Importing Data: File Formats” on page 241) or, often more easily, using the
Include module. For example, suppose in your data file drop-outs are indicated
with a data value of 9999, while all valid data lies in the range 0–100. Then set the
max parameter of Include to 9998. Include will then remove or invalidate all of the
positions with the value 9999. Note that it is usually preferable to set the cull flag
of Include to 0 so that the data values are invalidated rather than actually removed
(see Include in IBM Visualization Data Explorer User’s Reference).

All Data Explorer modules know to ignore invalid data. For example, Streamlines
will stop when they reach an invalid element, and Statistics will ignore data values
associated with invalid elements.

 Fields
Given the sets of numbers, “positions,” “connections,” and “data”, we can define a
Field, as it is called in Data Explorer. The positions identify locations in space, the
(optional) connections define logical continuities (interpolation paths) between
positions, and the data are the values measured either at each position or within
each connection element. Data Explorer calls each of these sets of numbers
(positions, connections, data) a Field component. Components are represented as
arrays of numbers with some auxiliary information specifying attributes (e.g., type of
dependency). In addition, there are many other types of Field components. The
Field is the basic unit of information in Data Explorer, so it is important to
understand how to express your data in these terms.

A Field can only have one “positions” and one “connections” component. A Field
can have only one component actually named “data”, but you may assign names of
your choosing to additional components representing other data sets that are also

12 IBM Visualization Data Explorer: User’s Guide

mapped to the same grid. So you can name a “data” component “temperature” and
another “wind velocity”, or you can just use the default name “data” if you only have
one “data” component.

The “.dx” file format provides the most flexibility for describing data sets to Data
Explorer. But many researchers produce fairly straightforward arrays of numbers
mapped onto regular or deformed regular grids. If your data are already written out
in such a form, you may not need to convert your data files into the native “.dx” file
format. Instead, Data Explorer's General Array Importer can read your data
directly, given a small “header” file that you create to tell the General Array Importer
the name of your data file and its dimensions (see Chapter 5, “Importing Data” on
page 61 in IBM Visualization Data Explorer QuickStart Guide).

This shorthand description is enough for Data Explorer to convert your data
structure into a Field when it reads your raw data file. You will still find it valuable
to understand the components of a Field, because once you begin using the Data
Explorer visual programming language, you will have direct access to these
components. Much of the power and flexibility of the visual programming language
is derived from our ability to access and manipulate Field components in a variety
of ways.

 Visualization

2.2 Visual Programming: The Basics
The Field description represents a mapping between your actual data sampling
space and the Data Explorer graphics system used to make images of that data
space. Given such a mapping, the next step is to learn how to visualize your data
in meaningful ways. Data Explorer provides both a visual programming language
and a text-based scripting language. The scripting language is described in
Chapter 10, “Data Explorer Scripting Language” on page 187. The visual
programming language uses a graphically oriented editor instead of a traditional
text-based editor as in C or Pascal. You will be using this graphical programming
environment to generate graphic images as output; this distinction between
graphics as program and graphics as output is subtle, but we do not want to
confuse the two.

To build a visual program, you physically select, place, and connect functional
modules; these are represented graphically as labeled rectangular boxes with tabs
sticking out of them. Each module can be thought of as a subroutine in a
text-based programming system. You can place multiple instances of the same
module, analogous to calling a subroutine several times in a program. Modules
have inputs and outputs (those little tabs sticking out) just like the arguments and
return values in a text language. The inputs and outputs of modules are connected
together into a network, which in some ways resembles a flow-chart diagram.
(Unlike a flow-chart, you cannot loop back a wire to an earlier input in a Data
Explorer visual program) Note that many modules have “hidden” tabs for less
commonly used parameters. You can expose hidden parameters by using the
Expand button in the module’s Configuration dialog box.

Generally speaking, you use Data Explorer to visualize your data in the following
way. First, bring in the data from a disk file as a Field (the Import module can read
in a Data Explorer format file, a General Array Importer file, or netCDF, CDF, or
HDF files). Next, run the imported data Field through one or more modules found
in the Realization category. Each of these produces a visual object. You may also
want to process these Realizations through Transformation modules to modify the

 Chapter 2. Introduction to Visualization 13

visual or other characteristics of an object. Either one or a collection of visual
objects is then displayed in an Image window. The Image window provides a
number of convenient tools for interactively rotating your visual objects, zooming in
for a closer look at them, and so on. There are many different variations of the
above scheme: for example, modules like Construct allow you to create simple
Fields without having to import data; Structuring category modules permit you to
modify Field components in many ways; other types of output are provided so you
can write image files to disk, and so on. But the concept of
Import-Realize-Transform-Image is the basic and most common approach to using
Data Explorer.

So what happens inside a visual program? The Field with its components flows
through one module after another. Some modules add new components, others
remove or change components. However, an essential point to keep in mind is that
unless a module is designed to operate on a specific component, it does not affect
any other part of a Field. That is to say, if you feed a Field into a module that
does not operate on the “positions” component, then from the output of that module
will come a Field with the identical (unchanged) positions component. And that
means that another module further “downstream” in the visual program can operate
on that “positions” component if need be. This differs in a critical way from
traditional languages, which explicitly specify all return values from a function. In
Data Explorer, assume that everything that goes into a module comes out (though
often changed), whereas in a traditional language, ignoring side-effects (bad
programming practice, usually), only those values specifically indicated as return
values are returned when the function exits. The descriptions in IBM Visualization
Data Explorer User’s Reference identify the components that are changed, deleted,
or added by each module.

It is also very often useful to “branch” a visual program. Any module input can only
have one wire (“tab connection”) attached to it at a time. However, any module
output can feed several different module inputs. This allows you to run copies of
the same Field through different “subnets” to perform several different operations
on it. To see all of these visual outputs in the same scene, you use the Collect
module to gather all the “subnet” output wires back together. The single output
from Collect (called a Group) can be attached to the input of the Image module.
The Collect module shares a handy feature with some other modules in that you
can easily add new inputs to it if you need more than the two default input tabs.

See Appendix A, “Using Data Explorer: Some Useful Hints” on page 211 for
discussions of the following:

� Visualization techniques (including animation, color mapping, and shading).
� Creating good visualization programs for interactive use.
� Creating good visualizations for video.

14 IBM Visualization Data Explorer: User’s Guide

Chapter 3. Understanding the Data Model

3.1 Introduction to the Data Model . 16
3.2 Object Types . 17

Fields . 17
Arrays . 28
Groups . 34

 Data Model

 Copyright IBM Corp. 1991-1997 15

This chapter describes the concepts and terminology of the data model for data
stored in the Data Explorer system, whether in memory or on disk.

A complete understanding of this chapter is not required for the effective use of
Data Explorer, and the brief discussion of a Field in Chapter 2, “Introduction to
Visualization” on page 7 should get you started. However, the more detailed
information here is useful when you have specific questions about the data model.

3.1 Introduction to the Data Model
The Data Explorer data model supports various types of simulation and
observational data. Data structures that can be represented include:

� Data defined on a regular orthogonal grid
� Data defined on a deformed regular or curvilinear grid
� Data defined on various irregular grids, such as triangular, quadrilateral, and

tetrahedral meshes
� Unstructured data with no connections between the data samples.

The data samples can be defined over spaces of any dimensionality, and,
independently, can also be connected by primitives of various dimensionalities
(allowing, for example, triangular and quadrilateral meshes defined over 2- or
3-dimensional points). The data values can be associated either with the sample
points or with the connections between the sample points. Available data types
include:

� Real and complex data
� Scalar, vector and tensor data
� Byte, short, integer (signed and unsigned), and floating-point data

Data are stored in the form of Objects for use by Data Explorer modules. An
Object is a data structure stored in memory that contains an indication of the
Object’s type, along with additional type-dependent information. The bulk of the
data is encapsulated in Array Objects.

The data model centers on the notion of a sampled field. The next section
describes the Field, Array, and Group Objects that implement sampled fields in
Data Explorer. In addition to these basic Object types, other types are used to
construct models for rendering (e.g., Transforms, Clipped Objects, Lights, and
Cameras). These are described in B.2, “Data Explorer Native Files” on page 244
and in IBM Visualization Data Explorer Programmer’s Reference.

Data are also stored in permanent file storage in the form of the same Objects.
Although Data Explorer supports the creation of Objects from data stored in other
file formats (such as netCDF), the Data Explorer file format offers significant
additional functionality and flexibility.

Note that the Data Explorer file format is versatile, allowing for future expansion of
the capabilities of the system without requiring changes to the file format. It is
possible to represent data types in a Data Explorer file that cannot be processed by
the current version of Data Explorer. For example, in the current release of Data
Explorer, only single-precision floating-point positions are universally supported.
Also, most modules support only 1-, 2-, or 3-dimensional positions.

16 IBM Visualization Data Explorer: User’s Guide

 3.2 Object Types
Field, Array, and Group Objects implement sampled fields in Data Explorer.
Additional Object types, used to construct models for rendering, are described in
Appendix B, “Importing Data: File Formats” on page 241.

 Fields
Field Objects are the fundamental Objects in the Data Explorer data model. A
Field represents a mapping from some domain to some data space. The domain of
the mapping is specified by a set of positions and (generally) a set of connections
that allow interpolation of data values for points in the domain between specified
positions. The mapping at all points in the domain is represented implicitly by
specifying data that are dependent on (located at) the sample points or on the
connections between the sample points (cell-centered data).

This simple abstraction is sufficient for representing a wide range of things. For
example, you can describe 3-dimensional volumetric data, whose domain is the
region specified by the positions, and whose data space is the value associated
with each position. Two-dimensional images have a domain that is the set of pixel
locations, and a data space that consists of the pixel color. Two-dimensional
surfaces imbedded in 3-space (that is, traditional graphical models) can have a
domain that is the set of positions on the surface, and a data space that is, for
example, the set of data values on that surface.

If the data are dependent on the given positions, then a data value at a point other
than those given is found by interpolation within the connection in which the point
resides. If the data is dependent on connections, then the data value is assumed
to be constant within each connection. If no connections are specified, then there
is no implied information about data values at positions other than those given.

The information in a Field is represented by some number of named components.
Each component has a value, that is an Object. In general, components are Array
Objects (described in more detail in the next section). For example, the “positions”
component is an Array specifying the set of sample points; the “connections”
component is an Array specifying a means to interpolate between the positions;
and the “data” component is an Array specifying the data values.

 Data Model

 Chapter 3. Understanding the Data Model 17

Figure 2. Example of a Field Object

Figure 2 shows an example of a Field Object with four components. The “data”
component specifies the user’s data as an Array of data of arbitrary type (e.g.,
integer), which is dependent on (i.e., in one-to-one correspondence with) the
“positions” component; the “positions” component specifies the sample points as an
Array of 3-dimensional vectors; the “connections” component specifies a set of
tetrahedra as vectors of four integers that refer to the “positions” component; and
the “box” component lists the eight points that define the bounding box of the
positions (i.e., of the Field itself). A complete list of defined component types is
given in “Standard Components” on page 19.

Field components (and Objects in general) can have attributes associated with
them. For example, the “dep” attribute of a component records the dependency of
that component on another component; thus the “data” component will have a “dep”
attribute of “positions” or “connections,” depending on whether the data are
associated with the sample points or with the connections between them. A
component can also have a “ref” attribute, indicating that it refers to another
component. Typically, the “connections” component has a “ref” attribute of
“positions,” signifying that the items in the connections component refer to the
positions component. A “connections” component must have an “element type”
attribute naming the type of connections, such as “triangles”, “quads”, or
“tetrahedra”. A complete list of defined attributes is given in “Standard Attributes”

18 IBM Visualization Data Explorer: User’s Guide

on page 25; the complete list of element types is given in “Connections
Component” on page 20.

Note that Fields can share components. This allows, for example, several Fields to
share the same positions and connections while having different data, colors, and
so on. Figure 3 illustrates two such Fields that share 3-dimensional positions and
tetrahedral connections, but each of which has separate (but still both
position-dependent) data. The sharing is possible because the Arrays are Objects
with a reference count stored in the Array header.

Figure 3. Shared Components among Different Fields

 Data Model

For example, this sharing allows members of a time series, defined on a fixed grid
and represented by two Fields, to share positions and connections while each has
different data.

In addition, sharing is vital to an efficient implementation of the data flow
programming model, in which a module may not modify its inputs. In the example
in Figure 3, the first Field might represent the input to a module (e.g., a vector
Field), while the second Field might represent the output from a module that
computes the length of each vector. The module has constructed a Field with a
separate “data” component representing the calculated result, but has not had to
copy the portions of the Field that remained the same (positions and connections),
because they could be shared between the input and output Fields.

 Standard Components
The standard defined Field components are listed in Table 1, and further described
in the subsequent paragraphs.

Table 1 (Page 1 of 2). Standard Field Components

Component Type
Meaning

“data” arbitrary user’s data (dependent variable)

“positions”
“invalid positions”

float[n]
char

n-space sample points
which sample points are invalid

 Chapter 3. Understanding the Data Model 19

Positions Component: The “positions” component is an Array Object specifying a
set of n-dimensional positions. For data on a grid with regular positions, the
positions can be encoded compactly by Regular and Product Arrays, which are
described in “Arrays” on page 28.

Connections Component: The “connections” component provides a means for
interpolating data values between the positions. Each item of the “connections”
Array describes an interpolation element such as a line, triangle, tetrahedron or
cube. The vertices of each such interpolation element are specified by one Array
item consisting of a list of indices into the “positions” Array, one index per vertex of
the interpolation element. (Position index numbers begin at 0.)

The type of the interpolation elements is specified by the “element type” attribute of
the “connections” component. Two open-ended series of element types are
currently defined: the n-dimensional simplexes, and the n-dimensional cuboids.

The n-dimensional simplexes are represented by “connections” components with
“element type” attributes of “triangles” (2-D) or “tetrahedra” (3-D). Each item of
such a “connections” component is a list of n+1 integer indices referring to items in
the “positions” component representing the n+1 vertices of an n-dimensional
simplex. These vertices are ordered as illustrated in Figure 4 on page 21. For
tetrahedra, the parity of all tetrahedra in a given Field must be consistent. Figure 4
on page 21 illustrates the two possible parities for tetrahedra. In addition, for
triangles there is a convention for which face is the front (using the right-hand rule).

Table 1 (Page 2 of 2). Standard Field Components

Component Type
Meaning

“colors”
“colors”
“color map”
“front colors”
“back colors”
“opacities”
“opacities”
“opacity map”

float[3]
char
float[3]
float[3]
float[3]
float
char
float

surface or volume colors
color index (see “color map”)
color map indexed by “colors” component
colors of front of surface
colors of back of surface
opacity of surface or volume
opacity index (see “opacity map”)
opacity map indexed by “opacities” component

“tangents”
“normals”
“binormals”

float[3]
float[3]
float[3]

curve tangent
curve or surface normal
second curve normal

“connections”
“invalid connections”

int[k]
char

interpolation elements
which interpolation elements are invalid

“faces”
“loops”
“edges”

int
int
int

faces described as a collection of loops
loops described as a series of edges
edges described as a series of points

“pick”
“paths”
“pickpaths”

picks
paths
pickpaths

“neighbors”
“box”
“data statistics”

int[p]
float[2n]

pointers to connection neighbors
2n corners of a bounding box
statistics for data component

20 IBM Visualization Data Explorer: User’s Guide

Figure 4. Order of Vertices in Triangles and Tetrahedra. In the tetrahedron at right, s is the
point nearest the viewer; at center, the point furthest from the viewer.

 Data Model The n-dimensional cuboids are represented by “connections” components with
“element type” attributes of “lines” (1D), “quads” (2-D), “cubes” (3-D), “cubes4D”,
and so on in the format “cubesnD”, where n represents the number of dimensions.
Each item of such a “connections” component is a list of 2n integer indices referring
to items in the “positions” component representing the 2n vertices of an
n-dimensional cuboid. The ordering of these vertices is illustrated in Figure 5. For
cubes, the parity of all cubes in a given Field must be consistent. In addition, for
quads there is a convention that determines the front face.

Figure 5. Order of Vertices in Quads and Cuboids

Note: Figure 5 does not indicate the correspondence between the edges of the
cubes or quads and the spatial dimensions. For example, the cubes or
quads can be “irregular,” in which case the positions of each vertex are
specified explicitly. Regular “positions” components can specify an arbitrary
correspondence between the spatial dimensions and the edges of the cube,
as illustrated in Figure 10 on page 30.

For data on grids with regular connections, the connections can be encoded
compactly by Path and Mesh Arrays, which are described in “Arrays” on page 28
and in more detail in Appendix B, “Importing Data: File Formats” on page 241.

Figure 6 on page 22 illustrates the various types of grids formed with different
kinds of “positions” and “connections” components.

 Chapter 3. Understanding the Data Model 21

Figure 6. Examples of Grid Types. The three grids in the top row represent surfaces; those
in the bottom row, volumes. Reading from left to right, the three grid types are: irregular
(irregular positions, irregular connections), deformed regular (irregular positions, regular
connections), and regular (regular positions, regular connections).

Data Component: The “data” component stores the user’s data values. The data
values can be position- or connection-dependent, as specified by the value of the
“dep” attribute (described in “Standard Attributes” on page 25) of the “data”
component. If the values are position-dependent, then the “connections”
component supplies a means of interpolating data values between the samples. If
the values are connection-dependent, the data value is constant for each
interpolation element. Data can also be dependent on “faces” or “polylines” (see
“Edges and Polylines” on page 25), in which case the data is constant for either
the face or the polyline.

The data are in one-to-one correspondence with the component upon which they
are dependent. This means that they are specified in the same order as the items
in the corresponding component. If that component is specified in a compact form,
its contents are ordered as described in “Arrays” on page 28.

Colors, Front Colors, and Back Colors Components: The “colors”, “front
colors”, and “back colors” components are a means of specifying another,
specialized type of dependent data. Specifically, the renderer requires that each
object in a scene have at least one of these components. The “front colors” and
“back colors” components specify colors to be associated with the front and back
sides, respectively, of a surface. The “colors” component specifies colors to be
associated with both sides of a surface, or with a volume. If only “front colors” or
only “back colors” are specified, then only the “front” or “back” sides, respectively,
of the polygons are rendered. If present, “front colors” or “back colors” override the
specification of the “colors” component.

Each item of a color component Array consists of three floating-point numbers
specifying the red, green, and blue component of a color respectively. The color
components can use the entire floating-point range, but by convention the range
from 0 to 1 is mapped onto the available range of the output device. Like the
“data” component, the color components can be position- or connection-dependent.

22 IBM Visualization Data Explorer: User’s Guide

The front of a triangle is defined to be the side such that the path traversing the
vertices in the order that they are listed for the triangle appears to go
counterclockwise. The front of a quad is the side from which the vertex numbering
appears (Figure 5 on page 21).

The interpretation of colors differs between surfaces and volumes. For surfaces,
the color values in the range from 0 to 1 are mapped onto the range of colors
values possible for the display. For volumes, the interpretation of colors follows the
“dense emitter” model described in the next section.

Opacities Component: The “opacities” component plays a role similar to that of
colors components, except that it specifies a floating-point opacity for rendering. Its
interpretation differs depending on whether the connections represent a surface
(triangles or quads), or a volume (tetrahedra, cubes, and so on). In the surface
case, the opacity is a number from 0 to 1 specifying the opacity of the surface. In
the volume case, the opacity represents the instantaneous attenuation of light per
unit distance traveled. Like the colors components, it can be position- or
connection-dependent.

The interpretation of “colors” and “opacities” differs between surfaces and volumes.
For surfaces, a surface of color cf and opacity o is combined with the color cb of the
objects behind it resulting in a combined color cfo + cb(1 − o).

For volumes, the “dense emitter” model is used, in which the opacity represents the
instantaneous rate of absorption of light passing through the volume per unit
thickness, and the color represents the instantaneous rate of light emission per unit
thickness. If c(z) represents the color of the object at z and o(z) represents its
opacity at z, then the total color of a ray passing through the volume is given by:

c = ∫
∞

−∞
c(z) exp (− ∫

z

−∞
o(ζ)dζ) dz

Color Map and Opacity Map Components: There is an alternative to having the
“colors” component and “opacities” component explicitly list the color and opacity
associated with each position or connection element. If each element of the
“colors” and “opacities” components is a single byte, then it is interpreted as an
index into the “color map” or “opacity map” component. The “color map”
component is a 256-element table of three floating-point values (representing red,
green, and blue, typically with values between 0 and 1). The “opacity map”
component is a 256-element table of floating-point values between 0 and 1.

Invalid Positions and Invalid Connections Components: The “invalid positions”
and “invalid connections” components allow positions or connections to be marked
as not having valid data. This is useful, for example, for observational data defined
on a regular grid but with occasional missing observations, or for simulation data
defined on a regular grid but with a “hole” covered by another grid, perhaps at a
higher resolution. The “invalid positions” component can be an Array of bytes or
unsigned bytes, one for each position, where the component is dependent on
positions (i.e., has a “dep” attribute of “positions.”). In that case, the value 1
indicates that the corresponding position is invalid, and 0 that the corresponding
position is valid. Alternatively, the “invalid positions” component can be an Array of
signed or unsigned integers, where the component references the positions (i.e.,
has a “ref” attribute of “positions”). In that case, the component contains a list of
the indices of the invalid positions. The first method is more space-conserving

 Data Model

 Chapter 3. Understanding the Data Model 23

when there are a large number of invalid elements; the second, when there are a
relatively small number. See “Compute” on page 86 in IBM Visualization Data
Explorer User’s Reference for a way to convert from the “ref” type to the “dep” type.

The “invalid connections,” “invalid faces,” and “invalid polylines” components can be
defined in an analogous way.

Tangents, Normals, and Binormals Components: The “normals” component is
used to specify a local surface normal for rendering purposes. The “tangents”,
“normals” and “binormals” components specify a local reference frame on a path;
this is useful, for example, for twisted-ribbon representations of streamlines.

Normals are used for, among other things, surface shading. By convention, the
normals are expected to point out from the front of a surface, as defined in “Colors,
Front Colors, and Back Colors Components” on page 22. Normals are expected to
have unit length.

Neighbors Component: The “neighbors” component represents information about
the neighbors of each connection element. The number of items in this component
must match the number of items in the “connections” component. The number of
entries in each item must match the number of faces (for 3-D) or edges (for 2-D) in
the connection element. For example, each item in the “neighbors” component for
triangle connections has three entries, while each item in the “neighbors”
component for tetrahedral connections has four entries.

For simplexes in n dimensions (for example, triangles and tetrahedra), each item of
the neighbors Array consists of n+1 integer indices into the connections Array
identifying the n+1 neighbors of the simplex; the ith of the n+1 indices corresponds
to the face opposite the ith vertex of the simplex. For quads, cubes, and so on,
each item of the neighbors Array contains 2n integer indices into the connections
Array identifying the 2n neighbors of the polyhedron. The pointers are in the order
-x1+x1-x2+x2 ... -xn+xn, meaning that the first index points to the neighbor in the −x1
direction, the second to the neighbor in the +x1 direction, and so on, where the xn
dimension varies fastest in the representation of the point indices in the
interpolation element. Faces without neighbors are indicated by an index of −1.

Box Component: The “box” component consists of 2n n-dimensional points,
where n is the dimensionality of the positions component, identifying the corners of
a bounding box that contains the positions of this Field.

Data Statistics Component: The “data statistics” component contains statistics of
the “data” component. The information in this component should be accessed
using the Statistics module or the DXStatistics() function, as the exact contents
are undefined. If DXStatistics is called on other components (e.g., “positions”), an
analogous component (in this case “positions statistics”) will be created.

Faces, Loops, and Edges Components: The “faces”, “loops”, and “edges”
components are used for special-purpose applications, such as fonts or geometric
models. The “faces” component represents a set of faces, each described as a set
of loops. Each entry in the face Array is a single integer index into the “loops”
Array identifying the first of a consecutive set of loops for this face. The loops are
listed in order of the faces they are associated with, so that the list of loops for face
i ends in the loops Array just before the first loop for face i+1. Each entry in the
“loops” Array is a single integer index into the “edges” Array, identifying the first of

24 IBM Visualization Data Explorer: User’s Guide

a consecutive set of edges for this loop. The edges are listed in order of the loops
they are associated with, so that the list of edges for loop i in the edges Array ends
just before the first edge for loop i+1. Each entry in the edges Array is a single
integer index into the “points” Array identifying one vertex of an edge; the other
vertex of an edge is the next entry in the “edges” Array, except that the last edge in
a loop that connects the last point to the first point is not listed explicitly. This is
illustrated in Figure 7 on page 26.

It is assumed that the first loop for each face is the enclosing loop, and that
subsequent loops, if any, are holes in the face. If this is not true, then set the
DX_NESTED_LOOPS environment variable (see “Other Environment Variables” on
page 292). However, setting this environment variable will cause a decrease in
performance when processing faces, loops, and edges data.

Edges and Polylines: “Polylines” are a way of collecting a set of line segments
into a single object with which data can be associated. They are implemented
much as faces, loops, and edges are (see above). An “edges” component contains
the indices of the vertices along polylines. A “polylines” component contains the
indices of the first element in the “edges” component of each polyline sequence. In
other words, the ith element of the “polylines” component is the index in the “edges”
component at which the sequence of vertex indices of polyline i starts. The
sequence corresponding to polyline[i] continues to the beginning of the next polyline
sequence (or to the end of the “edges” component). Polyline data may be
dependent on either “polylines” or “positions”.

Pokes, Picks, and Pick Paths Components: The pokes, picks, and pick paths
components are created as part of the picking process, as implemented by the Pick
tool. A user writing a module that uses the pick structure output by the Pick tool is
expected to use the pick structure manipulation routines (as described in IBM
Visualization Data Explorer Programmer’s Reference) rather than accessing the
pick structure directly. The contents of the pick structure are not defined.

 Data Model

 Standard Attributes
The standard defined attributes are listed in Table 2 and Table 3, and are further
described in the subsequent paragraphs. Attributes associated with rendering
properties are described under the Display module in Chapter 1, “Data Explorer
Tools” on page 1 in IBM Visualization Data Explorer User’s Reference.

Table 2. Component attributes

Attribute Meaning

“dep” component that this component depends on

“ref” component that this component refers to

“der” component that this component is derived from

“element type” interpolation method for connections component

Table 3 (Page 1 of 2). Object attributes

Object Relevant module

label Plot

scatter Plot

mark Plot

 Chapter 3. Understanding the Data Model 25

Figure 7. Use of Faces, Loops, and Edge Components

dep Attribute: The “dep” attribute specifies which component the given
component depends on. The dependent component is specified by a String Object
naming the component it depends on. For example, if the data is
position-dependent, it has a “dep” attribute that is a String Object naming the

Table 3 (Page 2 of 2). Object attributes

Object Relevant module

mark every Plot

mark scale Plot

fuzz Display, Render, Image

ambient Display, Render, Image

diffuse Display, Render, Image

specular Display, Render, Image

shininess Display, Render, Image

shade Display, Render, Image

opacity multiplier Display, Render, Image

color multiplier Display, Render, Image

texture Display, Image

direct color map Display

cache Display, Image

rendering mode Display, Image

rendering approximation Display, Image

render every Display, Image

pickable Pick

marked component Mark, Unmark

26 IBM Visualization Data Explorer: User’s Guide

“positions” component. A component with a this attribute is expected to be in a
one-to-one correspondence with the component named in the attribute.

ref Attribute: The “ref” attribute specifies which component the given component
refers to. The referent component is specified by a String Object naming the
component it refers to. For example, the “connections” component generally has a
“ref”attribute that is a String Object naming the “positions” component. A
component with this attribute consists of indices into the component named in the
attribute.

der Attribute: The “der” attribute specifies that a component is derived from
another component, and so should be recalculated or deleted when the component
it is derived from changes. For example, the “box” component has a “der” attribute
that is a String Object naming the “positions” component.

element type Attribute: The “element type” attribute is an attribute of the
“connections” component. It is a String Object naming the type of the interpolation
primitives. See “Connections Component” on page 20 for a list of the possible
values of the “element type” attribute.

label, scatter, mark, mark every, mark scale Attributes Specifies characteristics
of a plotted line. Affects the behavior of the Plot module. See “Plot” on page 237
in IBM Visualization Data Explorer User’s Reference for more information.

fuzz, ambient, diffuse, specular, shininess, shade Attributes Specifies various
rendering characteristics of an object. Affects the behavior of the rendering modules
(Display, Render, and Image). See “Display” on page 109 in IBM Visualization
Data Explorer User’s Reference for more information.

opacity multiplier, color multiplier Attributes Specifies opacity and color values
for volume rendering. Affects the behavior of the rendering modules (Display,
Render, and Image). See “Display” on page 109 in IBM Visualization Data
Explorer User’s Reference for more information.

texture Attribute Specifies a texture map which is to be applied to an object.
Affects the behavior of Display and Image. See “Display” on page 109 in IBM
Visualization Data Explorer User’s Reference for more information.

direct color map Attribute Specifies whether or not a direct color map should be
used when displaying images. Affects the behavior of the Display module. See
“Display” on page 109 in IBM Visualization Data Explorer User’s Reference for
more information.

cache Attribute Specifies whether the rendered image should be cached. Affects
the behavior of Display and Image modules. See “Display” on page 109 in IBM
Visualization Data Explorer User’s Reference for more information.

rendering mode Attribute Specifies the rendering mode to be either hardware or
software. Affects the behavior of Display and Image modules. See “Display” on
page 109 in IBM Visualization Data Explorer User’s Reference for more
information.

 Data Model

 Chapter 3. Understanding the Data Model 27

rendering approximation, render every Attributes Specify hardware rendering
characteristics for an object. Affect the behavior of Display and Image modules.
See “Display” on page 109 in IBM Visualization Data Explorer User’s Reference for
more information.

pickable Attribute Specifies whether or not an object should be pickable. See
“Pick” on page 234 in IBM Visualization Data Explorer User’s Reference for more
information.

marked component Attribute Specify which component in an object was
previously marked. This attribute is set by the Mark module; affects the behavior of
the Unmark module. See “Mark” on page 214 and “Unmark” on page 358 in IBM
Visualization Data Explorer User’s Reference for more information.

 Arrays
Array Objects hold the actual data, positions, connections, and so on. An Array
consists of some number of items numbered consecutively starting at 0. Each item
has a type, category, rank and shape, defined as follows:

Type Types include double, float, int, uint, short, ushort, byte, ubyte,
and string. (For example, byte is signed byte and ubyte is unsigned
byte.)

Category A category can be real or complex.

Rank Rank 0 corresponds to scalars, rank 1 to vectors, rank 2 to matrices
or rank-2 tensors; higher ranks correspond to higher-order tensors.

Shape The shape is defined as the list of dimensions of the structure. For
rank-0 items (scalars), there is no shape. For rank-1 structures
(vectors), the shape is a single number corresponding to the number
of dimensions. For rank-2 structures, shape is two numbers, and so
on.

The following are examples of these classifications:

� Three-dimensional points have type float or double, category real, rank 1,
and shape 3.

� Two-vectors typically have type float. They are category real, rank 1, and
shape 2. Three-vectors are shape 3.

� Tetrahedra have type int, category real, rank 1, and shape 4.
� Scalar values typically have type int or float. They are category real and

rank 0, with no shape.
� Strain tensors typically have type float or double. They are category real,

rank 2, and shape 3×3.

Data Explorer uses six types of Array: Irregular Arrays and five types of compact
Array: Regular, Product, Path, Mesh, and Constant.

The Array types are discussed in the following sections.

 Irregular Arrays
The most general way to specify the contents (item values) of an Array is to list the
values; this is called irregular data. An example of such an Array Object is
illustrated in Figure 8 on page 29.

28 IBM Visualization Data Explorer: User’s Guide

Figure 8. Example of an Irregular Array

 Data Model

 Regular Array
A set of n-dimensional points lying on a line in n-space with a constant
n-dimensional delta between them, represents, for example, one edge of a grid of
regular positions. Regular Arrays are frequently combined as the terms of a
Product Array. An example of a Regular Array is illustrated in Figure 9.

This example represents (in compact form) the same information as the following
irregular Array:

xo, yo

xo + xd, yo + yd

xo + 2xd, yo + 2yd

...

xo + (n − 1)xd, yo + (n − 1)yd

 type = float, real, vector[2]
 items = n
 origin = [xo, yo]
 delta = [xd, yd]

Figure 9. Example of a Regular Array

 Product Array
Encodes multidimensional positional regularity. It is the set of points obtained by
summing one point from each of the terms of the product in all possible
combinations. For example, the product of a set of Regular Arrays is a regular grid
whose basis vectors are the deltas of the Regular Arrays that are the terms of the
product, and whose origin is the sum of the origins of the terms. An example of a
Product Array Object is illustrated in Figure 10 on page 30. A Product Array can

 Chapter 3. Understanding the Data Model 29

have terms that are Regular Arrays, irregular Arrays, or any combination of Regular
and irregular Arrays.

Figure 10. Example of a Product Array

The example in Figure 10 represents (in compact form) the same information as
the following irregular Array:

xo + uo, yo + vo

xo + uo + ud, yo + vo + vd

xo + uo + 2ud, yo + vo + 2vd

...

x1 + uo, y1 + vo

x1 + uo + ud, y1 + vo + vd

...

xn − 1 + uo + (m − 1)ud, yn − 1 + vo + (m − 1)vd

An important special case of the more general Product Array Object is the
n-dimensional geometrically regular grid. Figure 11 on page 31 is an example that
shows two ways to describe a Product Array composed of two Regular Arrays.

30 IBM Visualization Data Explorer: User’s Guide

Figure 11. Product Array of Two Regular Arrays

The order of the specification of the counts and deltas implicitly creates a list of positions.

x is the fastest-varying dimension.

This represents (in compact form) the same information as
the following irregular Array:
[0 0]
[1 0]
[2 0]
[3 0]
[0 1]
[1 1]
[2 1]
...

y is the fastest-varying dimension.

This represents (in compact form) the same information as
the following irregular Array:
[0 0]
[0 1]
[0 2]
[1 0]
[1 1]
[1 2]
[2 0]
...

 Data Model

 Path Array
Encodes linear regularity of connections. It is a set of n-1 line segments joining n
points, where the ith line segment joins points i and i+1. Path Arrays are frequently
combined as the terms of a Mesh Array. An example of a Path Array is illustrated
in Figure 12.

 type = int, real, vector[2]
items = n

Figure 12. Example of a Path Array

This example represents (in compact form) the same information as the following
irregular Array:

 Chapter 3. Understanding the Data Model 31

0 1

1 2

2 3 ...

n − 2 n − 1

 Mesh Array
Encodes multidimensional regularity of connections. It is a product of connection
Arrays. The product is a set of interpolation elements where the product has one
interpolation element for each pair of interpolation elements in the two
multiplicands, and the number of sample points in each interpolation element is the
product of the number of sample points in each of the multiplicands’ interpolation
elements. An example of a Mesh Array is illustrated in Figure 13.

Figure 13. Example of a Mesh Array

This example represents (in compact form) the same information as the following
irregular Array:

An important special case of the more general Mesh Array Object is the
n-dimensional cuboidal connections of a regular grid. Figure 14 on page 33 is an
example that shows a Mesh Array composed of two Path Arrays.

See Appendix B, “Importing Data: File Formats” on page 241 for a detailed
description of how to specify these compact Arrays.

0, 1, m, m + 1

1, 2, m + 1, m + 2 ...

m − 2, m − 1, 2m − 2, 2m − 1

m, m + 1, 2m, 2m + 1 ...

32 IBM Visualization Data Explorer: User’s Guide

Figure 14. Mesh Array of Two Path Arrays (with Regular Connections)

The order of the specification of the counts implicitly creates a list of position indices in the order of
“last index varies fastest.”

The location in space of each vertex is determined by the value of the position referred to by that
index.

This represents (in compact form) the same
information as the following irregular Array:

0 1 3 4

1 2 4 5

3 4 6 7

...

This represents (in compact form) the same
information as the following irregular Array:

0 1 5 6

1 2 6 7

2 3 7 8

...

 Data Model

 Constant Array
Encodes a set of numbers all with the same value. This can be useful, for
example, for specifying the colors associated with an object if the object has a
single color. An example of a Constant Array is shown in Figure 15.

type = float, real, vector[3]
 items = n
origin = [xo, yo, zo]

Figure 15. Example of a Constant Array

 Chapter 3. Understanding the Data Model 33

 Groups
Fields can be combined into Groups. A Group is a collection of members that
themselves may be Fields or other Groups. A member can be referred to either by
name or by index. An example of a Group is given in Figure 16.

Figure 16. Example of a Group

This example shows a Group describing a visualization scene composed of two
parts. The member named “pressure” is a Field of volumetric data to be volume
rendered, representing pressure in an airflow around an airplane. The member
named “airplane” is a geometric model describing the surface of the airplane. It, in
turn, can be a Group, where each member is one of the constituent parts of the
airplane, such as “wing,” “fuselage,” and so on. The top-level Group could then be
passed into the renderer to produce an image of the airplane combined with a
volume rendering of the pressure Field.

Named Group members can be retrieved by name or by index number; the n
members of a Group are numbered from 0 to n-1. Group members can also be
stored by index number without a name, in which case they can be retrieved only
by index number. The members of a Group are always numbered consecutively
starting at 0, and gaps in the numbering are not allowed.

In addition to generic Groups used to collect related information, there are three
subclasses of Group used to combine related Objects with additional semantics:
Multigrid Groups, Composite Field Groups, and Series Groups.

 Multigrid Groups
It is often necessary to represent a Field as a collection of separate Fields, each
with its own grid. For example, this is the case in some kinds of simulations using
multiple grids. The data structure used to hold such Fields is a subclass of Group
called a Multigrid Object. It is the same as a generic Group in most respects,
except that it requires all members to be Fields holding data of the same type. The
“connections” component of each member must also be of the same type. Grids
may be completely disjoint or may overlap. For overlapping grids, the “invalid
positions” or “invalid connections” components may be used to define which grid is
valid in a particular region.

34 IBM Visualization Data Explorer: User’s Guide

Composite Field Groups
A Composite Field is another kind of Group that is treated as a single entity. For
example, parallelism in Data Explorer is achieved by explicitly partitioning Fields
into abutting, spatially disjoint primitive Fields. Positions on the boundaries must be
replicated identically. Like Multigrid Groups, all members must have the same type
of data and the same type of connections.

 Series Groups
Series of various types, such as time series, are stored in a subclass of Group
called a Series Object. A Series Object is the same as a generic Group in most
respects, except that it associates a series value, such as a time stamp, with each
member. Members are stored in and retrieved from a Series Group by index.
Members cannot be retrieved by series value. Fields in a Series Group must all
have the same data type and connection element type. Figure 17 shows an
example of a Series Group, where the three members have series positions of 1.2,
2.7, and 8.4 respectively.

 Data Model

Figure 17. Example of a Series Group

 Chapter 3. Understanding the Data Model 35

36 IBM Visualization Data Explorer: User’s Guide

Chapter 4. Data Explorer Execution Model

4.1 Data Flow . 38
4.2 Iterative Execution and Caching of Intermediate Results 40
4.3 Conditional Execution: Route and Switch 41
4.4 Iteration using the Sequencer . 43
4.5 Iteration using Looping . 44
4.6 Preserving Explicit State . 45
4.7 Advanced Looping Constructs . 50
4.8 External Asynchronous Data Sources . 54
4.9 Parallelism using Distributed Processing . 55
4.10 Parallelism for Data Explorer SMP . 56

 Execution Model

 Copyright IBM Corp. 1991-1997 37

Data Explorer's execution model is based on the data flow concept. However,
features are provided that extend the data flow concept to allow you to create a
visual program that could not be supported by simple data flow. For example,
there are tools that allow you to explicitly save partial results of a visual program to
be used in a subsequent execution. Data Explorer also provides you with various
tools to control the flow of execution of your visual programs. Most of these tools
are analogous to constructs found in commonly used programming languages. For
example, tools are provided that perform the function of IF statements, CASE
statements and FOR (or DO) loops. This chapter discusses flow-control tools (with
several examples of their use) both individually and in combination.

Although it is not necessary to understand all the details of the Data Explorer
execution model in order to build and run visual programs, you may find it helpful
as you build visual programs. Other topics in this chapter include caching of
intermediate results, conditional execution using the Route and Switch modules,
iteration using the Sequencer, simple iteration using the looping modules,
preservation of state using the pairs GetLocal/SetLocal or GetGlobal/SetGlobal,
creating advanced looping constructs using combinations of tools, asynchronous
data sources, and parallelism. The tools that control the flow of execution of a
visual program are found in the Data Explorer category Flow Control.

 4.1 Data Flow
In a true data-flow implementation, all modules are pure functions (i.e., their outputs
are fully defined by their inputs). Hence, processes are stateless with no side
effects. When a module's inputs are received, it runs, and when finished it
distributes its results to modules waiting downstream. Note that in Data Explorer,
results are communicated between modules by passing pointers to data objects,
not by copying. Of course, when running in distributed mode or when using
outboard modules, data must be sent by socket since the processing may occur on
another host.

Consider the example illustrated in Figure 18 on page 39.

38 IBM Visualization Data Explorer: User’s Guide

Figure 18. Example 1

 Execution Model

The Collect module waits for inputs from the Isosurface and MapToPlane modules.
Import would send its results to the waiting Isosurface and MapToPlane modules.
In effect, this execution model is entirely data-driven and top-down: the execution
of modules is dependent solely on the passage of data through the system.

While this simple data-flow execution model seems a natural mechanism for the
execution of visual programs, a closer examination reveals that real-world problems
are more complex. In order to function efficiently, it is vital that the system avoid
unnecessary work. In general, there are two reasons why modules present in a
visual program may not need to be executed when their turn comes: 1) their results
are not actually required by a result of the network and 2) their inputs are
unchanged from the last time the module was executed (i.e. the result will be the
same).

The outputs of a visualization network occur in modules that have side effects.
They produce results outside of the visual program itself such as the display of
images on a workstation or the creation of output files. Unless the result of a
module ultimately affects a module that produces a side effect, that module does
not need to be executed.

Eliminating modules that are not ancestors (i.e., not upstream) of modules with side
effects is done in Data Explorer by preprocessing the network before the actual

 Chapter 4. Data Explorer Execution Model 39

data-flow network evaluation commences. This is done by traversing the graph
bottom-up, beginning at each module known to have side effects and flagging each
module as it is encountered. Once this is complete, modules that have not been
flagged do not have to be executed.

Note that the exact order in which modules will be executed cannot be controlled
by the user; for example, modules in two parallel branches may execute in any
order with respect to one another; it is only guaranteed that a module that depends
on the results of one or more modules will wait for them to be complete before it is
executed.

4.2 Iterative Execution and Caching of Intermediate Results
Unlike the simple example in Figure 18 on page 39 most real visualization
problems involve some form of iteration. This may either be direct interaction,
where the user is adjusting parameters of the visualization and observing their
effect on the resulting images, or animation, in which one or more inputs to the
network may vary from frame to frame.

In iterative applications, there are often major parts of the network that are
unaffected when input parameters are modified. In Figure 18 on page 39 if the
isovalue input to the Isosurface module is changed, only the affected module and
its descendents need to be executed. The output of Import is not affected by the
change. Hence, it can be reused, which avoids a superfluous access of data on
disk. The MapToPlane module also does not need to be executed, since its inputs
did not change.

One way to implement this capability is via a caching mechanism for partial results.
Instead of immediately reexecuting when its inputs arrive, a module may first
determine whether its inputs have changed. If they have not changed, it can simply
retrieve its results from the cache. Otherwise, the module reexecutes, placing its
new result into the cache.

Data Explorer extends this notion by incorporating a cache (implemented by the
module scheduler rather than by the modules themselves) for all partial results.
This cache retains results from not only the previous execution of the network, but
from all prior executions (this is the default behavior; the user can also control
cache settings for modules). The saving of objects in the cache is subject to
memory limitations and a least-recently-used cache eviction strategy (items used
the longest time ago are first to be discarded from the cache). The caching
behavior for each output of a module may also be explicitly set by a user to
optimize memory utilization. (See A.1, “Using Data Explorer Effectively” on
page 212.)

The caching of partial results means that in general, the output of Import is held in
the cache. Usually, this is highly desirable, as it avoids needing to reimport the data
every time the visual program is run. However if you modify your file on disk (e.g.,
by editing it), Data Explorer will not know that the file has been changed, and will
continue to use the cached version. To force Data Explorer to reimport the data,
use the Reset Server option of the Connection menu. This will cause all items in
the cache to be discarded, and Import will reaccess the file on disk. You may also
set Import to cache no results by using the Cache option of Import’s Configuration
dialog box; note, however, that this will not necessarily cause Import to run every
time unless modules downstream from Import are also set to cache no results.

40 IBM Visualization Data Explorer: User’s Guide

Note: An asynchronous module could be used to monitor a file’s status and
generate new outputs when the file changes.

4.3 Conditional Execution: Route and Switch
Two of Data Explorer's mechanisms to control execution flow through a visual
program are the Switch and Route modules. Switch allows you to switch between
one or more inputs to drive a single output; Route is the inverse of Switch, having a
single input that can be routed to zero, one, or more than one output. Switch is
typically used to choose between different paths in a visualization program; for
example, to pass an imported data field through either the Glyph module or through
Isosurface, depending on user choice or characteristics of the data field itself.
Route is typically used to turn off portions of the visualization program; for example,
to turn off WriteImage or Export, or to prevent rendering to an image window unless
the user chooses to create an image. Switch can be thought of as turning off
portions of the visual program logically above Switch; Route can be thought of as
turning off portions of the visual program logically below Route. Note that while
Route turns off modules that receive its unused outputs, the Collect module is an
exception: it runs even if some of its inputs have been turned off by Route.

Figure 19 shows an example of a Switch module controlling whether an Isosurface
or a MapToPlane is passed to Image. In a simple data-flow execution model, this

 Execution Model

Figure 19. Example 2

 Chapter 4. Data Explorer Execution Model 41

Switch module will be executed when its inputs are available (i.e., the results of the
Isosurface and MapToPlane modules, and the value of the selector). On execution,
the Switch module chooses whether to pass the Isosurface or MapToPlane result to
the output based on the selection input to Switch. In the case of a pure data-flow
model both the Isosurface and MapToPlane modules execute before the decision
as to which will actually be used is known. Since both operations can be
computationally expensive, the execution of both of them is very inefficient.

Again, this problem is handled in Data Explorer within the simple data-flow
execution module by an examination of the graph prior to execution. If the
selection value comes from an external source (e.g., an interactor) and is known a
priori, the selection may be performed by a simple transformation of the graph:
excising the Switch module altogether, and substituting arcs from the selected
source (either Isosurface or MapToPlane) to each of the modules that, in the
original network, received the result of the Switch module. This leaves the
unselected module dangling. It and any of its ancestors that are therefore made
unnecessary will not be executed.

A different procedure is used if the controlling value is not static (e.g., if it is
determined elsewhere in the network), as shown in Figure 20 on page 43.
Suppose either an isosurface or a set of vector glyphs is selected depending on
whether the data are scalar or vector. The determination of the type of the data is
made using the Inquire module (i.e. at run time). In this case, the selection value
for the Switch module cannot be determined before the execution of the graph.
Instead, the graph must be evaluated in stages: 1) determine the selection value, 2)
determine the necessary input to the Switch module and 3) evaluate the remainder
of the graph. Since dynamic inputs may themselves be descended from other
non-static inputs (e.g., computed in the network), this process may have to be
performed repeatedly.

42 IBM Visualization Data Explorer: User’s Guide

Figure 20. Example 3

 Execution Model

4.4 Iteration using the Sequencer
Caching of intermediate results is particularly useful in conjunction with the Data
Explorer Sequencer module. The Sequencer provides Data Explorer with a very
simple and flexible animation capability. The sequencer outputs a frame count,
which is updated with each new execution. The user controls the behavior using a
VCR-like interactor (see “Using the Sequencer” on page 68).

The first time the Sequencer is “played”, it causes the network to be executed with
each value for the Sequencer output. Each execution, which may be time
consuming, will result in a new image being generated. These images are simply
the result of a rendering module and will be retained in the cache. When the
Sequencer is “replayed”, the inputs to the network are the same as they were for
one of the frames in the first set of executions. Thus, the result of the execution
(an image) will be immediately available from the cache. Hence, Data Explorer
provides an automatic mechanism to create real-time animations even when the
computation of each frame is slower than real-time.

The value produced by the Sequencer can be used in a number of ways. The
Sequencer may be used to iterate through a time-dependent data set, causing the
visualization to operate on each time step in turn, resulting in an animation showing

 Chapter 4. Data Explorer Execution Model 43

how the data vary with time. As another example, the Sequencer could be used to
drive the isovalue input to the Isosurface module.

4.5 Iteration using Looping
The sequencer provides a basic loop; however it has some limitations. Only one
sequencer per visual program is allowed, and, as it executes, everything in the
visual program executes (subject to the optimization for deciding which modules
need to be executed, discussed above). Additional functionality is provided using
the ForEachN, ForEachMember, Done, and First modules.

ForEachN and ForEachMember essentially implement a standard
programming-language “for” loop; in the case of ForEachN iterating over a specified
list of integers, and in the case of ForEachMember iterating over the members in a
group or the items in a list (or array). Figure 21 shows a simple loop that outputs
the integers 0 to 10 and Echo's them (the start and end parameters to ForEachN
have been set to 0 and 10 respectively). This is roughly equivalent to the
C-language statements

 for (i=ð; i<=1ð; i++)

 printf("%d", i);

Figure 21. Example 4

44 IBM Visualization Data Explorer: User’s Guide

Data Explorer provides you with two other tools for control looping, Done and First.
Done enables you to exit a loop. Examples of its use can be found in “Advanced
Loop Constructs” (see below). The First module provides a way to recognize the
first pass through a loop; this is particularly useful, for example, as a way to reset
the GetGlobal module if you are using GetGlobal and SetGlobal (see below) to
store information during the execution of a loop. Note that First is not necessary if
you are using GetLocal and SetLocal.

When a loop is present in a visual program, it causes the execution of all modules
in the visual program containing the looping tool (ForEachN, ForEachMember, or
Done), subject to optimization. For this reason it is strongly suggested that looping
modules NOT be placed in the top level visual program, but rather be used only
within macros. If used within a macro, the macro will not output any values until the
loop is complete, when the ForEachN or ForEachMember list is exhausted or when
the Done module causes an exit.

If a loop occurs inside a macro, and you reexecute a visual program calling this
macro, the loop will not be reexecuted as long as the result of the macro remains in
the cache. However, the presence of a side effect module (such as WriteImage or
Print) inside of a loop will cause the loop to be reexecuted regardless of whether
the output of the macro remains in the cache. If this is not the desired behavior,
Route can be used to turn off the entire macro.

For efficiency you might find it desirable to set the caching option to Last Result
for modules within the loop. In this way, multiple intermediate values within a loop
will not use up valuable cache space.

Note that the full execution of a loop is considered to occur within a single
execution of the graph (as would occur if you select Execute Once from the
Execute menu). Thus if you change any interactor values DURING the execution of
the loop, those interactor values will not take effect until the loop is complete. This
is an important way in which looping differs from using the Sequencer; if you
change the value of an interactor while the Sequencer is running, the value will be
updated on the next frame of the sequence.

 Execution Model

4.6 Preserving Explicit State
Some visualization applications require the retention of state from one execution to
the next, which as discussed earlier, cannot be supported within the context of pure
data flow. Consider, for example, the creation of a plot of data values at a given
point while sequencing through a time series. The state of the plot from the prior
execution is retrieved. It is updated by appending the new time-step information,
and the result is then preserved by resaving the state of the plot for the next
execution. Data Explorer provides two sets of tools for preserving state depending
on whether the state needs to be preserved over one execution of the network or
over multiple executions of the network. The tools for preserving state are
GetLocal, SetLocal, GetGlobal, and SetGlobal. The Set tools enable you to save an
object (in Data Explorer's cache) for access in a subsequent execution or iteration.
The Get tools enable you to retrieve the object saved by the Set tools.

You pair a GetLocal and SetLocal in a visual program by creating an arc from
GetLocal’s link output parameter to SetLocal’s link input parameter. In a visual
program a GetLocal typically appears logically above a SetLocal. When GetLocal
runs, it checks if an object has been saved in the cache. If no object was saved

 Chapter 4. Data Explorer Execution Model 45

Figure 22. Example 5

(as would be the case if SetLocal has not yet run) or the reset parameter to
GetLocal is set, GetLocal outputs an initial value that you can set using the
initial parameter. Otherwise, GetLocal retrieves the saved object from the cache
and outputs it. When SetLocal runs, it saves its input object in the cache and then
indicates that its paired GetLocal should simply be scheduled during the next
iteration of a loop or the next time an execution is called for. (Note that if GetLocal
is inside a macro, it will be executed only if the macro needs to be executed; that
is, if the macro's inputs have changed or there is a side effect module in the
macro.)

GetGlobal and SetGlobal are paired in the same way as GetLocal and SetLocal.
They also save and retrieve items from the cache. The main difference is that
GetGlobal and SetGlobal will preserve state over more than one execution of a
program. (However, recall that a complete loop takes place within a single
execution.)

Using GetGlobal and SetGlobal is comparable to using a static variable in
C-language programming. GetLocal and SetLocal are good for saving state inside
of a looping construct. Once the loop is terminated, the state is reset for the next
execution of the loop. To save state in a program that uses a Sequencer module,
you should use GetGlobal and SetGlobal, since each iteration of the Sequencer is

46 IBM Visualization Data Explorer: User’s Guide

a separate execution of the program as described in 4.5, “Iteration using Looping”
on page 44.

Illustrated in Figure 22 on page 46 is a simple macro that sums the numbers from
1 to N, where N is an input parameter. The start parameter to ForEachN has
been set to 1. GetLocal and SetLocal are used to accumulate the sum. Sum is a
trivial macro consisting of a Compute where the expression is “a+b.” On the first
iteration of the loop, GetLocal will output its initial value, which has been set to 0.
On subsequent iterations GetLocal will output the accumulated value SetLocal
saved during the previous iteration. When the loop terminates the final accumulated
value is the output of the macro. This macro is roughly equivalent to the following
C-language statements:

b = ð;

for (a=1; a<=1ð; a++)

b = b+a;

If the macro were run again, on the first iteration of the loop GetLocal would again
output its initial value. (Note that the macro will only run again if the input to the
macro changes or the output of the macro has been removed from cache.)

If you replaced the GetLocal and SetLocal in Figure 22 on page 46 with GetGlobal
and SetGlobal it would be equivalent to the following C-language statements:

 int a;

static int b = ð;

for (a=1; a<=1ð; a++)

b = b+a;

While when SetLocal is used, the sum is reset each time the macro is run, if
SetGlobal is used, the sum of a previous execution is added to the sum of the
current execution. For example, let macro_local be the macro shown in Figure 22
on page 46 and macro_global be the same macro but with SetGlobal and
GetGlobal substituted for SetLocal and GetLocal. If the input to both macros is 10
then both macros will output 55 (the sum of numbers 1 to 10) the first time they are
run. If an execution takes place without the input to the macros changing then
neither macro will run again and the value 55 will be used as the output again. If
you change the input to 3 then macro_local will output 6 and macro_global will
output 61 (55+6).

Illustrated in Figure 23 on page 48 is a macro that returns the accumulated
volumes of the members of a group and the number of members in the group.
ForEachMember is used to iterate through the group. Measure is used to
determine the volume of a member and the GetLocal and SetLocal pair on the left
side of the macro is used to accumulate the volumes. For illustrative purposes, a
loop containing GetLocal, SetLocal, and Increment is used to count the number of
members in the group. (Inquire also provides this function, as does the index
output of ForEachMember.) Increment is a trivial macro consisting of a Compute
where the expression is set to “a+1.” The initial values to both GetLocal tools are
0.

 Execution Model

 Chapter 4. Data Explorer Execution Model 47

Figure 23. Example 6

Illustrated in Figure 24 on page 49 is a visual program that saves the current
camera settings for use in the next execution of the program. The initial value of
GetGlobal is NULL. The Inquire module checks to see that the output of GetGlobal
is a valid camera object. If it's not a camera object, then Route is used to ensure
that the Display module is not scheduled to run. When a new camera is chosen
(for example by rotating the object in the Image window) the Display window will
show the image using the previous execution's camera settings.

48 IBM Visualization Data Explorer: User’s Guide

Figure 24. Example 7

 Execution Model

As mentioned previously, in a true data-flow implementation, all modules are pure
functions (i.e. their outputs are fully defined by their inputs). Hence, processes are
stateless with no side effects. A macro in Data Explorer is considered to be a
function, with its outputs being fully defined by its inputs. This is no longer true
when a GetGlobal module is added to a macro. GetLocal maintains state
information only within one execution of the macro. GetGlobal maintains state
information between executions, and therefore the outputs of a macro containing
GetGlobal are no longer entirely defined by the inputs. The outputs from macros
with state (containing a GetGlobal module) are guaranteed to stay in the cache until
the inputs for that macro change. At that point, the results of the previous execution
are discarded to make room for the new results. This is equivalent to setting the
cache attribute of the macro to cache last for each of the outputs. These cache
settings cannot be overwritten by the user. This guarantees coherency when
executing macros with state.

 Chapter 4. Data Explorer Execution Model 49

4.7 Advanced Looping Constructs
Combinations of the modules described above enable you to create advanced
looping constructs. These constructs are equivalent to C-language constructs such
as “do while” or “for” loops containing “break” and “continue” statements. In the
following figures the Sum and Increment macros, as described above, are used as
well as a macro named Equals that consists of a Compute where the expression is
“a==b?1:0” (if the inputs are equal output 1 otherwise output 0).

Illustrated in Figure 25 on page 51 is a macro that computes the sum of numbers
from 1 to N. If a number in the sequence from 1 to N is equal to an external input,
x, the loop terminates and returns the sum from 1 to x. Done, in combination with
Equals, is used to cause early termination of the loop. Done causes the loop to
terminate after all the modules in the macro have executed if the input to Done is
nonzero. The macro illustrated in Figure 25 on page 51 is equivalent to the
C-language statements:

sum = ð;

i = ð;

 do

 {

 i++;

sum = sum+i;

} while (i<=n && i!=x);

Now consider a macro in which the sum of numbers from 1 to N is computed, but if
a number is equal to an external input value, x, it is excluded from the sum. To
achieve this result using C-language statements, you would use a conditional with a
“continue” statement:

sum = ð;

for (i=1; i<=n; i++)

 {

if (i==x) continue;

sum = sum+i;

 }

50 IBM Visualization Data Explorer: User’s Guide

Figure 25. Example 8

 Execution Model

As illustrated in Figure 26 on page 52, you would use Route to create this macro
using Data Explorer. The selector input of Route is being controlled by the output
of Compute. The Compute has its expression set to “a==b?0:1” (if a and b are
equal output 0, otherwise output 1). (This is similar to the Equal macro used
earlier, but the expression differs slightly.) Therefore, if the iteration variable is
equal to x, Compute outputs a 0, causing Route to disable the execution of all the
modules downstream from it. This implies that Sum and SetLocal will not run;
therefore, during the next iteration, GetLocal will retrieve the same value as the
current iteration.

Unfortunately, the visual program illustrated in Figure 26 on page 52 has a minor
problem. If x equals N, the Route will cause the Sum and SetLocal not to execute
during the last iteration; therefore the output of the macro will be a NULL.

 Chapter 4. Data Explorer Execution Model 51

Figure 26. Example 9

Illustrated in Figure 27 on page 53 is the fix to the problem. A Switch is included
to choose the correct input for the output of the macro. If x equals N, the output of
the GetLocal is chosen; otherwise the output of Sum is chosen.

If you want to create a loop containing an early exit in the middle of the loop (a
“break”), you need to use a Route in combination with Done. Illustrated in
Figure 28 on page 54 is a macro that performs the equivalent function as the
C-language statements:

sum = ð;

for (i=1; i<=n; i++)

 {

if (i==x) break;

sum = sum+i;

 }

Data Explorer allows you to have multiple Done tools in a single loop enabling you
to have more than one break or continue or combinations of the two.

ForEachN or ForEachMember simplify the use of loops but they are not necessary
for creating them. In fact, Done itself is sufficient, if it is included inside a macro.
The macro will execute repeatedly as long as the done parameter is equal to 0

52 IBM Visualization Data Explorer: User’s Guide

Figure 27. Example 10

 Execution Model

(zero). Note that the top-level visual program is itself a macro, so the same
behavior will occur if Done is placed in the top-level visual program.

Illustrated in Figure 29 on page 55 is a macro that computes the Fibonacci Series
(defined by setting Y1= 1, Y2 = 1 and by the recursion formula Yk = Yk-2 + Yk-1, for k
= 3,4,5...). In this example a two vector, [Yk-1, Yk], is used to store the elements of
the series. The GetLocal module has its initial value set to [1,1]. The first
Compute in the macro creates a new two vector consisting of [Yk-1, Yk] using the
expression “[a.1, a.0 + a.1].” The second Compute in the macro extracts Yk from
the two vector using the expression “a.1.” To terminate the loop, the Yk element of
the series is checked against an external input, x. If Yk is greater than x, the loop
terminates. GreaterThan is a simple macro consisting of a Compute with its
expression set to “a>b?1:0.” An equivalent set of C-language statements is:

 a=1;

 b=1;

 do {

c = b;

b = b + a;

a = c;

} while (b <= x);

 Chapter 4. Data Explorer Execution Model 53

Figure 28. Example 11

4.8 External Asynchronous Data Sources
Many applications of visualization tools call for a direct interface to external data
sources, especially ones that generate data to be studied (e.g. a computational
simulation). The execution model of Data Explorer provides the framework for
real-time visualization of data generated asynchronously by such a process. An
external data source is linked into a Data Explorer network by incorporating a
communications module, which receives data from the external source, often
across a socket, and passes the resulting data object to the module's output. This
module (and its descendents) will only run when the external data source has
indicated that new data are available (see 10.2, “Asynchronous Modules” on
page 84 in IBM Visualization Data Explorer Programmer’s Reference).

Data Explorer also provides a mechanism for direct manipulation of the executive
(e.g., mode, passing data, error handling, etc.) and the user interface (e.g., window
visibility and mode) from an external application. This allows control of Data
Explorer from other software and peer-to-peer communications (see Chapter 16,
“DXLink Developer's Toolkit” on page 157 in IBM Visualization Data Explorer
Programmer’s Reference).

54 IBM Visualization Data Explorer: User’s Guide

Figure 29. Example 12

 Execution Model

4.9 Parallelism using Distributed Processing
Data Explorer provides the capability of distributing the execution of a visual
program or a program generated using the scripting language over multiple
workstations on a network. Distributing the execution provides parallelism and
enhanced resource utilization. Parallelism is achieved by the simultaneous
execution of different portions of the visualization on each of the workstations.
Enhanced resource utilization can be achieved, for example, by assigning
computationally intensive portions of the visualization to the more powerful
workstations, or transformation and realization functions that are applied to data
located remotely can be distributed to the remote workstations, reducing the
amount of data transfer.

Distributed processing is achieved in two ways: using “outboard” modules or
placing groups of tools into “execution groups.” These two methods can be used
independently or in combination. An outboard module is a user-written module
controlled by the Data Explorer executive but is external to the Data Explorer server
program. They can be invoked from either a visual program or a script program.
Execution groups are a set of tools that can be assigned to a workstation. Once
groups are created, they can be assigned to the workstations over which the
visualization is to be distributed. More than one group can be assigned to each
workstation. (See also 9.1, “Using Distributed Computation” on page 178.)

 Chapter 4. Data Explorer Execution Model 55

4.10 Parallelism for Data Explorer SMP
For completeness, the notion of module parallelism is discussed here. If you are
developing visualizations or modules exclusively for use with the IBM Visualization
Data Explorer running on a single-processor workstation, then these concepts are
not applicable. However, if your visualizations or modules are to be run on both
the IBM Visualization Data Explorer and IBM Visualization Data Explorer SMP, then
these concepts are important for achieving higher performance.

Every module that performs any significant amount of processing is “parallelized”;
that is, the module makes use of all processors made available to Data Explorer to
operate on the data.

Data Explorer uses explicit data partitioning as the primary framework for
parallelism. Data Explorer partitions the data into local, self-contained regions. In
general, visualization modules then generate subtasks corresponding to partitions.
For more information about partitioning, see Partition in IBM Visualization Data
Explorer User’s Reference.

In general, parallel programming is complex. To help manage it, Data Explorer
simplifies the process by providing a simple fork-join parallelism model to
implement coarse-grain shared memory parallelization (data parallel). Using data
partitions, read-only objects, and a single-fork join mode simplifies the module
writing task by avoiding the explicit use of locks in modules, thereby reducing the
possibility of deadlock. For information about adding modules to the Data Explorer
system, see IBM Visualization Data Explorer Programmer’s Reference.

56 IBM Visualization Data Explorer: User’s Guide

Chapter 5. Graphical User Interface: Basics

5.1 Starting Data Explorer . 58
Using Environment Variables . 59

5.2 Understanding Data Explorer Windows . 60
Looking at Window Structure . 61
Using the Mouse . 62
Moving and Resizing Windows . 62
Selecting Pull-Down Menus and Pull-Down Menu Options 62
Selecting and Deselecting Items with the Mouse 63
Selecting a Choice in an Option Box . 63
Editing Text Fields . 64
Working with Windows . 65

5.3 Using Online Help . 65
User-Defined Help Files . 67

5.4 Executing a Visual Program . 67
Using the Sequencer . 68
Using a Data-Driven Sequencer . 70
Error Messages . 71

 GUI: Basics

 Copyright IBM Corp. 1991-1997 57

This chapter describes how to use the graphical user interface provided with Data
Explorer. This interface enables you to create and control the visualization of data.
An image is created by applying data, as input, to a visual program. The visual
program is a sequence of interconnected functions acting on one or more inputs
and producing one or more outputs. Typically, input is user data and output is a
realization of that data in the form of an image.

Data Explorer consists of the following windows:

Startup Window
You can use the Startup window to access other windows in Data
Explorer.

Visual Program Editor
You can use the Visual Program Editor (VPE) to create and alter visual
programs and macros.

Control Panel
You can use Control Panel windows to set and control the input
parameters of visual program tools.

Image
You can use the Image window to view an image created by Data
Explorer.

Colormap Editor
You can use the Colormap Editor to map colors and opacity to specified
data.

Sequencer
You can use the Sequencer to advance through a data series or to step
through a changing sequence of input parameters.

Message Window
You can use the Message window to access error and working
information about your execution.

Help
You can use the Help window to access online documentation.

Data Prompter
A graphical user interface that simplifies the import of data.

Module Builder
A graphical user interface that simplifies the process of adding modules
to Data Explorer.

For information on the Data Prompter, see IBM Visualization Data Explorer
QuickStart Guide; on the Module Builder, IBM Visualization Data Explorer
Programmer’s Reference.

5.1 Starting Data Explorer
To run Data Explorer using a workstation, you must have:

� An account on the workstation
� If the executive portion of Data Explorer is to be executed on a remote

workstation, then a .rhosts file in your home directory should contain the name
of the machine on which the user interface will run. The permissions for the
.rhosts file should be set to 600 (read and write only by the owner).

58 IBM Visualization Data Explorer: User’s Guide

You can start Data Explorer in any of several modes. In all cases, you must first
do the following:

1. Log on to your workstation.
2. Start an X Window System running with the Motif or the appropriate window

manager.

If you are going to create, modify, and execute visual programs, start Data Explorer
initially in the Visual Program Editor and connect to the executive (server) by
typing:

dx -edit [program]

where program (which is optional) names an existing visual program.

If you plan to execute a previously created visual program, start Data Explorer
initially in the Image window and connect to the executive (server) by typing:

dx -image program

or

dx -menubar program

where program is the name of an existing visual program.

You may want to start the user interface without connecting to the executive. For
example, you may want to work on a visual program or macro, but may not plan to
execute it until some later time. In that case, you can start Data Explorer with the
following command:

dx -edit -uionly

Once the user interface is started, you can connect to the executive portion of Data
Explorer by following the procedures described in 9.3, “Connecting to the Server”
on page 183.

All of the command line options for Data Explorer are described in C.2, “Command
Line Options” on page 295.

 GUI: Basics

Using Environment Variables
There are several environment variables that you may find useful to customize Data
Explorer. These can be set in your login profile, or set as required.

DXMACROS: The DXMACROS environment variable is a list of the directories in
which Data Explorer will look for macros. If you do not specify DXMACROS, you
will need to load macros individually, using the process described in 7.2, “Creating
and Using Macros” on page 149. The directories are searched in the order in
which they are specified in the environment variable. If multiple macros with the
same name are encountered, the first macro found is used.

An example of the statement setting the DXMACROS environment variable (in the
C shell environment) is the following:

setenv DXMACROS /usr/mydirectory/projectAmacros:/usr/mydirectory/projectBmacros

where /usr/mydirectory/projectAmacros and /usr/mydirectory/projectBmacros
are two directories in which macros will be sought. Multiple directories can be
listed, with directory names separated by a colon.

 Chapter 5. Graphical User Interface: Basics 59

DXDATA: The DXDATA environment variable specifies a list of directories in
which Data Explorer will search for data files. If the data you wish to import are in
one of the directories specified in the DXDATA environment variable, then you do
not need to specify the complete path name to the data in the Configuration dialog
box for the Import tool. You can simply specify the file name, and the Import
module will look in the specified directories for the data file. The directories are
searched in the order in which they are listed in the environment variable; and the
first occurrence of the data file is used.

An example of a statement that sets the DXDATA environment variable (in the C
shell environment) is the following:

setenv DXDATA /usr/mydirectory/mydata:/usr/group/groupdata

where /usr/mydirectory/mydata and /usr/group/groupdata are two directories that
contain data files. Multiple directories can be listed, with directory names separated
by a colon.

DXHOST: The DXHOST environment variable is the initial machine name of the
workstation on which to run the executive. If DXHOST is not specified, then a
default of “localhost” is used. See 9.3, “Connecting to the Server” on page 183 for
more information on how to connect to the server. The host name should be the
name that results when you issue the uname -n shell command.

The rest of the environment variables and start-up options are discussed in
Appendix C, “Environment Variables and Command Line Options” on page 291.

5.2 Understanding Data Explorer Windows
The Data Explorer user interface is built on the X Window System and Motif
standards. These tools manage the windows used with Data Explorer. The
windows you use depends upon how you choose to use the system.

The primary windows are listed and described at the start of this chapter. The
primary window in which you begin a Data Explorer session (either the Visual
Program Editor or Image window) is called the anchor window. (You can also have
a menu bar as your anchor window by specifying -menubar on the command line.)
This is the window that, if closed, ends the Data Explorer session. The anchor
window is identified by a symbol resembling a ship’s anchor located in the top left
corner, as illustrated in Figure 30 on page 61.

Descriptions of the primary window pull-down menu options are located in Section
8.1, “Using the Primary Window Pull-Down Menus and Options” on page 156.

Secondary windows, such as dialog boxes or informational boxes, appear when
they are needed to complete a task. You can move secondary windows, but you
cannot put them behind the primary window from which they came. See IBM
AIXwindows User’s Guide or the appropriate window system overview for more
information on how to manipulate windows.

In this chapter, when references are made to the X Window System it means any
window server that supports X11 protocol, including Sun’s OpenWindows. The
Motif window manger, mwm, has been used in many figures and examples in this
chapter. Please use the appropriate window manager for your system, such as
vuewm for Hewlett-Packard, 4dwm for SGI, and olwm for Sun. Since title bars and

60 IBM Visualization Data Explorer: User’s Guide

window borders are features of a window manager, the appearance of your
windows may differ slightly from those in the figures and examples.

Looking at Window Structure
Figure 30 points out the major parts of a Data Explorer window. Definitions of the
parts follow the figure.

Figure 30. Visual Program Editor Window

 GUI: Basics

The following are features of Data Explorer windows:

1. The title bar contains the following items (from left to right):

� The menu button, which when pulled down, offers various window control
options

� The window name

� The minimize button, which reduces the window and all of its secondary
windows to a single icon

� The maximize button, which enlarges the window to full screen size

2. The menu bar displays the titles of pull-down menus from which can choose
options. When you choose a title, a pull-down menu appears.

3. A pull-down provides you with options you can select.

 Chapter 5. Graphical User Interface: Basics 61

4. A dialog box or information box appears when Data Explorer requires more
information in order to complete a task or when a user requests more
information. A dialog box option is indicated by an ellipsis (...) at the end of its
title.

Using the Mouse
In Data Explorer, the mouse is one of the primary input devices. Some operations
can be done using the keyboard, but many rely on the mouse. The mouse-related
terms used in this guide are:

Click One press and release of a mouse button

Double-click Two rapid presses and releases (clicks) of a mouse button

Triple-click Three rapid presses and releases (clicks) of a mouse button

Drag A press and hold on a mouse button. For example, with the
button depressed, a selected item can be moved (“dragged”) to
another part of the screen by moving the mouse pointer to the
desired location and releasing the mouse button.

Shift-Click A press and release of the mouse button while depressing the
Shift key.

Shift-Drag A drag of the mouse pointer while depressing the Shift key.

Most of the Data Explorer operations use the left mouse button. The exceptions
are the Online Help function and the image direct interactors, which use two or
three mouse buttons.

Moving and Resizing Windows
You can move windows and adjust their sizes on the screen.

To move a window, drag the window name portion of the title bar to the desired
screen location.

To resize a window, do one of the following:

� Drag on one of the horizontal borders. The window will shrink or expand
vertically as you drag the border.

� Drag on one of the vertical borders. The window will shrink or expand
horizontally as you drag the border.

� Drag on one of the corner borders. The window will shrink or expand both
vertically and horizontally (but not necessarily in a uniform fashion) as you drag
the border.

Selecting Pull-Down Menus and Pull-Down Menu Options
To use the mouse to see the list of options a pull-down menu offers, select the
pull-down menu’s title from the menu bar by moving the cursor to the appropriate
title and clicking on it. The menu is displayed. To then select an option from the
window, move the cursor to the desired option and click on the option.

Alternatively, select an option with the mouse by moving the cursor to the desired
menu title and pressing and holding the mouse button. The pull-down menu

62 IBM Visualization Data Explorer: User’s Guide

appears. Then move the cursor to the desired option and release. Each option is
highlighted as you move the cursor across it.

To select a pull-down menu with your keyboard, press the Alt key in conjunction
with the underlined letter of the pull-down menu name (usually the first letter). For
example, if you want to open the File menu (whose title appears in the window as
File), press Alt+F.

Once the pull-down menu is displayed, you can select an option by pressing the
key corresponding to the underlined letter of the desired option, or by directing the
highlighted bar with the keyboard’s up and down arrow keys. When the desired
selection is highlighted, press the Enter key.

Some of the pull-down menu options can be selected without accessing the
pull-down menus, using accelerator keys. Accelerator keys use the Ctrl key in
combination with single keys to provide fast access to frequently used options.
These keyboard options are displayed on the right side of the pull-down menu,
across from the options that they access. Accelerator keys are effective only in the
active window; that is, the mouse cursor must be in the window in which the
desired pull-down option is located. To use an accelerator key to select a
pull-down option, press the Ctrl key in conjunction with the appropriate letter. For
example, the Save option in the File pull-down menu can be invoked by pressing
the Ctrl key and the S key at the same time. A summary of the available
accelerator keys and their functions is provided in Appendix G, “Accelerator Keys”
on page 315.

For information on each window’s menu bar and pull-down options, refer to:

� “VPE Window Menu Bar” on page 156
� “Control Panel Menu Bar” on page 162
� “Image Window Menu Bar” on page 165
� “Colormap Menu Bar” on page 168

 GUI: Basics

Selecting and Deselecting Items with the Mouse
In the Visual Program Editor (VPE) and Control Panel windows, you use the mouse
to select various items, such as items in a list, tool names, tool icons, and
interactors. To select any of these items, simply click on the item.

In general, you can deselect an item by clicking on it again. The exceptions are
the tool icons and interactors, for which you must either click on another part of the
canvas, or shift-click on the item.

Selecting a Choice in an Option Box
An option box contains a list of choices, but usually displays only the one currently
selected. Option boxes are used throughout the Data Explorer interface. For
example, the Selector interactor, illustrated in Figure 31 on page 64, can be
displayed as an option box.

Selecting a choice from this box is similar to selecting options from pull-down
menus. To display the possible choices, click on the tab on the right side of the
option box. With the list of choices displayed, click on your desired selection. The
list of options disappears, and the option box is updated with the new selection.

 Chapter 5. Graphical User Interface: Basics 63

Figure 31. Example of an Option Box

Alternatively, you can select an option with the mouse by moving the cursor to the
desired option box and pressing and holding the mouse button. The list of options
appears. Then move the cursor to the desired option and release. Each option is
highlighted as you move the cursor across it.

Some of the options are accessible using accelerator keys. This is indicated to the
right of the option in the options list, much like it is in the pull-down menus.

Editing Text Fields
Many of the dialog boxes in Data Explorer include text fields that you can change.
You can place a text cursor in the box by clicking on the box. With the cursor in
the box, you can use the keyboard to alter the text. The number of times you click
on the text box depends on how you want to edit it:

Single Click Places the text cursor at the point on which you clicked in the
existing text field. All text you type is then inserted in the field,
after the selected point. You can also use the Delete and
Backspace keys.

Double Click Places the text cursor at the start of the word on which you clicked
in the existing text field, and highlights that word. When you type,
the highlighted text is replaced with the new text you enter.
Pressing the Backspace key deletes the highlighted text.

Triple Click Highlights the entire text field. When you type, the entire field is
replaced with the new text you enter.

Drag Highlights the portion of the text field that you drag the cursor over.
When the mouse button is released, the text remains highlighted.
Typing anything replaces the highlighted text with what you type;
pressing the Backspace key deletes the highlighted text.

Data Explorer allows you to copy and paste text within text fields. To copy text,
select the desired text by double-clicking, triple-clicking, or dragging the cursor over
it with the left mouse button. This action selects and copies the text. To paste the
selected text in a text field, position the mouse cursor at the point you want to
insert the text, and click on the center mouse button. The pasted text is inserted at
the mouse cursor position.

If the amount of text entered into a text field cannot be fully displayed, you can use
the keyboard to scroll the cursor through the text. Pressing the left or right arrow
key moves the cursor one character to the left or right, respectively. Also, pressing

64 IBM Visualization Data Explorer: User’s Guide

the Control key (Ctrl) at the same time as either the left or right arrow key moves
the cursor one word to the left or right, respectively. The Home key will move the
cursor to the beginning of the text field. The End key will move the cursor to the
end of the text field.

Working with Windows
Your window manager allows you to:

� Stack and raise windows
 � Minimize windows
 � Maximize windows
 � Close windows

These functions can be invoked using the menu, minimize, and maximize buttons
on the title bar of Data Explorer windows. You can use the X Window System or
the appropriate window system manager to customize the way these options work.
For more information, see IBM AIXwindows User’s Guide or another appropriate
window system overview.

5.3 Using Online Help
The online Help facility offers the following options in its pull-down menu:

� Context-Sensitive Help can help you with a specific tool or feature of Data
Explorer’s graphical user interface. After you select this option and the cursor
has changed to a question mark, click on the item you want help with. For
example, try clicking on a particular module in the VPE window or on an
interactor in a Control Panel.

Note: You can also position the mouse cursor over an object and press the F1
key to select an object in any window, including the options in a pull-down
menu and icons on a VPE canvas..

� Overview (of Window)... gives an introductory description of the window from
which this option was requested.

� Table of Contents... presents a list of the main topics and subtopics of the
Data Explorer user manuals. Select the desired item by clicking on its box
once.

� Using Help... explains how to use the online facility itself.
� Product Information... gives the version of Data Explorer that is currently

running.
� Technical Support gives information on how to get technical support.
� Tutorial... presents a list of tutorial topics, which can be accessed directly.
� Application Comment presents a comment on the currently loaded visual

program (if one was supplied by the user who created the program).

Figure 32 on page 66 depicts a sample Help window.

 GUI: Basics

 Chapter 5. Graphical User Interface: Basics 65

Figure 32. Sample Help Window

In addition, an HTML version of the documentation is available. Point your browser
at /usr/lpp/dx/html/index.htm.

For Future Reference

� In the Help window you can directly access any topic, subtopic,
subsubtopic, or related item that is “boxed”, simply by clicking on the box.

� If the amount of information exceeds the length of the displayed Help
window, use the vertical scroll bar on the right side of the window.

� To return to a topic you have viewed during the current session of visual
program, move the mouse cursor into the Help window and press the
right-hand button: A list of viewed Help topics appears. Keeping the
mouse button depressed, move the cursor to the desired topic in the list
and then release the button.

� To return to the previous Help topic, click on Go Back at the bottom of the
Help window.

� To exit online Help, click on Close at the bottom of the Help window.

66 IBM Visualization Data Explorer: User’s Guide

User-Defined Help Files
Visual programmers can create online documentation for their visual programs and
Control Panels. A user can access the comments for the visual program from any
primary window, and can access the comments for a Control Panel from the
Control Panel with which the comments are associated. For information on how to
add this documentation to your own visual program, see “Adding Comments to a
Visual Program” on page 114 and “Customizing a Control Panel” on page 133.

To access comments for the visual program, select the Application Comment option
from the Help pull-down menu. A dialog box opens with the comments.

Note: If there are no comments associated with the visual program, this menu
option is grayed-out. Also, you cannot modify the comments when using
this option—only view them.

The user can also access the comments for the visual program from the Open... or
Load Macro... file selection dialog boxes, even before the visual program is
opened. For information on how to do this, see “Restoring a Previously Created
Program” on page 118.

To access comments for a specific Control Panel, select the On Control Panel
option from the Help pull-down menu in the Control Panel about which you want to
learn. A dialog box opens with the comments.

Note: If there are no comments associated with the Control Panel, this menu
option is grayed-out. Also, you cannot modify the comments when using
this option—only view them.

 GUI: Basics

5.4 Executing a Visual Program
After you set up a visual program in the VPE window and build any desired Control
Panels (or after you open an existing visual program file), you can execute the
visual program program. The resulting image appears in the Image window. This
section explains how to execute a visual program. Section 6.1, “Using the Image
Window” on page 74 describes how to manipulate images in the Image window by
using direct interactors. You can also manipulate images in the Image window
using interactors in the Control Panels, the Colormap Editor, and the Sequencer.
(For more information on these tools, see 7.1, “Using Control Panels and
Interactors” on page 128, “Colormap” on page 84, and “Sequencer” on page 297
in IBM Visualization Data Explorer User’s Reference.)

You can execute the visual program from the Execute menu of a VPE window, a
Control Panel, an Image window, or a Message window. The options are the same
in all four windows. When a visual program is executed, an Image window is
created if one is not already open. (You can also control execution using the
Execute module. See IBM Visualization Data Explorer User’s Reference.)

Note: If the Execute options are grayed-out, your workstation may not be
connected to the server. For information about connecting to the server,
see 9.3, “Connecting to the Server” on page 183.

Although you can initiate execution from the Control Panel, VPE, Image, and
Message windows, you may find it more efficient to execute your visual program
through the Control Panel menu (if you are using a Control Panel). This efficiency

 Chapter 5. Graphical User Interface: Basics 67

is due to the ease with which you can change inputs with interactors and initiate
execution.

You can choose one of four options from the Execute menu when executing a
visual program. Select the first option, Execute Once, to execute the program once,
using the values currently set in the interactors. If you change any interactor
values after execution, the visual program does not automatically execute; you
must again choose an option from the Execute menu to execute the altered
program.

Choosing the Execute on Change option causes the visual program to execute
every time you change an interactor setting. If you change values faster than Data
Explorer can generate images, the system executes the program as quickly as
possible, always using the current settings at the time an execution cycle begins. If
you modify your visual program while Execute on Change is enabled, then the
option automatically becomes disabled. After the changes are made, you can
reenable it.

Choosing End Execution while the visual program is executing causes execution to
stop after the currently executing module.

The final Execute menu option is Sequencer. If you select this option, and a
Sequencer tool is present in the visual program, the Sequencer appears (see
“Using the Sequencer” for more information). While the Sequencer runs, you can
change interactor settings, and those changes are reflected in subsequent frames
generated by the Sequencer. The Execute Once and Execute on Change options
are grayed out when the Sequencer is running, but when you pause the
Sequencer, you can use those two options to explore the particular frame the
Sequencer paused on.

While the visual program is executing, the Execute option on the menu bar is
highlighted. It remains highlighted until execution is finished. If Execute on Change
is selected, the Execute option on the menu bar is highlighted with one color during
execution, and another color outside of execution cycles.

Using the Sequencer
The Sequencer allows you to “animate” a visual image and is very easy to use.
The process is rather like running a video cassette tape: You can play it forward or
backward, stop it, pause, and so on. The Sequencer Control panel consists of 8
buttons as shown in Figure 33.

Figure 33. Sequence Control Panel. The first two buttons at top left are Loop and
Palindrome. The others are: Step (%||5), Counter (...), Back (%), Forward (5), Stop (■), and
Pause (||).

68 IBM Visualization Data Explorer: User’s Guide

The 5 button starts the animation sequence and plays forward. The % button plays
the sequence in the opposite direction.

The ■ button stops the animation and resets the animation to the beginning of the
sequence, while the || button pauses the animation at the current frame.

The Loop button causes the animation to loop; that is to go from beginning to end,
reset to beginning, play to end, and so on until terminated by either pause or stop.

The Palindrome button causes the sequence to be played from beginning to end,
and then from end to beginning.

Loop and Palindrome can be pressed simultaneously, resulting in an continuous
forward and reverse animation.

The %||5 button causes the behavior of the 5 and % buttons to become single-step
mode. Each time one of these buttons is pressed, the animation advances one
frame in the specified direction.

The ... button opens the Frame Control dialog. The Frame Control dialog box
(see Figure 34) is used to specify the first, “next,” and last (end) frames, the
number of frames, and the increment between successive frames.

If a frame is being displayed, the current frame number appears in the Frame
Control dialog box, next to the word “Current,” and a corresponding colored marker
is shown on the slide bar. A colored marker indicating the position of the next
frame is also shown. Black markers indicate the positions of start and end relative
to the next range of min to max.

 GUI: Basics

Figure 34. Sequencer Frame Control Dialog Box

Values for the Start, Next, and End frames are set by:

� Entering a value in the text field of the stepper buttons
� Using the stepper controls
� Moving the position marker.

Start The starting value for the sequence. By default, set to the value in
the Min field, in a new program. To change the Start field, use the
stepper controls or select the field and enter the new value or use

 Chapter 5. Graphical User Interface: Basics 69

the Start marker. If you change the value in the Min field, then the
Start field is set to that new value. If you are working with a saved
program, then the Min and Start fields are set to the values that
were saved.

End The ending value for the sequence. By default, set to the value in
the Max field, in a new program. To change the End field, use the
stepper controls or select the field and enter the new value or use
the End marker. If you change the value in the Max field, then the
End field is set to that new value. If you are working with a saved
program, then the Max and End fields are set to the values that
were saved.

Current Displays the current frame number.

Increment By default, set to 1. To change the increment, use the stepper
controls or select the field and enter the new value.

Next By default, set to the value in the Start field, in a new program.
You can set the Next field to any value between the Start and End
values: the Sequencer will begin running at that value. (When the
Sequencer is in loop mode, subsequent loops begin at the value in
the Start field.)

Min and Max Specify the allowed range of sequence values. These are text
fields that can be altered. Data Explorer ensures that the value in
the Start field is greater than or equal to the Min value, and the
value in the End field is less than or equal to the Max value.

Note: If the images change more quickly than you would like, use the
Throttle... option (see “Changing the Rate of Frame Display: Throttle...”
on page 93).

Using a Data-Driven Sequencer
The Sequencer can be data driven, meaning that its minimum, maximum, and step
values can be set by connecting the output of a tool to the input of a Sequencer in
the VPE or by a value typed into the Sequencer’s Configuration dialog box, rather
than by using the Frame Control panel.

If the Sequencer is data driven, then the information transmitted by connection or
set in the Configuration dialog box overrides values set in the Frame Control panel.

A data-driven Sequencer allows you to create visual programs that will work with a
variety of input data sets without your having to reset Sequencer attributes. For
example, if the Sequencer minimum is set to zero and its maximum to the number
of steps in a series, it can be used to drive the Select module to select each
member of the series in turn.

The inputs are summarized in the corresponding module description in IBM
Visualization Data Explorer User’s Reference.

Each time an input to a data-driven Sequencer is changed (for example, by
importing a new data set) the Sequencer is reexecuted, updating its attributes.

70 IBM Visualization Data Explorer: User’s Guide

 Error Messages
If Data Explorer encounters an error in your visual program while executing it, an
error message is displayed in the Message window (see 8.2, “Using the Message
Window” on page 174). The name of the tool in which the error occurred is shown
in the window. Pull-down menu options enable you to quickly locate the tool that
caused the error.

The title of the tool icon in the visual program that caused the error is displayed in
a different color in the VPE until you execute the program again. When the error
occurs, execution stops only in the path where the error is; other paths continue.

 GUI: Basics

 Chapter 5. Graphical User Interface: Basics 71

72 IBM Visualization Data Explorer: User’s Guide

Chapter 6. Graphical User Interface: Important Windows

6.1 Using the Image Window . 74
Controlling the Image: View Control... 74
Undo, Redo, and Reset . 87
AutoAxes... . 88
Set Background Color... 89
Display Rotation Globe . 91
Rendering Options... . 91
Image Depth . 93
Changing the Rate of Frame Display: Throttle... 93
Changing the Title of an Image Window . 93
Control Panel Access... 94
Saving an Image . 94
Printing an Image . 97

6.2 Using the VPE . 99
Creating a Visual Program . 100
Specifying Values for a Tool's Inputs . 103
Creating, Deleting, and Moving Tab Connections 104
Moving and Copying Tools . 105
Using Transmitters and Receivers . 106
Adding and Removing Input and Output Tabs 106
Entering Values in a Configuration Dialog Box 107
Revealing and Hiding Input Tabs . 110
Using the Compute Module Configuration Dialog Box 111
Locating Tools: The Find Tool Dialog Box 111
Customizing the VPE Window . 113
Adding Comments to a Visual Program . 114
Adding Annotation to a Visual Program . 115
Creating pages in the VPE . 115
Saving and Restoring a Visual Program . 115

6.3 Using the Colormap Editor . 119
Entering Values in a Colormap Editor . 121
Using Data-Driven Colormap Editors . 125

 GUI: Windows

 Copyright IBM Corp. 1991-1997 73

This chapter discusses how to use:

� The Image window
� The Visual Program Editor
� The Colormap Editor.

6.1 Using the Image Window
Once an image appears in the Image window, it can be altered and manipulated in
many ways. This section describes how to manipulate the image directly, using the
interactor features accessed through the Options menu in the Image window.

Notes:

1. These features are enabled only if you used the Image tool in your visual
program to render the image. If you used another tool, such as Display, you
will not be able to use many of the Image window options. The Image tool is
found in the Rendering category. See “Image” on page 160 in IBM
Visualization Data Explorer User’s Reference for more information.

2. It is also possible to control many characteristics of the Image widow by using
input parameters to the Image tool. These parameters are hidden by default
but can be accessed with the Expose button in the Image tool’s Configuration
dialog box (which itself is accessed by selecting the Configuration option in
Edit pull-down menu of the Visual Program Editor) For more information, see
Image in the IBM Visualization Data Explorer User’s Reference.

Controlling the Image: View Control...
You can change your view of an object in the Image window by using the View
Control... option of the Image window Options menu. The way an object
appears in the Image window is controlled by a camera. The camera specifies the
look-from point, the look-to point, the field of view, the size and shape of the
window, and whether the rendering method is orthographic or perspective.

If you are using orthographic projection, the field of view is controlled by a
parameter called width, which specifies the width of the Image window in world
coordinates. For perspective projection, the field of view is controlled by the
camera look-from position and the view angle of the camera. The differences
between these two projection methods is discussed in “Changing the Projection
Method” on page 76.

You can change the camera settings with direct interactors, which let you use the
mouse in conjunction with dialog box options to manipulate the view of the object
directly, and which provide immediate visual feedback for your actions. Or, you can
specify precise values for the camera settings, as described in “Precise Camera
Settings” on page 82.

You control your view of the object by selecting one of the control modes. Each
mode allows you to control different aspects of your view. When you select this
option, the View Control... dialog box appears. The basic configuration of this
dialog box is illustrated in Figure 35 on page 75.

74 IBM Visualization Data Explorer: User’s Guide

Figure 35. View Control Dialog Box

Depending on the view mode selected, the appearance of the dialog box changes,
automatically adding controls particular to the current mode.

Accelerator keys are associated with many of the modes, so that it is not even
necessary to open the View Control... dialog box to access these view control
modes. Figure 36 lists the modes with their respective accelerator keys.

Figure 36. View Control Modes with Accelerator Keys

None

Camera Ctrl+K
Cursors Ctrl+X
Pick Ctrl+I GUI: Windows

Navigate Ctrl+N
Pan/Zoom Ctrl+G
Roam Ctrl+W
Rotate Ctrl+R
Zoom Ctrl+Z

You can change your view of the image by:

� Changing your viewing direction
� Changing the projection method
� Rotating the object (Rotate mode)
� Zooming in or out of the image (Zoom mode)
� Changing the look-to point (the center) of the image (Roam mode)
� Panning and zooming in or out of the image (Pan/Zoom mode)
� Moving the camera within the scene (Navigate mode)
� Specifying precise values for the camera settings (Camera mode)
� Setting probe points in the image (Cursors mode)
� Picking objects in the image (Pick mode)
� Resizing the image
� Resetting previous views (Undo and Redo buttons).

To select a mode, use its accelerator key, or do the following:

1. Click on the Mode option box. A menu of the mode options is displayed.

 Chapter 6. Graphical User Interface: Important Windows 75

2. Click on the desired option. The option box displays the name of the new
mode. The dialog box also displays any additional controls for the new mode.

The different modes are discussed in more detail in subsequent sections. Most of
the modes use two or three mouse buttons to manipulate the view. A diagram is
provided in the margin to the left of each section to illustrate the mouse button
functions, the mode, and the accelerator key.

Some of the modes use an overlay, which provides visual feedback before any
action is taken to change the image. This temporary overlay (typically an axes
diagram, rectangle, or brick) is laid over the image. As you drag with the mouse,
the overlay changes accordingly. The image does not change until you release the
mouse button, at which time it is updated according to the action you selected.

Note: If Execute on Change is enabled, Data Explorer does update the image
while you perform rotation actions, and while you place probes in Cursors
mode.

Changing Your Viewing Direction
Data Explorer allows you to choose from several defined viewing directions. To
change the view:

1. Select the Set View option box in the View Control... dialog box. While the
mouse button is pressed down, an option box listing different view options
appears. These choices are illustrated in Figure 37.

Figure 37. Set View Option Box

None
Top
Bottom
Front
Back
Left
Right
Diagonal
Off Top
Off Bottom
Off Front
Off Back
Off Left
Off Right
Off Diagonal

Choose to view the object from the top, bottom, front, back, left, right, or
diagonal view. Because a head-on view of an object tends to detract from the
3-D quality, Off options are provided to skew the image slightly. To select an
option, move the mouse so that the desired option is highlighted, then release
the mouse button. The image is redisplayed with the new view.

Changing the Projection Method
Data Explorer provides two methods of image projection. These methods make it
possible to map a three-dimensional image onto a 2-dimensional screen. The two
methods are:

76 IBM Visualization Data Explorer: User’s Guide

Perspective Perspective projection simulates normal camera and human visual
systems, thereby providing realistic rendering of objects. While it
is realistic, it does not preserve the exact shape and
measurements of the object, and parallel lines usually do not
project as being parallel.

Orthographic Orthographic projection provides a less realistic view of an object
than perspective projection. However, orthographic projection
does preserve exact scale measurements and parallel lines. One
way to think about orthographic projection is that it is as if the
distance between the front and back of an object is small, relative
to the distance between the object and the camera. Orthographic
is the default projection method. It is quicker to render an object in
orthographic projection than in perspective.

The differences between these two methods become evident when using the view
controls in certain modes. For example, the Zoom mode behavior depends on the
projection method, as does the behavior of the 3-D cursor (Roam and Cursors
modes). The differences are discussed in the sections that discuss these modes.
For more information about these projection methods, consult a computer graphics
text.

You can select the projection method by using the Projection option box on the
View Control... dialog box.

Setting the View Angle: If you select Perspective, then you can also specify the
view angle (in degrees). The vertex of the view angle is located at your camera,
and the end points are the left and right sides of the image area. Thus, the wider
the viewing angle, the more image space you can fit in your viewing area.

Specify the view angle by adjusting the View Angle stepper in the View Control...
dialog box. Unless you are in Navigate mode, the camera position is adjusted so
that the size of the object in the image area remains unchanged. While in Navigate
mode, changing the view angle does not change the camera position.

While you are using orthographic projection, the View Angle stepper is disabled. In
orthographic projection, you can specify the camera width. This is discussed in
“Precise Camera Settings” on page 82.

Note: Changing the projection method or view angle does not automatically initiate
reexecution of the visual program. To see the effects of your changes, you
must select Execute Once or Execute on Change.

 GUI: Windows

Rotating the Object
To rotate the object you are viewing:

1. Select Rotate from the Mode pull-down box or use the Ctrl+R accelerator key.
2. A set of 3-D axes appears in the lower right corner of the Image window. Also,

if you have enabled the Display Rotation Globe option (in the Options
pull-down menu), or you do so now, a wire-frame globe appears in the lower
left corner. If you press the right mouse button, you can drag the mouse to
rotate the object clockwise (CW) and counter-clockwise (CCW), with the image
center as the point of rotation. If you press the left or center mouse button, you
can use the mouse as a track ball and rotate the object in all three dimensions.
The mode of rotation is determined by the mouse button you use.

 Chapter 6. Graphical User Interface: Important Windows 77

As you rotate the object, the set of axes and the wire-framed globe (if enabled)
also rotate, providing instant feedback to your actions.

Note: If you do not have Execute on Change enabled, only the set of axes and
the globe are updated as you move the mouse, providing preliminary
feedback to your rotation actions. If Execute on Change is enabled, then
the object rotates as you move the mouse.

3. When you release the mouse button, the object is rotated according to the new
position of the axes and globe.

Note: You can also enable Rotate mode by using the intrctnMode parameter
to the Image tool (see Image in IBM Visualization Data Explorer User’s
Reference).

The point around which the object rotates is the look-to point, which you can
change by selecting Roam (see “Changing the Look-to Point” on page 79).
Alternatively, you can select Pan/Zoom in the Mode pull-down menu (see “Zooming
into and out of the Image”).

Zooming into and out of the Image
To zoom in or out (relative to the center of the Image window):

1. Select the Zoom mode in the Mode option box, or use the Ctrl+Z accelerator key.
2. To zoom in, press the left mouse button; to zoom out, press the right mouse

button. Drag the mouse in the image area. This causes an overlay image of a
rectangle to appear. As you move the mouse pointer away from the center of
the window, the rectangle enlarges. As you move the mouse pointer towards
the center of the window, the rectangle shrinks. Releasing the mouse button
causes the image to zoom in or out, depending on which mouse button is
pressed. If the left button (zoom in) is pressed, the portion of the image inside
the rectangle is enlarged to fill the Image window. If the right button is pressed
(zoom out), the image displayed in the Image window is reduced to the size of
the rectangle.

Note: You can also enable Zoom mode by using the intrctnMode parameter to
the Image tool (see Image in IBM Visualization Data Explorer User’s
Reference).

For both orthographic and perspective projection, zooming in makes the object
appear larger in the Image window, while zooming out makes it appear smaller.
However, the way that this is accomplished is different depending on which
projection method is selected:

� While using perspective projection, zooming in or out changes the view angle,
without changing the look-from point.

� While using orthographic projection, zooming in or out adjusts width of the
image. The camera look-from point does not change, because with
orthographic projection the look-from parameter merely specifies a direction, not
a location in space.

For more information about the projection methods, see “Changing the Projection
Method” on page 76.

78 IBM Visualization Data Explorer: User’s Guide

Changing the Look-to Point
Data Explorer maintains the look-to point at the center of the Image window. You
can use the Roam mode to change the look-to point.

To change the look-to point:

1. Select the Roam mode by using the Mode option box or the Ctrl+W accelerator
key.

2. A wire-frame box appears around the image. The current look-to point is
marked by a small square box. To move the look-to point, select the point by
pressing the left mouse button and holding the mouse pointer on it. You can
then move the cursor by dragging the selected point inside the box. When the
left mouse button is depressed on the point, the mouse cursor disappears (the
look-to point remains) and the three projections (one for each axis) appear
inside the wire-framed box as dots, similar to the 3-D cursor function illustrated
in Figure 40 on page 86. When you release the mouse button, the location of
the point becomes the new look-to point, and the image view is updated.

Alternatively, double-clicking on a point in the Image window changes the
look-to point to the position on which you double-click. You can set the look-to
point to a location outside the current boundary box of the object using this
method.

Note: You can also enable Roam mode by using the intrctnMode parameter to
the Image tool (see Image in IBM Visualization Data Explorer User’s
Reference).

The directions of the axes are indicated by a wire-frame 3-D axes diagram in the
lower right-hand corner of the Image window. To move the look-to point, the
movement of the mouse must be along the same direction as one of the axes. If
you move the mouse in a direction that does not correspond to any of the axes
directions, the point does not move. Because of this, the movement of the look-to
point is constrained to six directions (i.e., the positive and negative directions for
each of the three axes).

Note that since perspective projection does not preserve parallel lines, the
directions in the axes diagram do not necessarily correspond to the direction that
the point moves in the Image window. However, these axes do correspond with
the values of the coordinates.

While using orthographic projection, the movement of the point in the Image
window corresponds with the directions of the axes diagram.

The Constraints option appears in the View Control... dialog box when you
select Roam mode.

You can further restrict the movement of the look-to point by using the Constraints
option. This allows you to constrain movement of the point to two directions (i.e.,
the positive and negative directions of a particular axis). Select an axis to restrict
movement to by clicking on the Constraints option box and selecting the desired
axis (X, Y, or Z). Once this is done, you are able to move the look-to point along
only the selected axis, while the values of the other two axes remain constant.

You may want to position the cursor in two steps, using different views for each
step. For example, you can position the x and y coordinates using the front view,
and the z coordinate using the side view.

 GUI: Windows

 Chapter 6. Graphical User Interface: Important Windows 79

To release the constraints on an axis, choose the None option.

While in Roam mode, the center and right mouse buttons have the same functions
as they do in Rotate mode.

Panning and Zooming into and out of the Image
You can zoom into or out of the image and change the look-to point at the same
time, using the Pan/Zoom mode. In this mode, the left and right mouse buttons work
the same as they do in Zoom mode, except that the point on the image where you
initially click becomes the new look-to point, and therefore the center of your zoom
action. As you move the mouse pointer away from the point where you initially
clicked, the rectangle enlarges. As you move the mouse pointer towards the point
where you initially clicked, the rectangle shrinks. For information about the Zoom
mode, see “Zooming into and out of the Image” on page 78.

To select Pan/Zoom mode, select its option from the Mode option box, or use the
Ctrl+G accelerator key.

Note: You can also enable Pan/Zoom mode by using the intrctnMode parameter to
the Image tool (see Image in IBM Visualization Data Explorer User’s Reference).

Navigating in a Scene
You can move your camera within the scene in all directions using the Navigate
mode. As well as being able to change your view direction like the other modes,
Navigate also lets you move through an object and view it from the inside out.

When you use Navigate mode, the camera is automatically changed to perspective
rendering.

You can also move your camera in one direction while looking in another direction.
For instance, you can move forward past the left side of an object while looking to
the right, enabling you to see the object as you move past it.

Unlike the Roam and Rotate modes, which appear to adjust the object to change
your view, or the Zoom mode, which appears to adjust the camera lens to change
your view, the Navigate mode appears to actually move your camera around the
scene, while the objects you are viewing remain stationary.

Note: Because Data Explorer does not support perspective rendering of volumes,
you cannot navigate software-rendered volumes.

To move your camera within the scene:

1. Select the Navigate mode from the Mode option box. This adds some controls,
illustrated in Figure 38 on page 81, to the View Control... dialog box.

2. The mouse buttons control the navigate motion of the camera, while the setting
of the Look option box controls the direction the camera is pointing. The Look
options are illustrated in Table 4 on page 81.

Note: You can also enable Navigate mode by using the intrctnMode
parameter to the Image tool (see Image in IBM Visualization Data Explorer
User’s Reference).

With Look set to Forward, you have more control over the trajectory the camera
moves along in the scene. To move forward, click on the left mouse button.
To move backward, click on the right mouse button. The position of the mouse
pointer on the image indicates the angle at which you travel; that is, the point

80 IBM Visualization Data Explorer: User’s Guide

where the mouse pointer is located moves more towards the center of the
image area.

Figure 38. Navigate Portion of the View Control Dialog Box

If the camera is pointing forward, you can use the center mouse button to
change your direction. Clicking on the center mouse button adjusts your
direction (and view of the object) toward the position of the mouse pointer in
the image area.

With the exception of Align, all of the options in the Look option box affect only
the direction the camera is pointing. Align adjusts the current navigate
direction (the forward direction) to be the same as the current Look value. For
example, if the camera is pointing 45° to the right of the current navigate
direction, Align changes the navigate direction to be 45° to the right of its
current value, thereby aligning travel direction with camera direction.

 GUI: Windows

Table 4. Look Option Menu

Forward
45° Left
45° Right
45° Up
45° Down
90° Left
90° Right
90° Up
90° Down
Backward
Align

 Chapter 6. Graphical User Interface: Important Windows 81

Note: Switching to another mode (such as Rotate) from Navigate while the
Look value is something other than Forward, automatically aligns the
navigate direction with the camera direction.

If the camera is pointing in any direction but forward, you can still use the left
and right mouse buttons to move forward and backward; the trajectory of your
movement is the same as it was when you last traveled forward. In this case,
the center mouse button has no effect.

3. The Navigate mode uses two values to control its precision. These are
controlled by the two sliders on the View Control... dialog box. They are:

Motion Controls the speed of execution as you move the camera forward
and backward. The higher the number, the faster the speed, and
the faster your camera appears to move. In addition to using the
slider, you can use the up- and down-arrow keys to adjust this value
(be sure the cursor is in the Image window).

Pivot Controls the increment of the turn angle when you turn using the
center mouse button. The higher the number, the more drastic the
turn. In addition to using the slider, you can use the left- and
right-arrow keys to adjust this value (be sure the cursor is in the
Image window).

Precise Camera Settings
In addition to using direct interactors to change camera settings, Data Explorer lets
you specify exact values to the camera for more precise results. You can also use
this feature to learn the exact camera settings that result from your use of direct
interactors. These settings correspond to parameters of the Camera module. (See
“Camera” on page 49 in IBM Visualization Data Explorer User’s Reference.)

To access the camera settings, select the Camera mode using the Mode option box
in the View Control... dialog box or the Ctrl+K accelerator key. The camera
controls appear on the View Control... dialog box, as illustrated in Figure 39 on
page 83.

82 IBM Visualization Data Explorer: User’s Guide

Figure 39. Camera Settings Portion of the View Control Dialog Box

Note that these camera controls are not direct interactors, so changing their values
does not cause the visual program to reexecute automatically. To see the effect of
your changes, you must specify Execute or Execute on Change in the VPE, Control
Panel, or Image window.

Changing the Look-to Point, Look-from Point, and the Up Vector: You can
adjust your view of the image by specifying values for these settings:

look-to point vector The point around which the displayed image is centered.
The point is specified as a vector in world coordinates.

look-from point vector The position of the camera. The point is specified as a
vector in world coordinates.

up vector The rotation (tilt) of the camera. Only the direction of this
vector is important, not the magnitude. For instance, if
you are looking at the object from a positive z direction,
an up vector with a negative value for x tilts the camera
counterclockwise.

The option box near the center of the View Control... dialog box (displaying To:
by default and in Figure 39) allows you to select the vector values to be displayed.

To change the value of one of the vectors, do the following:

1. Select the vector to change using the option box. The choices in the option
menu are To, From, and Up. The current values for the vector you choose are
displayed in the X, Y, and Z fields to the right of the options.

 GUI: Windows

 Chapter 6. Graphical User Interface: Important Windows 83

2. Change each field to the new value. Do this by clicking on the field, typing in
the new number, and pressing the enter key.

3. Repeat these steps for each vector you want to change.

Remember, to see the results of your changes, you must specify Execute or
Execute on Change.

Changing the Size of the Image Window: Data Explorer lets you specify the
exact height and width of the image display area in the Image window, in pixels.
When you change the size of the image display area, the image is resized
accordingly.

To change the width and height of the image display:

1. Click on the Window Width field of the View Control... dialog box illustrated in
Figure 39 on page 83.

2. Type a new value, specified in pixels, for the width. Press the enter key.
3. Repeat steps 1 and 2 for the Window Height field.

To see effect of the changes, specify Execute or Execute on Change.

Setting the Camera Width: If you select Orthographic projection, then you can
also specify the width of the field of view. The larger the width, the smaller the
object appears.

Specify the width by clicking on the Camera Width field, typing a new value (in world
coordinates), and pressing the Enter key.

While you are using perspective projection, the Width field is grayed out.

Resizing the Image
To resize the image, simply resize the image window by dragging its borders to
shrink or expand the window. The image displayed inside the window is resized
accordingly. Note that the size of the object in the Image window is controlled only
by the width of the window.

You can specify an exact Image window size by using Camera mode, as described
in “Precise Camera Settings” on page 82.

For more information on resizing windows, see “Moving and Resizing Windows” on
page 62.

 Restoring Images
Data Explorer remembers the 10 most recent camera configurations. You can
undo the most recent actions in the View Control... dialog box by selecting the
Undo option box or by using its accelerator key, Ctrl+U. You can continue to revert
to previous configurations until you have reached the first configuration in memory;
after that, the Undo option is disabled (grayed out).

As you revert to previous camera configurations (by Undoing actions), you can still
restore them by using the Redo button, providing that you have not performed any
other actions since the last Undo. The accelerator key for Redo is Ctrl+D.

Note: The Redo button is disabled as soon as you change the camera
configuration by a means other than Undo. Any configurations that have
been stored and “undone” are discarded.

84 IBM Visualization Data Explorer: User’s Guide

Resetting the Camera: To return the image to a “front” view that includes the
entire object, select the Reset option of the View Control... dialog box, or use the
Ctrl+F accelerator key.

You can also use this option if you bring in a new data set and want to create a
new camera appropriate for the data.

Note: You can also reset the camera by using the resetCamera parameter to the
Image tool (see Image in IBM Visualization Data Explorer User’s Reference).

Using Probes (Cursors)
A probe is a list of one or more vectors that represent points in the image. You
can use them with Data Explorer modules that accept vectors as input, such as
ClipPlane and Streamline.

After you execute a visual program and have an image in the Image window, you
can modify the visual program to include a Probe or ProbeList tool from the
Special category. The probe tool accepts input from the 3-D cursor tool, specifying
the points to use as vectors for input into another tool. The Probe tool accepts one
point as its input; the ProbeList tool accepts multiple points as input.

To use probes to select points for input into tools:

1. Execute a visual program to produce an image in the Image window.
2. In the VPE, place one or more probe tools from the Special category in the

visual program, connecting them to the tools for which you want to provide
input.

The probe icons are numbered as you place them on the canvas. For
example, the first probe icon you place is labeled “Probe_1,” the second
“Probe_2,” and so on. You can change the label of the icon by using its
Configuration dialog box.

3. In the View Control... dialog box, select Cursors mode from the Mode option
box, or use the Ctrl+X accelerator key. A wire frame appears around the
object. The dialog box changes to add the Probe controls. Select the probe
you want to set by choosing the Probe(s) option box. This opens an options
menu with a list of the available probes, from which you can select the desired
probe.

4. Use the mouse to select a point or points to use as input to the tool connected
to the Probe or ProbeList icon.

To add a point, double-click on the left mouse button inside the wire-frame box.
A small square box appears, marking the point.

Note: The Probe tool allows only one point, while the ProbeList allows
several.

To move a point, select the point by pressing the left mouse button with the
mouse pointer positioned on it. When the left mouse button is depressed on
the point, the three projections (one for each axis) appear inside the wire-frame
box as dots, and the values for the x, y, and z coordinates are displayed on the
right side of the Image window menu bar, as illustrated in Figure 40 on
page 86. You can move the point by dragging the selected point inside the
box along the same direction as any of the axes. When you have moved the
point to the desired area, release the left mouse button.

Note that since perspective projection does not preserve parallel lines, the
directions in the axes diagram do not necessarily correspond with the direction

 GUI: Windows

 Chapter 6. Graphical User Interface: Important Windows 85

Figure 40. 3-D Cursor with a Selected Point

that the point moves in the Image window. However, these axes do
correspond with the values of the coordinates.

While using orthographic projection, the movement of the point in the Image
window corresponds to the directions of the axes diagram.

To delete a point, double click on it with the left mouse button.

You can restrict the movement of the 3-D cursor with the Constraints option.
Selecting the Constraints option box reveals an options menu that lets you
choose which of the three axis projections to that movement is constrained.
For example, if the x axis is selected from the cascade menu, you are able to
move only the x projection in the 3-D cursor box. When cursor movement is
constrained, the portion of the wire-frame box that corresponds to the selected
axis is highlighted. To remove movement constraints on the cursors, select
None from the options menu.

Constraining is useful for more precise positioning of the cursor. Note that
exact positioning is not possible with the 3-D cursor tool.

5. Repeat the previous three steps for each probe icon in your visual program.

Reexecute the visual program to implement the probes.

While in Cursors mode, the center and right mouse buttons have the same
functions as they do in Rotate mode.

Note: You can also enable Probe (cursors) mode by using the intrctnMode
parameter to the Image tool (see Image in IBM Visualization Data Explorer User’s
Reference).

86 IBM Visualization Data Explorer: User’s Guide

 Using Pick
Picking consists of choosing a location on an object in an image using the mouse.
A chosen location is called a “poke”. Each poke may intersect the object in the
image in one or more places (the intersections are called “picks”) or may not
intersect the object at all. For example, a poke on a spherical isosurface results in
two “picks”: one on the front of the sphere and one on the back. Picking differs
from using probes, in which probes may be present anywhere in a 3-dimensional
space, while picks always exist on the surface of an object.

After you execute a visual program and have an image in the Image window, you
can modify the visual program to include a Pick tool from the Special category.
The Pick tool accepts input from the mouse and outputs a field that specifies the
picked point or points. The “positions” component of this field identifies each
picked point on the object in the image. The field can be used, for example, to
identify all picked points with a glyph, or to start streamlines at each picked point.
In addition, the field output by the Pick tool can be used by a user-written module
to perform a variety of operations on the object in the image (e.g., coloring each
picked object a particular color). IBM Visualization Data Explorer Programmer’s
Reference includes a sample module that uses the pick structure in this way.

To use picking to select points on objects:

1. Execute a visual program to produce an image in the Image window.
2. In the VPE, place one or more pick tools from the Special category in the

visual program, connecting them to the tools for which you want to provide
input.

The pick icons are numbered as you place them on the canvas. For example,
the first pick icon you place is labeled “Pick_1”, the second “Pick_2”, and so on.
You can change the label of the icon by using its Configuration dialog box.

3. In the View Control... dialog box, select Pick mode from the Mode option box
or use the Ctrl+I accelerator key. The dialog box changes to add the Pick
controls.

Select the pick tool you want by choosing the Pick(s) option box. This opens
an options menu with a list of the available picks from which to select.

4. Select a point or points as input to the tool connected to the Pick icon.

To choose a point, click on a point in the image. A small square box appears,
marking the point.

Depending on whether you have the persistent parameter to the Pick tool set to 0
or 1, subsequent executions may or may not use the last pick point or points
chosen. If persistent is set to 0, then pick points are not saved between
executions; if persistent is set to 1, then pick points are saved between
executions.

Note: You can also enable Pick mode by using the intrctnMode parameter to the
Image tool (see Image in IBM Visualization Data Explorer User’s Reference).

 GUI: Windows

Undo, Redo, and Reset
These options are almost self-explanatory. Undo and Redo both restore images,
either by “undoing” the current image or by “redoing” the image that has just been
“undone”.

The Reset option returns the Image window to its initial state (i.e., before the image
was first modified). See also “Restoring Images” on page 84.

 Chapter 6. Graphical User Interface: Important Windows 87

 AutoAxes...
This option generates an axes box around an image:

Select AutoAxes...from the Options pull-down menu. The AutoAxes
Configuration... dialog box appears, as illustrated in Figure 41 on page 89.

The dialog box consists of eight parts:

Enabled The first “part” consists of a single toggle button—AutoAxes
enabled. This button must be activated (depressed) to make
an axes box appear the next time the visual program is
executed. (The button is automatically activated whenever
one or more of the AutoAxes options are changed.)
Releasing (deactivating) the button prevents the appearances
of an axes box.

Input groups The second part of the dialog box displays six (6) of the
available configuration options shown below. Depressing
(enabling) any of these option buttons automatically expands
the window appropriately to reveal the relevant options.
Releasing (disabling) any of these option buttons removes
the relevant options.

Axes' Labels Allows you to individually specify a label for each of the three
axes:

X, Y, Z

Miscellaneous Contains the following specifications:

Frame allows you to turn on or off a frame for the axes
(that is, lines which complete the cube, in addition
to the back three faces which are drawn by
default).

Grid allows you to turn on or off grid lines along major
ticks.

Font allows you to choose a font for the labels. The
ellipses button allows you to choose from the set
of predefined fonts.

Label Scale
allows you to change the size of the labels from
the default size. For example, specifying a labels
scale of 2 will make the labels twice as large.

Annotation Colors allows you to specify a color for each part of the axes: the
grid (if drawn), ticks, labels, and background. The colors can
be any of the defined colors (see “Color” on page 75 in IBM
Visualization Data Explorer User’s Reference), and in
addition, the background can be drawn as “clear” (invisible).

Corners / Cursor The Corners section allows you to explicitly set the range of
the axes in each dimension. The Cursor section allows you
to place a cursor (marker) at a specific location in the axes
box.

Ticks Allows you to specify number or locations of ticks. If the
option menu to the right of “Ticks” is set to “All”, then you can
specify the approximate total number of ticks in the “All” field.

88 IBM Visualization Data Explorer: User’s Guide

Figure 41. AutoAxes Configuration dialog box

If the option menu to the right of “Ticks” is set to “Per Axis”,
then you can specify the approximate number of ticks on
each axis. If the option menu to the right of “Ticks” is set to
“Values”, then you can use the Ticks' Values section to set
exact tick locations and labels. You can also specify the
direction of the ticks to point inward or outward using the
buttons at the bottom of this section

Ticks values This section is only enabled if the option menu to the right of
Ticks is set to “Values” By using the ... buttons you can add
Tick Location/Tick Label pairs for each axis. See “AutoAxes”
on page 27 in IBM Visualization Data Explorer User’s
Reference for more information.

buttons OK and Apply both confirm option changes, which appear the
next time the visual program is executed. OK also closes the
dialog box.

Restore and Cancel both restore values that were present
when you opened the dialog box or last clicked on the Apply
button. Cancel also closes the dialog box.

For more details on the AutoAxes configuration, see the corresponding module
description in IBM Visualization Data Explorer User’s Reference.

Note: It is also possible to set AutoAxes parameters using input parameters to the
Image tool (see Image in IBM Visualization Data Explorer User’s Reference).

 GUI: Windows

Set Background Color...
This option displays a dialog box that will accept either a color-name string or an
RGB vector as the specification of a background color for the Image window. Valid
strings are listed in a user-specified lookup table or a file supplied with Data
Explorer (see Color in IBM Visualization Data Explorer User’s Reference). If
neither is available, Data Explorer uses a smaller, internal list (see Appendix F,
“Data Explorer Colors” on page 313).

 Chapter 6. Graphical User Interface: Important Windows 89

Figure 42. Expanded AutoAxes Configuration Dialog Box. The box lists seven options not
visible in the default version (Figure 41).

Notes:

1. Although each defined color has a corresponding RGB vector, the range of
possible vectors is continuous from black ([0 0 0]) to white ([1 1 1]). Thus you
can specify an RGB vector for which there is no corresponding string (i.e., no
defined color). Nonetheless, Data Explorer will accept the vector as valid and
generate the corresponding color.

90 IBM Visualization Data Explorer: User’s Guide

2. Data Explorer supplies double quotation marks for color-name strings, and
brackets, commas, and terminal zeros for vectors. For example, either green or
ð 1 ð is sufficient to specify the color green.

3. It is also possible to set the background color using the bkgrdColor parameter
to the Image tool (see Image in IBM Visualization Data Explorer User’s
Reference).

Display Rotation Globe
The rotation globe can be displayed only in the Roam and Rotate modes of the View
Control... dialog box (see “Controlling the Image: View Control...” on page 74).
In either mode, activation (depression) of the Display Rotation Globe toggle button
generates a globe in the lower left-hand corner of the Image window. The
orientation of this globe changes in parallel with that of the axes in the lower
right-hand corner of the window, or vice versa, depending on which object you
manipulate.

Hold down the left mouse button to rotate the objects in two dimensions (Rotate
mode) and the middle button to orient them in three (Roam mode).

 Rendering Options...
You can choose between software and hardware rendering if you are running Data
Explorer on a workstation with a graphics card that supports hardware rendering.
Approximations in both types of rendering help the user to see the effect of rotation,
roam, or navigation interactions before rendering and display are complete.

To set the rendering options, select Rendering Options... in the Options pull-down
menu in the Image window. This causes the Rendering... dialog box to appear,
as illustrated in Figure 43 on page 92.

The Rendering... dialog box allows you to select the rendering mode with a toggle
button. If you select hardware, this means “use hardware if available” at the time
Data Explorer is run. If a graphics card which supports hardware rendering is not
available, software rendering will be used instead.

You can specify the approximation method that Data Explorer uses for each of two
execution states—button-up execution and button-down execution. Button-down
execution is applicable in execute-on-change mode and in navigation.

For example, you might specify None for the approximation method for button-up
execution, and Dots for the approximation method for button-down execution.
When holding the mouse button down in Rotate mode (with Execute on Change
enabled), these rendering methods display a dot representation of the object, giving
you quick feedback on your camera position, until you release the mouse button, at
which point the object is rendered normally. The following is a brief description of
the rendering methods you can specify with this dialog box. For detailed
information about the rendering options, see “Display” on page 109 in IBM
Visualization Data Explorer User’s Reference.

None
No approximation method is specified, so a complete rendering of the image is
done.

 GUI: Windows

 Chapter 6. Graphical User Interface: Important Windows 91

Figure 43. Rendering Options Dialog Box

Wireframe (available only with hardware rendering)
Renders the object as a wireframe, at the specified density. Surfaces are
rendered as wireframe meshes, while points and volumes are rendered as
dots. Wireframes are produced at full or fractional density.

Dots
For hardware rendering, this approximation renders all points, surfaces, and
volumes as dots, at the specified density. Lines are rendered as wireframe.
Dots are produced at full or fractional density.

For software rendering, all points, surfaces, and volumes are rendered as dots.
You cannot specify the density for software rendering.

Box
Draws the bounding box of each field in the object to be rendered.

While the Dots or Wireframe hardware rendering approximation methods are
specified, the integer for Render every controls the density of the rendering
approximation. For the Dots approximation, it means that every nth vertex is
rendered, where n is the integer specified. For Wireframe approximation, the
rendering depends on the type of connections. For example, if the connections are
triangles, it means that every nth triangle is rendered. You can use the Render
every value to control the speed of your rendering; the higher the value, the faster
an object can be rendered. The default value is 1 (meaning every dot and every
wireframe is rendered).

The Render every box is grayed out during software rendering, and during
hardware rendering that is not Dots or Wireframe approximations.

92 IBM Visualization Data Explorer: User’s Guide

Note: Do not use the Options module to set hardware-rendering options if you
intend to use the Rendering... dialog box: options set by the Options module are
overridden by those set through the dialog box (see “Display” on page 109 in IBM
Visualization Data Explorer User’s Reference.

 Image Depth
This option determines the maximum number of possible colors (or shades of color)
that Data Explorer can use in creating an image. With greater numbers, gradations
are smoother and edges are sharper. The image is “clearer.” The choices are the
number of bits available for specifying colors: 8 (256 colors), 12 (4096) and 24
(more than 16 million). Data Explorer supports 8 bits. With the appropriate
graphics card, it will process 12 and 24 bits.

Changing the Rate of Frame Display: Throttle...
You can specify a maximum rate of speed to display new frames. This rate is
specified as a number of seconds per frame (i.e., the minimum number of seconds
that any frame will be displayed before advancing to the next frame).

To change the rate of display, do the following:

1. Select the Throttle... option from the Options pull-down menu in the Image
window. A dialog box appears, as illustrated in Figure 44 on page 94.

2. Edit the Seconds per Frame text field, changing it to the minimum number of
seconds you want any given frame to be displayed.

3. Click on the Close button. The new rate takes effect.

You can also set the throttle value by using the throttle parameter to the Image
tool (see Image in IBM Visualization Data Explorer User’s Reference). GUI: Windows

Changing the Title of an Image Window
By default, the title of the Image window is the name of the visual program that
produced the image. If your visual program requires multiple image windows, it
may be difficult to distinguish the windows, since all of the Image windows, by
default, have the same title.

In this case, you can change the title of each Image window to help you organize
them. To change the name of the Image:

1. Select the Change Image Name... option from the Options menu in the Image
window. A dialog box opens.

2. Enter a new name for the image in the text field of the dialog box, and click on
OK. The title bar of the Image window is updated to reflect the change.

Notes:

1. If you start Data Explorer with the Image window as the anchor without
specifying a visual program in the command line, the title of the Image window
defaults to “Image.” However, when you load a visual program, the Image
window assumes either the name of the visual program or, if the visual program
contains any named images, the name of one of the Image windows.

2. It is also possible to specify the title of an Image window by using the title
parameter to the Image tool (see Image in IBM Visualization Data Explorer
User’s Reference).

 Chapter 6. Graphical User Interface: Important Windows 93

Figure 44. Throttle Dialog Box

Control Panel Access...
Clicking on this option in the Options pull-down menu generates a dialog box with
two toggle buttons:

� The button on the left determines whether the specified control panel will be
accessible from the Image window (using the Open Control Panel by Name
option of the Windows pull-down menu) when Data Explorer is invoked with the
-image or -menubar option.

� The button on the right (...), when activated (depressed) will display the control
panel(s).

Saving an Image
Data Explorer provides you with the capability to save single images and image
series to disk files. You save images using the File menu Save Image option of the
Image window. Selecting this option causes a Save Image dialog box to appear
(see Figure 45 on page 95.).

To save an image:

1. Open the Save Image dialog box using the File menu Save Image option.
2. Select the name of the file into which the image will be written or enter a file

name into the Output File Name text field.
3. Select the image format.
4. Specify any image format options (e.g., Gamma Correction).
5. Click on Save Current.
6. Click on Apply.

You can also save an image by using the recordEnable, recordFile,
recordFormat, recordRes, recordAspect parameters to the Image tool. Portions of
the Save Image... dialog box will be grayed out as appropriate if the corresponding
parameter is set using these parameters to the Image tool. (See “Image” on
page 160 in IBM Visualization Data Explorer User’s Reference).

If you select (specify) an existing file and select one of the RGB, MIFF, or YUV
formats, the image will be appended to the existing file. If you select TIFF or
PostScript formats, the existing file will be overwritten by the new image.

When you want to save another image, you need only click on Save Current,
specify a new file name, and click on Apply.

To save a continuous sequence of images

1. Open the Save Image dialog box using the File menu Save Image option.

94 IBM Visualization Data Explorer: User’s Guide

Figure 45. Save Image Dialog Box

2. Select the name of the file into which the sequence will be written or enter a file
name into the Output File Name text field.

3. Select the image format, either “RGB”, “R+G+B” “MIFF”, or “YUV”.
4. Depress the Continuous Saving toggle by clicking on it.
5. If you do not wish to include the currently displayed image in the sequence, be

sure the Save Current toggle button is not depressed.
6. Click on the Apply button.

Each time an image is displayed in the Image window it will be appended to the file
specified in the Selection text field. To disable the continuous saving mode:

1. Open the Save Image dialog box using the File menu Save Image option.
2. Release the Continuous Saving toggle button by clicking on it.
3. Click on the Apply button.

 GUI: Windows

Save Image Options
Allow Rerendering allows you to specify whether or not the currently displayed

image should be rerendered at a new resolution or aspect
ratio.

If Allow Rerendering is toggled off, then the Image Size is
completely determined by the resolution of the currently
displayed image. Image Size and Output PPI cannot be
independently controlled, and you can not change the aspect
ratio of the image from that of the currently displayed image.
If you attempt to change the aspect ratio of the image size
(e.g. by specifying a size of 8x8 when the original image is
not at an aspect ratio of 1:1), the new image size will not be
accepted by the Image Size text field. If you change only one
component of the image size (e.g. by specifying “8 x”), then
the other component of the image size will be computed by
comparing it to the current aspect ratio, and Output PPI will
be adjusted such that the number of pixels of the image
remains that of the currently displayed image.

 Chapter 6. Graphical User Interface: Important Windows 95

If Allow Rerendering is toggled on, then the currently
displayed image will be rerendered at a new resolution based
on the settings of Output PPI and Image Size, which can
now be independently controlled. You can use this option, for
example, to save or print an image at a much higher
resolution than is displayed on the screen. You can also
specify the number of pixels directly by setting the units of
Image Size to pixels (note that in this case it is meaningless
to set the Output PPI).

Gamma Correction Allows you to specify gamma correction applied to the output
image. The default is 2.

Delayed Colors For TIFF, MIFF, and PostScript image formats, allows you to
specify whether the image is saved in an
image-with-colormap format. For GIF image format, this
option is required by the format.

Format Allows you to choose from the set of available image
formats.

Output file name Allows you to specify the file name to which the image
should be written. An appropriate extension for the chosen
format will be added if you do not provide one.

Select File Allows you to use a File Selection dialog to specify the output
image file name.

Save Current Allows you to specify that the current image should be saved
when the Apply button is pressed.

Continuous Saving Allows you to save a series of images. If you do not want the
current image to be saved, be sure the Save Current button
is not set before pressing Apply. When Continuous Saving is
activated, each image displayed in the image window will be
saved to the specified file. This option is useful only for
image formats which support series: RGB, R+G+B, YUV, and
MIFF.

For all formats other than the Postscript formats, the following field is available:

Image Size If the Allow Rerendering button is set, this field allows you to
set the resolution of the output image to something other
than that of the image displayed to the screen.

If one of the Postscript formats is selected then the following fields are displayed:

Image Dimensions Allows you to specify the size of the image on the page (by
default in inches).

Orientation Allows you to specify the orientation of the image to portrait
or landscape, or automatic, which chooses the best for the
given image.

Input Image Size Specifies the resolution of the image to be saved. This field
is enabled only if the Allow Rerendering button is toggled on.

Page Dimensions Specifies the size of the page. By default this is specified in
inches.

96 IBM Visualization Data Explorer: User’s Guide

Output PPI Specifies the “pixels per inch” of the output image.

Note: Unless you specifically care to set the precise pixels
per inch, you do not typically need to set this.

Margin Width Specifies a margin width of white space on the page.

For PostScript formats, the printed image will, by default, fill the page to within
Margin Width of the edge of the page. If Allow Rerendering is off, the pixels in the
image will be sized appropriately to scale the image to fill the page, but the same
number of pixels as in the currently displayed image will be used. If this results in a
grainy image, set Allow Rerendering on, and enter a different Input image size.
For example, if the displayed image is 640x480, and you want to double the
resolution, just enter 1280 in the Input image size field and Data Explorer will
recalculate the new value of y (960) and the new (higher) value for Output PPI.

By default, Image Dimensions, Page Dimensions, and Margin Width are specified in
inches However, you can use the DX\metric resource or the -metric command line
option to use centimeters instead. See Table 7 on page 299.

Pushbuttons Apply causes the currently displayed image to be saved if the
Save Current toggle button is depressed.

Restore restores settings in the dialog to what they were the
last time the Apply button was depressed.

Close causes the dialog to be closed without saving an
image.

Note: If you are not using the Image window, this functionality is available with the
WriteImage module. See “WriteImage” on page 374 in IBM Visualization Data
Explorer User’s Reference.

 GUI: Windows

Printing an Image
You can print images displayed in the Image window by choosing the Print
Image... option from the File menu of the Image window. Selecting this option
causes a Print Image dialog box to be opened (see Figure 46 on page 98). Note
that portions of the Print Image dialog box will be grayed out as appropriate if the
corresponding parameter is set using the recordFormat, recordRes, or
recordAspect parameters to the Image tool.

Print Image Options
Allow Rerendering allows you to specify whether or not the currently displayed

image should be rerendered at a new resolution or aspect
ratio.

If Allow Rerendering is toggled off, then the Image Size is
completely determined by the resolution of the currently
displayed image. Image Size and Output PPI cannot be
independently controlled, and you can not change the aspect
ratio of the image from that of the currently displayed image.
If you attempt to change the aspect ratio of the image size
(e.g. by specifying a size of 8x8 when the original image is
not at an aspect ratio of 1:1), the new image size will not be
accepted by the Image Size text field. If you change only one
component of the image size (e.g. by specifying “8 x”), then
the other component of the image size will be computed by

 Chapter 6. Graphical User Interface: Important Windows 97

Figure 46. Print Image Dialog Box

comparing it to the current aspect ratio, and Output PPI will
be adjusted such that the number of pixels of the image
remains that of the currently displayed image.

If Allow Rerendering is toggled on, then the currently
displayed image will be rerendered at a new resolution based
on the settings of Output PPI and Image Size, which can
now be independently controlled. You can use this option, for
example, to save or print an image at a much higher
resolution than is displayed on the screen. You can also
specify the number of pixels directly by setting the units of
Image Size to pixels (note that in this case it is meaningless
to set the Output PPI).

Gamma Correction Allows you to specify gamma correction applied to the output
image. The default is 2.

Delayed Colors For TIFF, MIFF, and PostScript image formats, allows you to
specify whether the image is saved in an
image-with-colormap format. For GIF image format, this
option is required by the format.

Format Allows you to choose from the set of available image
formats.

For all formats other than the Postscript formats, the following field is available:

Image Size If the Allow Rerendering button is set, this field allows you to
set the resolution of the output image to something other
than that of the image displayed to the screen.

If one of the Postscript formats is selected then the following fields are displayed:

Image Dimensions Allows you to specify the size of the image on the page (by
default in inches).

98 IBM Visualization Data Explorer: User’s Guide

Orientation Allows you to specify the orientation of the image to portrait
or landscape, or automatic, which chooses the best for the
given image.

Input Image Size Specifies the resolution of the image to be printed. This field
is enabled only if the Allow Rerendering button is toggled on.

Page Dimensions Specifies the size of the page. By default this is specified in
inches.

Output PPI Specifies the “pixels per inch” of the output image.

Note: Unless you specifically care to set the precise pixels
per inch, you do not typically need to set this.

Margin Width Specifies a margin width of white space on the page.

For PostScript formats, the printed image will, by default, fill the page to within
Margin Width of the edge of the page. If Allow Rerendering is off, the pixels in the
image will be sized appropriately to scale the image to fill the page, but the same
number of pixels as in the currently displayed image will be used. If this results in a
grainy image, set Allow Rerendering on, and enter a different Input image size.
For example, if the displayed image is 640x480, and you want to double the
resolution, just enter 1280 in the Input image size field and Data Explorer will
recalculate the new value of y (960) and the new (higher) value for Output PPI.

Print command Contains a text field where you can enter a command to print
the image, for example:

lpr -P myPrinter

Pushbuttons Apply Causes the command specified by Print Command to
be executed.

Restore Restores settings in the dialog to what they were the
last time that Apply was depressed.

Close Causes the dialog to be closed without printing an
image.

 GUI: Windows

6.2 Using the VPE
A visual program is a collection of interconnected tools that acts upon one or more
inputs to create one or more outputs (for example, an image). You derive program
inputs from the output of tools in the program, or by setting the input values to
constants. Tools that provide output values as input to other tools are (in
alphabetical order):

� Colormap Editors (see 6.3, “Using the Colormap Editor” on page 119)
� Interactors (see “Using Interactors” on page 142)
� Macros (see 7.2, “Creating and Using Macros” on page 149)
� Modules (see Chapter 1, “Data Explorer Tools” on page 1 in IBM Visualization

Data Explorer User’s Reference)
� Picks (see “Using Pick” on page 87)
� Probes (see “Using Probes (Cursors)” on page 85)
� Sequencers (see “Using the Sequencer” on page 68)
� Transmitters and Receivers (see “Using Transmitters and Receivers” on

page 106).

 Chapter 6. Graphical User Interface: Important Windows 99

Before building a visual program, you should be familiar with the information
presented in this chapter as well as the information on Data Explorer modules
presented in Chapter 1, “Data Explorer Tools” on page 1 in IBM Visualization Data
Explorer Programmer’s Reference.

Chapter 2, “Tutorial I: Using Data Explorer” on page 3 in IBM Visualization Data
Explorer QuickStart Guide introduces the Data Explorer graphical user interface.
Chapter 3, “Tutorial II: Editing and Creating Visual Programs” on page 21 in IBM
Visualization Data Explorer QuickStart Guide introduces the basic aspects of
working with visual programs. These tutorials will familiarize you with the user
interface as well as some of the commonly used Data Explorer modules.

Creating a Visual Program
To create a visual program, use the Visual Program Editor (VPE) window, in which
you place and connect tools and specify values for those tools. Figure 47
illustrates the VPE window and a sample visual program.

Figure 47. VPE Window

The title bar of the VPE displays the name of the current visual program file. On
the left side of the window are two palettes. The top palette contains tool
categories. When you select a category from the top palette, the bottom palette
displays the tool names in that category. The large area on the right side of the

100 IBM Visualization Data Explorer: User’s Guide

window is called the canvas. You place tools on the canvas to construct a visual
program.

In some cases, the visual program may be too large to be displayed all at once on
the canvas. On the right and bottom sides of the canvas are scroll bars, which
allow you to move the display to different parts of the visual program. To display a
different part of the visual program, click on the arrows at the end of the scroll bars,
or click and hold the button on the bar between the arrows and move it until the
desired portion of the visual program is displayed. Scroll bars may also appear in
the tool palettes, if the list of categories or tools are too long to fit.

When you place a tool onto the canvas, it is represented by an icon. Figure 48
illustrates an example of a tool icon.

Figure 48. Example of a Tool Icon

 GUI: Windows

The tool icon, which has a highlighted border when selected, consists of a
rectangle displaying the name of the tool, plus one or more tabs on the top, the
bottom, or the top and the bottom of the rectangle. The rectangle is the active area
and is used for selecting and moving the tool. The tabs on the top represent inputs
to the tool, and the tabs on the bottom represent outputs. It is possible for a tool to
have either no inputs or no outputs. Some of a tool’s input tabs may be hidden
(i.e., not displayed). It is possible to reveal the hidden tabs or hide additional tabs.
It is also possible to add or remove input tabs for tools that allow a variable number
of inputs. On many tools, one or more of the inputs are highlighted with a different
color, indicating that the input is required. These tabs are discussed in more detail
in “Specifying Values for a Tool's Inputs” on page 103.

The basic steps in creating a visual program are:

 Chapter 6. Graphical User Interface: Important Windows 101

1. Select and place the desired tools on the canvas.
2. Connect tool outputs to inputs.
3. Set values for the tools.
4. If you plan to change input parameters frequently while viewing an image (e.g.,

an isosurface value), then you should build a Control Panel and set interactors
(see “Building Control Panels” on page 129 and “Using Interactors” on
page 142).

Placing Tools on the Canvas
The tools are divided into categories, and a list of these categories appears in the
top palette on the left side of the VPE window. To locate a tool:

1. Click on a desired category. The names of the tools in that category appear in
the lower tool palette. All palette lists are presented in alphabetic order.

2. Select the appropriate tool name from the bottom palette by clicking on the
tool’s name. Clicking on an already selected tool deselects that tool.

To place one instance of the selected tool on the canvas:

1. Move the cursor to where you want to position the tool on the canvas. Note
that the style of the cursor changes when you move it onto the canvas. Exact
placement of the tool depends on the grid settings (see “Customizing the VPE
Window” on page 113).

2. Click the mouse. The tool icon appears at the specified location. When you
have placed the tool, its name is no longer highlighted in the lower palette.

To place multiple instances of the tool:

1. Double click on the tool name in the lower tool palette.
2. Click the mouse on the canvas to place one instance of the tool. Repeat this

step for further instances of the tool.
3. To stop placing the same tool, deselect the tool’s name in the palette by

clicking on any tool name.

Note: After you place a tool, its icon stays selected until you place another tool, or
deselect the tool as described in “Selecting, Moving, and Deleting Tool
Icons”.

If you place one tool icon on top of another, the bottom tool icon is pushed
to the right to allow room for the new one. To avoid the displacement of
tool icons, allow enough space for each tool icon you plan to use.

To deselect a tool name in the lower palette, do one of the following:

� Click on the tool name.
� Select another tool name.
� Select another category.

Selecting, Moving, and Deleting Tool Icons
To select a tool icon, click on it.

To select a group of tool icons, use one of these methods:

� Hold down the Shift key and click on each tool icon in turn.

� Position the cursor on the canvas near a corner of the group and drag the
mouse to draw a selection box around the tool icons you want. To select the
tool icon, you must completely enclose it in the selection box. As a tool icon is

102 IBM Visualization Data Explorer: User’s Guide

encompassed by the selection box, it is highlighted (indicating that it is
selected).

Note: If you have tools selected already and you want to select more, hold
down the Shift key and either click on a single icon, or drag the
selection box over several icons to select them. To select all icons on
the canvas, use the Select All option of the Edit pull-down menu.

To deselect an icon, shift-click on it.

To deselect a group of tools, use one of these methods:

� Shift-click on each icon.

� Shift-drag to draw a box around the tools you want to deselect. As a selected
tool is encompassed in the box, it becomes unhighlighted. Release the button
to deselect the tools.

Note: Clicking on an empty part of the canvas deselects all selected tools.

To move a tool icon:

1. Press and hold the left mouse button on the tool icon and drag it to the desired
location. While you are dragging the tool, an outline of the tool icon follows the
motion of the mouse, but the tool icon remains in the original location.

2. Release the mouse button at the desired location. The tool icon moves to that
location. Any lines connecting to other tools are rerouted to the tool’s new
location.

To move a group of tool icons:

1. Select a group of tool icons to be moved.
2. Position the cursor on any member of the group and drag it. An outline of each

tool icon follows the motion of the mouse.
3. Release the mouse button. The icons representing the tools move to the new

location. Any affected connections are rerouted.

To delete tool icons:

1. Select the tool icon or group to be deleted.
2. Press the Ctrl+Delete accelerator key or click on the Delete option of the Edit

menu.

 GUI: Windows

Specifying Values for a Tool's Inputs
To provide the values of a given input for a tool, use one of these methods:

� Connect the output tab of another tool to the desired input tab.
 � or
� Use the tool’s Configuration dialog box.

When you specify an input value for a tool, the corresponding tab on the tool’s icon
automatically folds in. If you do not specify an input value, the input tab remains
folded out, indicating that the input is unbound and the tool uses its default for that
input. The default values are given in the Configuration dialog box. The tabs that
are folded in give you a visual representation of the inputs that have user-specified
values. Some tabs require an input; those tabs remain highlighted in a different
color until you specify an input with a connection or through a Configuration dialog
box. Some of the tabs are not displayed, termed hidden. The hidden tabs can be

 Chapter 6. Graphical User Interface: Important Windows 103

revealed or additional tabs can be hidden (see “Revealing and Hiding Input Tabs”
on page 110). Also, some tools allow you to add or remove input tabs (see
“Adding and Removing Input and Output Tabs” on page 106). Figure 49 on
page 104 illustrates tools whose inputs have been specified.

Figure 49. How Tabs Work. An input tab folds in when its input is supplied through a
connecting “arc” or is defined in the module’s configuration dialog box. When the default
input is used, the tab remains up. An output tab folds in when it is connected to another
module by an arc.

A tab that is folded in but has no connecting line leading to it indicates that its input
was specified using the tool’s Configuration dialog box.

Creating, Deleting, and Moving Tab Connections
To connect tabs:

1. Click and hold the mouse button on the output tab. This causes the cursor to
change to a downward pointing arrow. When the cursor is placed over the
output tab, the name of the tab is displayed in the tool icon.

2. While pressing the mouse button, drag the cursor to the desired input tab.
While you are dragging the cursor from the output tab, a white line appears
indicating that a connection is being created.

3. When you enter the area encompassing a tool icon, the tabs that are
compatible with the output tab you are trying to connect will change color.
When the cursor is placed over an input tab, the name of the tab is displayed
in the tool icon.

Note: You can also connect tabs by starting at the input tab. Simply press
and hold the mouse button on the desired input tab; this causes the
cursor to change to an upward pointing arrow. Drag the cursor to the

104 IBM Visualization Data Explorer: User’s Guide

desired output tab. When the cursor enters the area encompassing a
tool icon, the output tabs that are compatible with the input tab will
change color.

4. Place the pointer over the input tab you want and release the mouse button. If
you release the mouse button in the rectangle area of the icon, the line
automatically connects to the leftmost of the newly colored tabs.

When you release the mouse button, the white temporary line is replaced with
a black line, and the corresponding tabs fold in.

Note: Sometimes, when tools are placed too close together on the canvas, a
connection that you made is not visible. In this case, the affected input
tabs are still folded in, and a dark line is visible on each one, but the
connecting line is not visible. To correct this, move one of the affected
tools to another spot on the canvas.

You can connect an output tab to more than one input tab (either on different tool
icons or on the same tool icon). Therefore, you can make a connection from an
output tab even though the output tab is folded in.

An input tab can receive a value from only one source, either from a connection to
an output tab or from a value entered in a Configuration dialog box. Once an input
tab folds in, you cannot make a new connection to the tab until the tab is released.

Because output tabs can have multiple destinations, connections can only be
moved or deleted from an input tab.

To delete a tab connection:

1. Depress the mouse button on the input tab.
2. Drag the cursor to an empty space on the canvas (away from the active area of

the tool). A white line from the output tab follows the mouse pointer. If you
decide at this point not to break the connection, you must place the cursor back
on the input tab where the connection was, and release the mouse button.

3. Release the mouse button. The connection is deleted and the input tab
released.

To move a tab connection:

1. Depress the mouse button on the input tab.
2. Drag the cursor to an empty input tab (one that has not already been folded in).
3. Release the mouse button. The connection is rerouted to the new input tab.

 GUI: Windows

Moving and Copying Tools
The Drag and Drop capability provided by Data Explorer allows you to move or
copy selected tools within a Data Explorer window (e.g., the VPE or a control
panel) or between different Data Explorer windows (i.e., between two different VPE
windows). You can also drag interactor stand-ins to control panels to create
interactors.

To initiate a drag and drop, first select the tools you want to move or copy, either
by rubber-band or shift selection. Then place the mouse cursor over one of the
selected tools and press the middle mouse button. Keeping the button pressed,
move the cursor to an empty spot on the canvas and release the button. A copy of

 Chapter 6. Graphical User Interface: Important Windows 105

the selected tool will be placed where the mouse button was released. To do a cut
and drop (move), use Shift-middle mouse button.

When dragging and dropping tools from the VPE, you may drop the tools on a VPE
in another Data Explorer session or in another VPE (i.e., macro editor) of the same
Data Explorer session. Interactors in control panels can only be dragged and
dropped between panels in the same visual program.

If you drag a set of tools to an inappropriate window (e.g., from a control panel to a
VPE), no action will occur. If you drag a set of tools that includes transmitters, the
latter (along with their corresponding receivers) will be renamed to wireless-1,
wireless-2, and so on.

Note: To include an existing .net file in the VPE, use the Insert Visual Program
option of the Edit pull-down menu in the VPE. The inserted visual program is
placed to the right of the rightmost tool in the existing network.

Using Transmitters and Receivers
It is possible to create large visual programs in Data Explorer. Data Explorer
provides two tools, Transmitter and Receiver, to maintain the modularity and
readability of large programs. These tools allow connections between input and
output tabs without using a visible connecting line. Using the Transmitter and
Receiver tools allows you to separate visual programs into logical blocks. For
example, the output of several logical blocks can be transmitted to another block
that receives them, collects them, and produces the image. Macros, described in
7.2, “Creating and Using Macros” on page 149, provide another way to structure
visual programs into logical blocks.

To remotely connect input and output tabs:

1. Select the Transmitter tool, which appears under the Special category in the
tool palette, and place it near the output tab.

2. Connect the tool’s output tab to the input tab of the Transmitter.
3. Select the Receiver tool (also in the Special category), and place it near the

input tab to be connected to the output tab above.
4. Connect the Receiver’s output tab to the receiving tool icon’s input tab.

The Receiver automatically assumes the same name as the Transmitter. There
can be multiple instances of a Receiver corresponding to a single Transmitter.
These Receivers assume the same name until a new Transmitter is selected.

The name of a Transmitter and Receiver can be changed using the notation
field of the Configuration dialog box (as described in “Entering Values in a
Configuration Dialog Box” on page 107). When you change the name of the
Transmitter, all Receivers that share a name with that Transmitter also change
their names. However, when you change the name of a particular Receiver,
the associated Transmitter and the other Receivers are not affected.

Adding and Removing Input and Output Tabs
Most of the tools have a fixed number of inputs and outputs, but some, such as
Collect and Compute, allow the number of inputs to vary. For example, the default
number of inputs for Compute is two, but you may want to use the output from an
expression that has six inputs. Data Explorer lets you change such tools to
accommodate the extra inputs.

106 IBM Visualization Data Explorer: User’s Guide

To add input tabs to a tool on the canvas:

1. Select the tool icon by clicking on it.
2. Select the Add Input Tab option from the Input/Output Tabs option from the

Edit pull-down menu. (You can also use the Ctrl+A accelerator key.)

Note: If the tool you selected has a fixed number of inputs, the Add Input Tab
option is grayed out.

The appropriate number of input tabs are added to the tool icon. Typically, the Add
Input Tab option adds one tab to the icon. In the case of some tools, such as
CollectNamed, that require inputs in pairs, two input tabs are added. To add
multiple tabs, repeat the previous steps.

When you change the number of input tabs on the tool icon, the tool’s
Configuration dialog box is updated to reflect the change.

To remove input tabs from a tool on the canvas:

1. Select the tool by clicking on it.
2. Select the Remove Input Tab option from the Input/Output Tabs option from

the Edit pull-down menu. (You can also use the Ctrl+R accelerator key.)

Note: If the tool you selected has a fixed number of inputs, or if the icon has
only the minimum number of tabs required for that tool, the Remove
Input Tab option is grayed out.

The appropriate number of input tabs are removed from the right-side tool icon.
If the tabs that are removed previously had connections to them, those
connections are broken. It is possible for some tools to have zero input tabs.
For example, you may want the Compute module to contain only an expression,
with no inputs. The output would be the result of the expression.

 GUI: Windows

Entering Values in a Configuration Dialog Box
The Configuration dialog box displays the current state of a tool’s inputs. You can
modify the contents of the box directly. The contents are also automatically
updated when changes in the visual program or in interactors in a Control Panel
affect a tool’s inputs. In general, specifying input values using the Configuration
dialog box should be reserved for those values that remain constant during a
visualization session. Use an interactor set in a Control Panel to specify values
that are likely to be changed frequently.

This section describes a typical Configuration dialog box, illustrated in Figure 50 on
page 108. The Configuration dialog box for the Compute module, which is unlike
the other Configuration dialog boxes, is described in “Using the Compute Module
Configuration Dialog Box” on page 111.

 Chapter 6. Graphical User Interface: Important Windows 107

Figure 50. Typical Configuration Dialog Box

You can open a Configuration dialog box in one of the following ways:

� Double-click on the rectangular portion of a tool’s icon.
� Select the icon and click on the Edit menu Configuration option (or use the

Ctrl+F accelerator key).

Note: If the tool icon is an interactor stand-in, a colormap editor stand-in, or an
image tool, you must use the Edit menu Configuration option (or use the
Ctrl+F accelerator key) to open the Configuration dialog box.

A typical Configuration dialog box consists of four major parts:

 � Notation
 � Inputs section
 � Outputs section
 � Pushbuttons

The following sections describe the elements in a Configuration dialog box.

 Notation Field
By default, the Notation field displays the name of the tool. You can use this field
to enter a short notation about the use of the tool in the current visual program:

1. Select the field by clicking on it.
2. Edit the field as a normal text field (i.e., using Backspace, Delete, and the

alphanumeric keys).

In the case of Transmitter, Receiver, Probe, ProbeList, and Pick tools, use the
Notation field to rename the tool, thus changing the name appearing on the tool
icon.

 Inputs Section
Toggle buttons

Specifies whether an input is active; that is, whether the input tab on the icon
is folded in. The toggle buttons are the small square buttons on the far left
of the dialog box.

The toggle buttons provide a visual indication of the inputs that have been
specified. These buttons are analogous to the input tabs on the tool icon
and are coherent with the tabs: the buttons can be activated and deactivated
by clicking on them.

108 IBM Visualization Data Explorer: User’s Guide

� When you activate a toggle button, the value of the input is either the
output of another module (specified in the Source field of the dialog box),
or the value specified in the Value field.

� When you deactivate a toggle button, the input parameter is unbound
and the tool uses its default value for the input.

Name
Specifies the name of an input parameter. You cannot modify this field.
This field is grayed out if the name is specified with tab connections.

Hide
Indicates whether an input tab is to be hidden. When you activate the Hide
toggle button, the corresponding tab on the tool icon is removed. If a tab is
connected to another tool it cannot be hidden. Once a tab is hidden, it can
be removed from display in the Configuration dialog box by using the
Collapse button.

To reveal individual input tabs, first click on the Expand button. This will
cause the Configuration dialog box to resize, displaying all of the tool’s
inputs. Then deactivate the Hide toggle buttons of the desired inputs by
clicking on the toggle buttons. As the inputs are revealed, the tool icon is
updated to reflect the additional inputs. Once you have revealed all the
desired tabs, you can click on the Collapse button to remove the remaining
hidden tabs from being displayed in the Configuration dialog box.

See also “Revealing and Hiding Input Tabs” on page 110.

Type
Specifies the type of an input parameter. You cannot modify this field.

Source
Displays the name of the tool connected to the input, if a connection exists.
If the name of a tool is displayed in the source field, the toggle button is
activated and the name field is grayed out, and this input cannot be modified
until the connecting line is deleted.

Value
You use the Value field to specify a value for an input. Initially the field
contains the default value for an input. To modify the Value field, select the
field by clicking on it. Then, edit it as a normal text field. The value must be
specified in the syntax described in Chapter 10, “Data Explorer Scripting
Language” on page 187. After you change the field, do one of the following:

� Press Enter (which automatically activates the toggle button if it is not
already activated).

� Activate the toggle button by clicking on it.

� Click on either the OK pushbutton or the Apply button at the bottom of
the box (see button descriptions in “Pushbuttons” on page 110).

Data Explorer automatically adds the appropriate delimiters for the type of
value entered. For instance, if you specified a string parameter in the
Configuration dialog box, Data Explorer automatically adds the quotes
around it. If you specified a scalar list, Data Explorer adds braces.

Note: If a source is displayed, you cannot modify the Value field. If you
have modified the Value field and you want to use the default value,
release the toggle button. With the toggle button, you can flip
between the modified value and the default value.

 GUI: Windows

 Chapter 6. Graphical User Interface: Important Windows 109

...
This button, when enabled, brings up a list of possible values for the
parameter. This list is for convenience only; you may enter values other
than those listed as long as they are valid inputs for that parameter. For
example, the ... button for the color parameter to the Color module lists
red, green, and blue.

 Outputs Section
Name Specifies the name of an output parameter. You cannot modify this

field.

Type Specifies the type of an output parameter. You cannot modify this
field.

Destination Displays the name of the tool (or tools) to which the output tabs are
connected.

Cache Specifies the number of results for this output of the tool that are
eligible for caching. Cache can be “All Results”, in which all results
are eligible for cache, “Last Result”, in which only the last value of the
output is eligible, or “No Results”, in which no results from the module
should be cached. (See “Cache Control: Executive” on page 215.)

 Pushbuttons
The seven buttons at the bottom of the Configuration dialog box are labeled boxes
that perform an action when you click on them. The buttons are:

OK Applies new values and closes the box.

Apply Saves newly entered values. Once you click on the Apply button, you
can no longer restore previous values.

Expand Causes all hidden inputs to be displayed in the Configuration dialog
box. You can then unhide hidden tabs using the Hide toggle button.

Collapse Causes all hidden input tabs to be removed from display in the
Configuration dialog box.

Description Displays a window with descriptions of the input and output
parameters of the tool.

Restore Restores previous values that were present when you opened the box
or when you last clicked on the Apply button.

Cancel Restores previous values that were present when you opened the box
or when you last clicked on the Apply button, and then closes the
box.

Revealing and Hiding Input Tabs
Most of the tools have more input tabs than are displayed when a tool icon is
initially displayed. For example, the Isosurface module has six inputs, but when an
Isosurface tool icon is initially placed on the canvas, only three input tabs are
displayed. The displayed tabs represent those that are most frequently used.

To reveal the hidden input tabs:

1. Select the tool icon by clicking on it.
2. Select the Reveal All Tabs option from the Edit pull-down menu. (You can

also use the Ctrl+L accelerator key.)

110 IBM Visualization Data Explorer: User’s Guide

Once the input tabs have been revealed, they can be hidden.

To hide input tabs:

1. Select the tool icon by clicking on it.
2. Select the Hide All Tabs option from the Edit pull-down menu. (You can also

use the Ctrl+H accelerator key.)

Hiding input tabs in this way will cause all tabs that are not connected to another
module to be hidden.

If you wish to hide or reveal individual inputs, use the hide toggle button in the
Configuration dialog box (see “Inputs Section” on page 108).

Using the Compute Module Configuration Dialog Box
The Configuration dialog box for the Compute module, illustrated in Figure 51,
differs in some respects from the other Configuration dialog boxes. It consists of:

Notation See “Notation Field” on page 108 for information.

Name These fields allow you to enter names for the parameters of the
expression. By default, the names are labeled a and b, but you can
change them to a name more relevant to the particular computation.
(You can have fewer or more than two inputs to the Compute module;
see “Adding and Removing Input and Output Tabs” on page 106.)

Source See information on Source fields on page 109.

Expression The expression is entered in this field. See Compute in IBM
Visualization Data Explorer User’s Reference for more information. GUI: Windows

Figure 51. Typical Dialog Box for the Compute Module

Locating Tools: The Find Tool Dialog Box
The Find Tool... dialog box provides you with an easy way to locate tools on the
VPE canvas. You may find this dialog box especially useful if you are editing a
large visual program. The dialog box can also be used to locate transmitters and
receivers by the names you give them. You open this dialog box by selecting the
Find Tool... option from the Edit pull-down menu.

 Chapter 6. Graphical User Interface: Important Windows 111

Figure 52. Find Tool Dialog Box

Figure 52 illustrates the layout of the Find Tool dialog box. The dialog consists of
three parts:

Tool list Displays an alphabetized list of all the tools in the visual program
currently displayed on the VPE canvas. If the visual program
contains transmitters, receivers, probes or picks, then the tool name
(e.g., Transmitter) is displayed instead of the user-supplied name.

Selection Displays the current tool to be located. When the dialog first
appears, this field is blank. To change the selected tool either click
on the desired tool name, or click on the Undo or Redo buttons, or
type the name of the tool, transmitter or receiver directly in the
selection text field. The next time you open the dialog box, the
selection field will display the last selection you made.

Pushbuttons
Find initiates the search for the selected tool. Undo undoes the last
find and updates Selection. Redo redoes an undone find and
updates Selection. Restore restores the canvas to the location at
the time the dialog box was opened. Close closes the dialog box.

To locate a particular tool on the canvas:

1. Click on the tool name.
2. Click on the Find button. This will initiate the search for the first occurrence of

the tool icon on the canvas. When the tool is found, the portion of the canvas
that is displayed may be updated to include the located tool icon.

Note: The located tool icon is selected.

112 IBM Visualization Data Explorer: User’s Guide

If you wish to find another occurrence of the same tool, simply click on Find again.
This can be repeated as many time as you desire. When no more occurrences of
the tool can be found, a message is displayed. If you click on the Find button
again, the search will be reset and the first occurrence of the tool icon will be
located.

If the selected tool is a transmitter, receiver, probe, or pick, occurrences of the tool
will be found independently of the user-supplied name. To locate a transmitter,
receiver, probe, or pick tool by name:

1. Enter the name of the transmitter, receiver, pick or probe in the Selection: text
field.

2. Click on the Find button.

You can initiate the search for a different tool at any point. If you wish to retrace
your steps, the Find dialog provides an Undo button, allowing you to undo up to 10
previous searches. When you click on the Undo pushbutton, the name of the tool
(or transmitter or receiver) that was previously located will appear in the Selection:
text field and the canvas is updated to reflect the location of the tool icon.

The dialog box also provides a Redo button. This enables you to repeat a search
that was undone with the Undo button.

If you wish to return the canvas to its former “state” (i.e., to the set of tool icons it
displayed) prior to the first search, click on Restore button.

Note: Clicking on Undo, Redo, or Restore will deselect the tool that is selected in
the Tools palette.

Customizing the VPE Window

 GUI: Windows

Under the Options menu bar category are selections for customizing the window:

Tool Palettes Use as a toggle by clicking to close the palettes and make the
working area on the canvas larger.

Grid... A dialog box, illustrated in Figure 53 on page 114, appears for you
to enter new values.

 Chapter 6. Graphical User Interface: Important Windows 113

Figure 53. Grid Dialog Box

The Grid... option allows you to specify whether the tools you place on the canvas
automatically align on a grid pattern. You can enable the grid pattern by clicking on
one of the following:

1D Horizontal
1D Vertical
2D

The default is none.

You can control the spacing of the grid pattern by changing the number of vertical
and horizontal pixels. Specify how the tools are to be aligned on the grid by
changing the alignment toggle buttons. For example, the dialog box in Figure 53
specifies grid spacing of 50 pixels, with the center of a tool being placed at a grid
position.

Adding Comments to a Visual Program
For your own documentation purposes, you can add comments to your visual
program. These comments are saved and restored as you save and restore the
program.

To add a comment to the visual program:

1. Select the Comment... option from the Edit pull-down menu. A window opens
with space for a large text field. If a comment has been entered previously, it
is displayed in the text field.

114 IBM Visualization Data Explorer: User’s Guide

2. Enter the desired comment in the text field. Edit the field the same way you
edit any text field. This text field has multiple lines; you can generate line
breaks using the Enter key, or type continuously and have the line breaks
added automatically.

You can view these comments by using the Comment... option of the Edit
pull-down menu in the VPE, or by using the Application Comment option of the
Help pull-down menu in any primary window.

Adding Annotation to a Visual Program
You can also add annotation directly to the canvas. Select the Add Annotation
option from the Edit pull-down menu. A cursor appears. Click on the canvas where
you would like to place annotation. You can modify the text in the annotation by
double-clicking on the annotation. A text-entry dialog appears.

By default, the annotation text is visible on the canvas. You can choose the Hide
Text option on the text-entry dialog, in which case only a “marker” appears on the
canvas.

Creating pages in the VPE
You can structure your visual program to make it more readable by using pages. A
visual program can consist of a number of pages. Each page contains a set of
modules completely disconnected from modules on other pages. Receivers and
transmitters are used to connect modules on different pages.

To use pages, select the Pages... option in the Edit menu of the VPE. A cascade
menu allows you to create an empty page, create a page containing the currently
selected tools, delete the currently displayed page, or configure the page, that is,
change its name or position.

 GUI: Windows

Saving and Restoring a Visual Program
The Save As... and Open... options of the File pull-down menu use similar dialog
boxes. A sample Save As... dialog box is illustrated in Figure 54 on page 116.

 Chapter 6. Graphical User Interface: Important Windows 115

Figure 54. Save As Dialog Box

File Selection Dialog Boxes
The components of the dialog box are:

Filter Specifies the current search argument for files. You can broaden or
narrow the scope of the files displayed in the Files area by
changing the filter string. You can also use the filter to specify a
directory in which to search for the files. For example, a filter of
/abc/\.net displays all of the visual programs in the abc directory.
Change the filter string by clicking on it and typing the new string.
Because Data Explorer appends the .net extension to visual
programs when it saves them, be sure to specify .net at the end of
the filter string. To request smaller groups of files in the current
directory:

1. Type standard file regular expression notation into the File Filter
field. For example, type ab\.net to select all .net files whose
names begin with ab.

2. Click on the Filter button at the bottom of the dialog box, or
press Enter, to update the information shown.

To request files located in a different directory:

1. Use standard file regular expression notation to specify the
directory to search. For example, to select all the .net files in
the /u/xyz directory, you would change the filter string to
/u/xyz/\.net.

2. Click on the Filter button at the bottom of the dialog box to
update the information shown.

116 IBM Visualization Data Explorer: User’s Guide

Directories Displays the directories in the current filter path. When you click on
a directory, its name is displayed in the filter field; pressing the Enter
key then applies that filter. You can traverse through the available
paths by double-clicking on the paths displayed in this portion of the
dialog box. The parent directory of the filter path can be reached by
selecting and applying the directory name that ends with two periods
(..) as a filter. As you change directories this way, the Selection
box and Files section are updated accordingly.

Files Displays the files specified by the File Filter and the directory
shown in the Selection area.

Clicking on a file name once will change the current selection.
Double-clicking on a file name will select that file and proceed with
the Open, Save As, or Load Macro operation.

Selection Displays the current file selection. When the dialog box first
appears, Selection displays the current directory. To change the
current selection, either click on the desired file in the File area or
click on the Selection area and type the desired file name. The
next time you open the dialog box, the Selection field displays the
directory you most recently specified.

Pushbuttons OK approves the file name in the Selection area and proceeds with
the Open, Save As, or Load Macro operation. Filter applies the
filter string specified in the File Filter area. Cancel closes the
dialog box. In the Open... and Load Macro... file selection dialog
boxes, the Comments button lets you view any comments associated
with the selected visual program file.

You can use the scroll bars provided on the right side and the bottom of the
directories and file listings to view file and path names that are either too long or
too numerous to fit in the available space.

 GUI: Windows Saving a Visual Program
When saving a visual program, Data Explorer saves the following files:

� The visual program, with a .net extension
� The configuration settings, with a .cfg extension

Data Explorer automatically appends .net, .cfg to the name you enter in the Save
As... dialog box. However, if you enter your file name with a .net extension, Data
Explorer does not add another .net. If you end the file name with any other
extension, Data Explorer appends the .net extension to the extension you have
specified. For example, a file named abc.xyz would be renamed abc.xyz.net.

An existing file can be saved in the following ways:

� Under the same name, replacing the previous version of the file

� Under a new name or directory, thus creating a new file and preserving the
previous version.

Replacing a Previously Saved File: To save a program that has been named
and saved previously, press Ctrl+S or select the File menu Save option. This
replaces the previous version of the file. A named visual program has its name
displayed in the title bar of the VPE window.

 Chapter 6. Graphical User Interface: Important Windows 117

Saving a Visual Program as a New File: To save program as a new file:

1. Select the Save As... option from the File pull-down menu. The Save As...
dialog box appears (see Figure 54 on page 116). The Selection field displays
the current file path.

2. Click on the Selection field and add the new file name. If you want to save
the file to a different directory, change the file path in the field as well.

3. Press the Enter key or click on OK.

The file is saved and the Save As... dialog box disappears.

Restoring a Previously Created Program
To restore a previously created visual program, select the File menu Open option.

The Open dialog box appears (Figure 55).

Figure 55. Open Dialog Box

It lists all file names in the current directory that are found through the specified file
filter. A file can be selected in one of the following ways:

� Double-click on the file name under the Files heading.

� Click on the file name under the Files heading. The file name appears in the
Selection text box. Click on OK.

� Click in the Selection text box and type the file name, then press Enter or click
on OK.

Note that a complete file name must be specified in the Selection field to read in a
file. A file name may be highlighted under the Files heading without appearing in
the Selection field. To select the file, click on its name under the Files heading.

118 IBM Visualization Data Explorer: User’s Guide

To see any comments that might be associated with a visual program before you
load it, select a file by clicking on its name once or by entering its name in the
Selection text box, then click on the Comments button. If the visual program has
comments associated with it, they are displayed; otherwise, a message appears
telling you that there are no comments.

To see a different list of files, change either the file filter or the file directory (“File
Selection Dialog Boxes” on page 116).

When you open a file, its name is displayed in the title bar of the VPE.

6.3 Using the Colormap Editor
The Colormap Editor is a window that enables you to map colors to specified data
values, the results of which are displayed in the visual image. In addition to color,
the Colormap Editor also controls the mapping of opacity to data, which is the
degree of the image’s transparency in relation to its background. Maximum opacity
shows the color calculated by the hue, saturation, and value fields; minimum
opacity calculates colors so that the image is faintly visible in front of the
background. In summary, the Colormap Editor enables you to:

� Control the range of data values over which the mapping occurs.
� Select the colors that are mapped to the range of values.
� Select the opacities that are mapped to the range of values.

When the Colormap stand-in from the Special category is connected to the Color
tool as shown in the visual program fragment in Figure 56 on page 120, the
combination can be used in place of the AutoColor tool.

 GUI: Windows

 Chapter 6. Graphical User Interface: Important Windows 119

Figure 56. Fragment of Visual Program Using Colormap

To use the Colormap Editor:

1. Double-click on the Colormap tool in the VPE window or select either the Open
Selected Colormap Editors option from the VPE or the Open All Colormap
Editors from the Image window Windows menu.

Note: From the VPE, this option is Open Colormap Editor. For this option to
be available, the Colormap icon must be selected.

2. The Colormap Editor appears. Make necessary adjustments to values, as
described in “Entering Values in a Colormap Editor” on page 121.

Figure 57 on page 121 illustrates the organization of the Colormap Editor window.

120 IBM Visualization Data Explorer: User’s Guide

Figure 57. Colormap Editor

Entering Values in a Colormap Editor
The Colormap Editor specifies color in the hue, saturation, and value (HSV) color
space. Hue refers to the color, for example, blue, red or yellow. The range of the
hue goes from red to green to blue back to red again. Saturation refers to the
purity of the color, and is a value between 0 and 1. A saturation of 1 is pure color;
as saturation decreases, the color becomes more pastel, becoming white when
saturation is 0. Value is the brightness of the color, and is a value between 0 to 1.
A value of 1 is maximum brightness; as value decreases, the color becomes
darker, becoming black when value is 0.

For a thorough understanding of color and the color elements of hue, saturation,
value, and opacity, and other elements of computer graphics that might relate to
the Colormap characteristics, you may want to refer to a computer graphics text.

You can display the Colormap Editor by selecting the Open All Colormap Editors
option on the Windows menu of the Image window or by double-clicking on the
Colormap tool in the VPE window. The Colormap Editor displays default settings
for each of the three HSV color space parameters, as shown in the first three
boxed areas on the right hand side of the window. These three areas, labeled Hue,
Saturation, and Value, each work independently of one another. As you change
their values, the RGB boxed area at the left of the window changes automatically to
correspond.

The Opacity area, located on the far right hand side of the Colormap Editor
window, works in a similar way. As you make changes in the opacity area, the
background bar (located to the right of the RGB bar) reflects your work. It shows
your adjustments to the opacity of the image in relation to the background colors.
By default, the background bar appears as two vertical stripes. However, if it is

 GUI: Windows

 Chapter 6. Graphical User Interface: Important Windows 121

easier for you to judge the colors of the image and background with a
checkerboard-style bar, select the Set Background Style to Checkboard option on
the Options menu (see “Colormap Options Menu” on page 170).

In order to perform certain operations on an area, it must be selected. To select an
area either click on the area’s label or click in the area itself. Only one area can be
selected at a time. When an area is selected, its label is depressed.

The range of data values onto which HSV and opacity values are mapped is
controlled by the min and max fields located near the bottom and top of the
Colormap Editor window. By default, min is set to 0, and max is set to 100. You
can change this range to values more appropriate for your data by clicking on
either field, typing the new value, and pressing the Enter key.

Control points are used to define the value of hue, saturation, value, and opacity for
a given data value. The number and position of control points can be different in
each of the areas. The control points appear as small squares on the vertical scale
marks in each of the four areas.

Adding Control Points
Control points can be added to an area using one of four different methods:

� double-clicking directly in the area,
� using the Add Control Points... dialog box,
� using the Generate Waveforms dialog box, or
� copying and pasting control points from another area.

To add a new control point by double-clicking, place the cursor on the location
where you want the new control point, then double-click. The values between
control points are linearly interpolated by the Colormap. If a new point is added as
the bottom- or top-most point on the line, the new line continues vertically from the
new point to the min or max value, respectively. When a new control point is
added, its data value is displayed by default.

To specify exact values for new control points, click on the Add Control Points...
option on the Edit menu. The Add Control Points dialog box appears, as
illustrated in Figure 58 on page 123. The Add Control Points... dialog allows
you to specify values using two steppers. The “Data value” stepper allows you to
specify a control point value between “min” and “max”. The second stepper
displayed in the dialog will reflect that area (Hue, Saturation, Value, or Opacity) is
currently selected in the Colormap Editor. For example, if Saturation is the
selected area, the dialog will display steppers for “Data value” and “Saturation
value”. The value for Hue, Saturation, Value, or Opacity can be a value between 0
and 1. Use the Add button to add the control points to the selected area in the
Colormap Editor.

122 IBM Visualization Data Explorer: User’s Guide

Figure 58. Colormap's Add Control Points Dialog Box

Selecting Control Points
Control points can be selected by doing one of the following:

� Select a single control point by simply clicking on it once.

� Select a group of control points by clicking on a point in the selected area and
dragging the cursor around the desired points.

� Select all of the control points in an area by using the Select All Control
Points option under the Edit menu.

Note: A control point is selected automatically when it is created. When one
control point is created, all other previously selected points in that area are
automatically deselected.

Deleting Selected Control Points: To delete selected control points, you can do
one of the following:

� Double-click on each of them, one at a time.
� Choose the Edit menu, then click on the Delete Selected Control Points

option.

 GUI: Windows

Moving Control Points
To move a control point, simply drag it to the desired location. Control points
cannot be moved past each other; this facilitates the creation of step functions.
They can be moved as a group by doing the following:

1. Draw a selection box around the points you want in the group.
2. Position the mouse pointer on any one of them and drag it to the desired

location.

All of the control points move together within the constraints of the unselected
points above and below.

The movement of control points can be constrained either horizontally or vertically
by selecting the Constrain Horizontal or Constrain Vertical option from the
Colormap Edit menu (see “Colormap Edit Menu” on page 169). By constraining
horizontally after adding a precise control point, you can move the point to change
the color or opacity mapped to specific value, without changing the value itself.

 Chapter 6. Graphical User Interface: Important Windows 123

 Creating Waveforms
To create waveforms, select the Generate Waveforms option from the Edit
pull-down menu. The Generate Waveforms dialog box appears (Figure 59 on
page 125).

This dialog box allows you to:

� Choose the shape of the waveform from an options box. Waveforms can be
step, square, or sawtooth.

� Choose the range of the waveform from an options box. “Full” creates a
waveform that runs the full length of the selected area. “Selected” creates a
wave that runs the distance between two selected control points in the
specified area.

� Specify the number of steps to be created in the range of the waveform by
using the stepper. The number of steps specified can be between 2 and 100.

Copying and Pasting Control Points
Control points can be copied and pasted from one Colormap area to another, using
the Copy and Paste options of the Edit window.

1. Select the control point or control points you wish to copy.
2. Click on Copy.
3. Select the area to which you wish to copy the control points and then click on

Paste.

Display Control Point Values
The data values of control points are displayed by default. You can control which
data values are displayed, using the Display Control Point Data Value cascade
menu in the Options menu. If “off” is specified, no data values are shown. If
“selected” is chosen, only the data values for the selected control points are shown,
and if “all” is selected, the data values for all control points in the selected area are
shown.

 Axis Display
You can control how the Colormap Editor axis is displayed by using the Options
menu Axis Display... option. You have three choices for the display: Ticks (the
default), Histogram, and Log Histogram. Histogram will cause the histogram of the
data to be displayed. Log Histogram will cause the log of the histogram to be
displayed. If the Colormap Editor is not data-driven, these two options will be
grayed-out. The number of histogram bins can be controlled using the Edit menu
Number of histogram bins... option.

Changing the name of the Colormap Editor
Every Colormap Editor is given the default name of “Colormap Editor” in the box
across the top of the window. If you want to customize the name of the Colormap
Editor, you can do so by clicking on the Options menu Change Colormap Name...
option and entering a new name in the dialog box that appears.

Note: You can also change the name of the Colormap Editor by using the title
parameter in the Colormap tool.

124 IBM Visualization Data Explorer: User’s Guide

Figure 59. Generate Waveforms Dialog Box

Saving and Loading Color Maps
You can save a color map by using the Save As... command from the File
pull-down menu). You can then make the “new” color map part of any visual
program. To access it, use the Open command from the File pull-down menu of
the Colormap Editor menu bar. Note that saved color maps may also be imported
(see Import in IBM Visualization Data Explorer User’s Reference) and passed
directly to the Color module.

Using Data-Driven Colormap Editors
The Colormap Editor may be data-driven, meaning that its attributes (e.g., minimum
and maximum) can be set by connecting the output of a tool to the input of the
Colormap tool in the VPE or by typing a value into the Colormap configuration
dialog box, instead of into the Colormap Editor itself.

If the Colormap Editor is data-driven, the information transmitted via the
connections or set in the Configuration dialog box overrides values set in the
Colormap Editor.

Data-driven Colormap Editors allow you to create color maps that are appropriate
for a variety of input data sets without the need to reset the minimum and
maximum of the color map.

The Colormap tool has a data input to which an input data field may be connected.
In this case, the Colormap Editor is automatically set so that the minimum is the
minimum of the data set and the maximum is the maximum of the data set.
However, if you would like to have more control over the exact values that are
used, the Colormap tool allows you to specify the minimum and maximum directly
through other input tabs that are by default hidden. You can also pass a color map
or opacity map directly to the Colormap tool. The inputs for the Colormap tool are
summarized in the corresponding module description in IBM Visualization Data
Explorer User’s Reference.

Each time an input to a data-driven Colormap Editor is changed (e.g., by importing
a new data set), the interactor is reexecuted, updating its attributes.

 GUI: Windows

 Chapter 6. Graphical User Interface: Important Windows 125

126 IBM Visualization Data Explorer: User’s Guide

Chapter 7. Graphical User Interface: Control Panels,
Interactors, and Macros

7.1 Using Control Panels and Interactors . 128
Building Control Panels . 129
Placing Interactors in a New Control Panel 130
Adding Interactors to an Existing Control Panel 130
Selecting, Moving, and Deleting Interactors 131
Changing the Size of an Interactor . 132
Locating Interactor Stand-ins . 132
Deleting Control Panels . 132
Saving and Restoring Control Panels . 132
Customizing a Control Panel . 133
Control Panels as Dialog Boxes . 138
Control Panel Access, Groups, and Hierarchies 138
Creating, Modifying, and Deleting Control Panel Groups 139
Restricting Control Panel Access . 140
Specifying a Startup Control Panel . 141
Opening Existing Control Panels . 141
Using Interactors . 142
Using Data-Driven Interactors . 147

7.2 Creating and Using Macros . 149
Creating Macros . 149
Loading Macros . 152
Using Macros in a Visual Program . 153
Viewing and Changing Macros . 154

 GUI: Control Panels

 Copyright IBM Corp. 1991-1997 127

7.1 Using Control Panels and Interactors
As you create a visual program, you may have inputs whose values are subject to
frequent change. You can use interactors as an easy method for controlling those
input values. Interactors, which appear only in Control Panels, are the interactive
devices that you use to manipulate inputs to a visual program in order to change
the image that is produced (see “Using Interactors” on page 142 for detailed
descriptions).

Interactor stand-ins are used to indicate which input to a module a given interactor
is to control. While you are building the network in the VPE, you select interactor
stand-ins from the tool palettes and place them on the canvas, as you do with other
tools. Like any tool, the output of an interactor stand-in can be connected to more
than one input. Interactor stand-ins are named, in general, after the type of data
they output:

Integer stand-ins
Represent interactors that output whole numbers.

Scalar stand-ins
Represent interactors that output real numbers.

String stand-ins
Represent interactors that output text strings.

Value stand-ins
Represent interactors that output scalars, vectors, and tensors.

Vector stand-ins
Represent interactors that output vectors.

Integer list stand-ins
Represent interactors that output integer lists.

Scalar list stand-ins
Represent interactors that output scalar lists.

String list stand-ins
Represent interactors that output string lists.

Value list stand-ins
Represent interactors that output value lists (e.g., vector and scalar
lists).

Vector list stand-ins
Represent interactors that output vector lists.

Selector stand-ins
Represent interactors that output values and strings, representing a
choice of one from many.

Selector list stand-ins
Represent interactors that output values and strings, representing a
choice of none, one, or more among many.

FileSelector stand-ins
Represent interactors that output both a fully qualified path name and an
individual file name.

128 IBM Visualization Data Explorer: User’s Guide

Reset stand-ins
Represent interactors that output one value when executed the first time
after being set and another value thereafter.

Toggle stand-ins
Represent interactors that output one of two values.

Data Explorer allows the visual programmer to associate comments with each
Control Panel. To access these comments, use the On Control Panel option of the
Help pull-down menu in the Control Panel about which you want to learn. If no
comments exist for the Control Panel, the On Control Panel option is grayed out.

Building Control Panels
Figure 60 illustrates the organization of a Control Panel.

Figure 60. Control Panel Window GUI: Control Panels

The menu bar, discussed in “Control Panel Menu Bar” on page 162, contains
categories of available menu options. The open area is called the layout area.

You can create any number of Control Panels for one visual program, and you can
also place a single interactor in multiple Control Panels. The configuration of a
Control Panel and the values of the interactors are saved when you save the visual
program. You can also customize Control Panels, and save or restore them
independently of the visual program.

If you are going to control a tool input through an interactor in a Control Panel, then
you must first connect an interactor stand-in to that input in the VPE. Using a
stand-in as a tool input is an alternative to using the module’s Configuration dialog
box every time you want to change the value of the input.

 Chapter 7. Graphical User Interface: Control Panels, Interactors, and Macros 129

Placing Interactors in a New Control Panel
To place interactors in a new Control Panel:

1. On the VPE canvas, select the interactor stand-ins you want in the Control
Panel (other tools can be selected as well).

2. Click on the New Control Panel option of the Windows menu. This causes a
new Control Panel to appear with the selected interactors in the layout area.
Each interactor is labeled with the name of the tool to which its output is
connected, unless its output is connected to more than one tool or not
connected to any tool, in which case the interactor is labeled with the interactor
type (e.g., an integer interactor is labeled with “Integer”). You can also
double-click on one of the selected interactor stand-ins to create a new Control
Panel automatically.

When a new Control Panel is created with the selected interactors, the interactors
are placed in a vertical column in the order in which their stand-ins were placed on
the VPE canvas.

Note: If you select a group that includes tools other than interactor stand-ins, only
the interactors appear in the Control Panel. Therefore, the quickest way to place
all the visual program’s interactors in one Control Panel is to use the Select All
option of the Edit pull-down, then select the New Control Panel option of the
Windows pull-down menu.

Adding Interactors to an Existing Control Panel
To add an interactor to an existing Control Panel:

1. Open the Control Panel.
2. Select the interactor stand-in on the VPE canvas.
3. In the Control Panel window, click on the Add Selected Interactor(s) option

of the Edit menu.
4. Move the cursor to where you want to position the tool in the Control Panel.

Note that the style of the cursor changes when you move it onto the panel.
This is similar to how tool icons are placed on the VPE canvas. Exact
placement of the interactor depends on the grid settings (see “Changing the
Alignment of Interactors in the Control Panel” on page 134).

5. Click the mouse. The interactor appears at the specified location.

Alternatively, you can use “drag and drop” to add an interactor to an existing
Control Panel:

1. Select the interactor stand-in on the VPE canvas.
2. Press the middle mouse button while the cursor is positioned on the stand-in

icon.
3. Drag the cursor to the Control Panel and release the mouse button.
4. The interactor appears at the new location.

You can add more than one interactor at a time to a Control Panel. To do this,
select multiple interactor stand-ins on the VPE canvas, then select Add Selected
Interactor(s) in the desired Control Panel. After doing this, you can use the
mouse to place the interactors in the Control Panel one at a time. They are placed
in the Control Panel in the same order that they were placed initially onto the VPE
canvas. Similarly, you can drag and drop multiple stand-ins from the visual
program to a Control Panel. You can also drag and drop interactors from one
Control Panel to another, as long as both are associated with the same Data

130 IBM Visualization Data Explorer: User’s Guide

Explorer session. For more information on drag and drop, see “Moving and
Copying Tools” on page 105.

You can put the same interactor in more than one Control Panel and in the same
Control Panel more than once. For example, you may want to have one Control
Panel that contains all the interactors for a visual program, and another that
contains only the most frequently used interactors. You can also place multiple
instances of an interactor, with different styles or step size increments, in one
Control Panel. This provides both coarse and fine control over a parameter value.
The user interface ensures that each instance of the interactor is consistent. If you
change a value in one instance, it changes in the others.

Selecting, Moving, and Deleting Interactors
To select an interactor, click on it.

To select a group of interactors, use one of the following methods:

� Hold down the Shift key and click on each interactor in turn.

� Position the mouse pointer on the canvas near a corner of the group and drag
the mouse to draw a selection box around the interactor you want. To select
an interactor, you must completely enclose it in the selection box. As an
interactor is encompassed by the selection box, it is highlighted (indicating that
it is selected).

To deselect an interactor, shift-click on it.

To deselect a group of interactors, use one of these methods:

� Shift-click on each interactor.

� Shift-drag to draw a box around the interactors you want to deselect. As a
selected interactor is encompassed in the box, it becomes unhighlighted.
Release the button to deselect the interactors.

Note: Clicking on an empty part of the layout area deselects all selected
interactors.

To move an interactor:

1. Depress the mouse button on the interactor and drag it to the desired location.
While the mouse button is depressed, an outline of the interactor follows the
motion of the mouse, but the interactor remains in the original location.

2. Release the mouse button. The interactor moves to that location.

To move a group of interactors:

1. Select a group of interactors to be moved.
2. Position the mouse pointer on any member of the group and drag it. An outline

of each interactor appears and follows the mouse.
3. Release the mouse button. The interactors move to the new location.

To delete one or more interactors:

1. Select one or more interactors to delete.
2. Press the Ctrl+Delete accelerator key or click on the Delete option of the Edit

menu.

 GUI: Control Panels

 Chapter 7. Graphical User Interface: Control Panels, Interactors, and Macros 131

If you delete an interactor stand-in from the VPE, the interactor in the Control Panel
is also deleted. However, deleting the interactor in the Control Panel does not
affect what is displayed in the VPE.

Changing the Size of an Interactor
You can change the size of interactors in a Control Panel. Some interactors (e.g.,
Selector) resize automatically, depending on their contents, but others (e.g., String)
do not. You can resize any interactor by pressing the control key (Ctrl) and the left
mouse button.

Locating Interactor Stand-ins
As you are building and modifying visual programs and Control Panels, you may
find it desirable to locate that interactor in a Control Panel that corresponds to a
specific interactor stand-in. To locate an interactor corresponding to a stand-in:

1. Select the desired stand-in in the VPE by clicking on it.
2. Select the Edit menu Show Selected Interactor(s) option in the Control

Panel.

The interactor corresponding to the stand-in will become selected. If no interactors
in the Control Panel are associated with the selected stand-in, the Show Selected
Interactor(s) option will be grayed-out. If you have more than one Control Panel
and you are unsure which of them contains the interactor corresponding to the
stand-in, Step 2 (above) can be applied to each Control Panel. Alternatively, you
can double-click on the stand-in. This will highlight the corresponding interactor.

To locate a stand-in corresponding to an interactor:

1. Select the interactor in a Control Panel by clicking on it.
2. Select the Edit menu Show Selected Tool option in the Control Panel.

The stand-in corresponding to the interactor will be selected. If the stand-in is not
in the currently displayed portion of the visual program, the display will be updated
so the selected stand-in is visible.

Deleting Control Panels
To delete a Control Panel:

1. Delete the interactors in the Control Panel.
2. Click on the Close option of the File menu.

Saving and Restoring Control Panels
The Program Settings... option of the anchor window allows you to save your own
configuration of the Control Panel(s) independently of the rest of the network. You
can save the values of the Control Panels as well as the configuration of all of the
stored Control Panels for the current visual program.

Select the Program Settings...Save As option on the File menu anchor window
bar. You can retrieve Control Panels in the anchor window by using the Program
Settings...Load option.

If you have made changes that you do not want to keep, click on the Program
Settings...Load option of the File menu, and select the file again without saving.
This procedure restores the original configuration.

132 IBM Visualization Data Explorer: User’s Guide

Customizing a Control Panel
This section describes the customization that can be done while building the
Control Panel from the VPE window or while actually viewing the image in the
Image window.

The Control Panel Options menu provides several possibilities for further
customizing the Panel and its interactors, as described in “Control Panel Options
Menu” on page 164.

Changing the Name of a Control Panel
Every Control Panel is given the default name of “Control Panel,” as shown in the
title box across the top of the window. If you want to customize the name in any
particular Control Panel, you can do so by clicking on the Change Control Panel
Name... option on the Options menu and entering a new name in the dialog box
that appears. The new name can contain any number of characters including any
letter, number, symbol, or space that you find on the keyboard.

If you have several Control Panels in your visual program, you should assign
names to them. Data Explorer allows you to open each one individually, by name,
from a Control Panel, Image window, and VPE. To open a Control Panel by name
from any of these three primary windows, do the following:

1. Select the Open Control Panel by Name option from the Windows pull-down
menu in the VPE and Image window, or from the Panels pull-down menu in the
Control Panel. This reveals a cascade menu with a list of the existing Control
Panels.

2. Click on the name of the Control Panel you wish to open. The desired Control
Panel appears.

Adding Comments to a Control Panel
If other people are going to use the visual programs you create, it may be desirable
to document how the interactors are used. You can associate comments with the
Control Panel to describe how it uses the interactors to control input values in the
visual program.

To add comments to a Control Panel:

1. Select the Comment... option from the Edit pull-down menu in the Control
Panel. A dialog box appears, with a large text field in which you can type the
comments. If a comment has been entered previously for this Control Panel, it
is displayed in the text field.

2. Enter your comments in the text field, editing the same way as with any text
field. This text field has multiple lines; you can break the lines using the Enter
key, or allow them to flow automatically as you type.

3. Click on OK to store the comments.

These comments can be viewed, but not edited, by using the On Control Panel
option of the Help pull-down menu in the Control Panel. To edit the comments, you
must use the Comment... option of the Options pull-down menu.

 GUI: Control Panels

 Chapter 7. Graphical User Interface: Control Panels, Interactors, and Macros 133

Changing the Alignment of Interactors in the Control Panel
You can specify whether the interactors you place in the Control Panel
automatically align on a grid pattern. To do this, select Grid... from the Options
pull-down menu. The Grid dialog box appears; it works the same way as it does in
the VPE (see “Customizing the VPE Window” on page 113).

Changing the Interactor Style
A particular default interactor might not be the most desirable style for your
particular application. For some interactor types, you can change this in a Control
Panel at any time by using the following procedure:

1. Select the interactor.
2. Click on the Edit menu Set Style... option.

Note: Be sure to highlight the interactor in the panel before selecting this
option. Otherwise, most of the options will appear grayed-out. If the interactor
is not a type whose style can be changed, the style option will remain
grayed-out. A cascade menu appears for you to choose a new style.

 Resizable Interactors.
You can change the size of the interactors in a Control Panel. Some interactors
(e.g., Selector) resize automatically; others (e.g., String) do not. To resize any
interactor, press the Control key and then drag the border of the interactor.

Changing the Interactor Dimensionality
When vector and vector list interactors are created, by default, their dimensionality
to set to 3. Dimensionality can be changed using the Edit menu Set
Dimensionality option.

Changing the Interactor Layout
When an interactor is created, its layout is vertical, that is, the interactor label is
placed at the top of the interactor. Data Explorer allows you to choose between
this vertical layout and a horizontal layout. The horizontal layout places the label
on the left side of interactor.

To change the layout of the interactor:

1. Select the interactor.
2. Click on the Edit menu Set Layout... option. A cascade menu appears for

you to choose the layout you desire.

Setting Interactor Attributes
You can have several instances of the same interactor. Each instance can be a
different style (stepper, dial, or slider) and can have a different increment value.
However, all instances of an interactor have the same value and the same
minimum and maximum limits. As you change the value or range of one instance,
the other instances of that interactor are automatically updated.

To change the range of values of an interactor, select the interactor, and select the
Set Attributes... option in the Edit menu; or double-click on the interactor in the
Control Panel. The Set Attributes... dialog box (Figure 61 on page 135)
appears.

134 IBM Visualization Data Explorer: User’s Guide

Figure 61. Set Attributes Dialog Box

In this box you can:

� Set maximum and minimum values.

� Change the step increment.

� Change the number of decimal places displayed. (In the case of an integer
interactor, the decimal place field is disabled.)

� Choose whether to update the image continuously as you change the interactor
values, or to update only when the mouse button is released. This applies only
when Execute on Change is enabled.

Note: Many interactor types can also be data-driven, meaning that their
attributes are derived at run time from data in the visual program. See “Using
Data-Driven Interactors” on page 147.

The increment and update options can be applied to the either just the current
instance or to all instances of the interactor. To affect all instances, click on the
option box for the attribute you want to set (increment or update), and select the
Global option from option menu. To affect only the current instance, select the
Local option. Having multiple instances of an interactor with different increments
allows coarse and fine controls. For example, you may want one instance of a
scalar interactor to change by increments of 1.0, another instance by 0.10, and a
third instance by 0.01. Note that the “global” option will not override interactors
which have been explicitly set to “local”.

Vector interactors The Set Attributes... dialog box for vector interactors has an
additional field, Selected Component, included at the top of the box. You can use
this field to set different attributes for the different components of a vector. Do this
by changing the component number with the stepper, and setting the attributes
desired for that component. Repeat this process for all components of the vector.:
To assign common attributes to all components of a vector interactor, set the option
box at the top of the dialog box to All Components. When you do this, the
component stepper is disabled, and any attributes you set are applied to all
components of the vector.

 GUI: Control Panels

 Chapter 7. Graphical User Interface: Control Panels, Interactors, and Macros 135

Setting Selector and SelectorList Interactor Attributes The Set Attributes dialog
box for the Selector and SelectorList interactors (Figure 62 on page 136) differ
from the dialog box for other types of interactors because the behavior of those
interactors is different from other types of interactors.: The Selector and
SelectorList interactors are similar to an option menu, with the current choice(s)
displayed by the interactor. (The Selector offers a one-of-many choice; the
SelectorList, a choice of none, one, or more among many.) Each choice on the
interactor represents a pair of outputs: a value and a string. The string is what
appears as the choice on the interactor. The value can be a string, integer, scalar,
vector or matrix. All the values must be of the same type. By default, the values
are integers. A value is associated with a string using the Set Attributes...
dialog box (Figure 62).

Figure 62. Set Attributes Dialog Box for a Selector Interactor

You can use the Selector or SelectorList interactor for many purposes. A common
use is as a switch control in your visual program. You can use an integer output,
for example, as input to the Switch module to switch easily among several objects.
You can use a string output, for example, as input to the Select or Import modules,
allowing you to easily select different members or data file names. You can also
use a string output as input to the Caption module to annotate the image with the
current selector setting. A discussion on how to use the Selector and SelectorList
interactors can be found in “Selector and SelectorList Interactors” on page 146.

136 IBM Visualization Data Explorer: User’s Guide

The default choices for the Selector and SelectorList interactors are:

 � 1, “on”
 � 0, “off”

To modify the choices, do the following:

1. Open a Control Panel with the selector interactor in it.
2. Open the selector’s Set Attributes... dialog box by double-clicking on the

interactor, or by selecting the interactor and then choosing the Set
Attributes... option in the Edit pull-down menu. A dialog box appears,
similar to the one shown Figure 62 on page 136.

3. The procedure for modifying the choices in this list is similar to that for
modifying the list elements in a list interactor (see “List Interactors” on
page 145). To enter a value in this interactor click on the Value box, enter a
value, and press the Enter key. Then click on the Label box, type a string, and
press the Enter key. For more information about how to modify, add, and
delete elements, see “List Interactors” on page 145.

Note: If you wish to change the type of the values in the value field, for
example, entering values other than integers when initially configuring
the interactor, you must first delete all the entries in the Set
Attributes... dialog before entering new ones. This is required since
the type of all values must be the same.

4. When you are finished modifying the choices, click on OK to apply the changes.

Because the selector interactor yields both the value and the string as outputs, you
can use either output, or both, in a visual program. In the selector stand-in, the
output on the left is the value, while the output on the right represents the string.

Changing the Label on the Interactor: The default label on any unconnected
interactor is the name of the interactor stand-in. If the interactor is connected to
one input, the default name of the interactor is the name of the tool followed by the
input parameter name. If the interactor is connected to more than one input, its
default name is the name of the interactor stand-in. You can change the default
name by doing the following:

1. Click on the Set Interactor Label... option on the Control Panel Edit menu.
2. Enter a new name in the dialog box that appears (Figure 63).

 GUI: Control Panels

Figure 63. Set Interactor Label Dialog Box

 Chapter 7. Graphical User Interface: Control Panels, Interactors, and Macros 137

The new name can contain any number of characters, including any letter, number,
symbol, or space that you find on the keyboard. (If you want a blank label, enter
“\0” for the name.)

The interactor label can have multiple lines: type “\n” where you want a line to
break. For example,

First Line\nSecond Line

Setting Toggle and Reset Attributes: You can set the output of Toggle and
Reset interactors for both their “button down” (set) and “button up” (unset) states..
The output value can be string, integer, scalar, or vector, and the set and unset
outputs do not have to be of the same type.

Control Panels as Dialog Boxes
It is possible to customize Control Panels so that they appear as dialog boxes.
This is intended for building applications to be used in -image or -menubar mode
(i.e., with the Image window or menu bar as the anchor window). The appearance
of the dialog box can be modified with the options Label and Separator under Add
Element in the Edit pull-down menu of the Control Panel. These will add the
specified element to the panel at the point where the mouse cursor is positioned.
Separators can be made vertical using the Set Layout option of the Edit menu.
The size of the separator can be controlled using the mechanism described in
“Resizable Interactors.” on page 134. The color and font of labels can be specified
using the dialog box that appears when the label is created. These can be
changed by selecting the label and choosing Set Attributes from the Edit menu
of the Control Panel.

Once the Control Panel has been created, select Dialog Style in the Options
pull-down menu to create the dialog box. The size of the box will vary to
accommodate the interactors. The empty canvas to the right of the interactors will
be truncated. The placement of the interactors will also change if the box size is
changed, to maintain the same relative positions. In -editor mode, the Close
button returns to an editable Control Panel. In -image or -menubar mode the,
Close button closes the dialog box. To enable a “dialog style” dialog box, save the
visual program with the Control Panel in dialog-style format.

Control Panel Access, Groups, and Hierarchies
You may wish to organize your Control Panels into groups or hierarchies depending
on how the interactors in the Control Panels relate. For example, you may have a
few Control Panels that are tightly related and wish to have them treated as a
group. Data Explorer provides you with the means of placing these Control Panels
into a group so that they can be opened together.

If you have a master Control Panel that should be open before any other controls,
Data Explorer provides you with the capability of restricting access to these Control
Panels from any Data Explorer window except the master Control Panel. Access to
Control Panel groups can be done in a similar fashion. Restricting access to
Control Panels in this way allows you to build Control Panels into hierarchical
structures.

A special type of Control Panel access can be achieved by specifying which
Control Panels are automatically opened when Data Explorer is started with the
Image window or menu bar as the anchor (using the -image or -menubar option).

138 IBM Visualization Data Explorer: User’s Guide

Creating, Modifying, and Deleting Control Panel Groups
The following describes how to create Control Panel groups, restrict access (build
hierarchies), and specify which Control Panels are open at startup.

Control panel groups are created using the Control Panel Group... dialog box.
The dialog box is opened by selecting the Control Panel Groups... option under
the Options menu in the VPE window (Figure 64).

Figure 64. Control Panel Group Dialog Box

The right side of the dialog displays the list of Control Panels. Associated with
each Control Panel is a toggle button to the left and an ellipsis toggle to the right.
The left side of the dialog is a list of the existing groups. This list remains empty
until a group is created. At the bottom of the dialog box is a series of pushbuttons
that are used for creating, modifying, and deleting groups. Clicking on the ellipsis
causes the corresponding Control Panel to be opened (or raised to the front if it is
already opened). Clicking on the ellipsis when it is depressed closes the
corresponding Control Panel and releases the toggle.

To create a Control Panel group:

1. Select the Control Panels that you want in the group by activating the
corresponding left toggle button.

2. Enter the name of the group in the text field next to Group Name Although it is
not required, select a name that is unique compared to the names of other
Control Panels or other groups.

3. Click on the Add pushbutton at the bottom of the dialog box.

The new group is added to the list of groups displayed on the left side of the dialog
box. The group is also added to the list of named Control Panels that is displayed
by the Open Control Panel by Name option in the Windows menu.

 GUI: Control Panels

 Chapter 7. Graphical User Interface: Control Panels, Interactors, and Macros 139

Once a Control Panel group is created, it can be modified. Modifying a Control
Panel group can include changing its name, adding new Control Panels, and
removing Control Panels from the group.

To modify a Control Panel group:

1. Click on the Control Panel group name that is to be modified. This causes the
name of the Control Panel group to be displayed in the group name text field
and causes the toggle buttons of the Control Panels that are members of the
group to be activated. All other Control Panel buttons are released.

2. You may now change the name of the group by editing the text field. Add a
new Control Panel by clicking on its toggle button (this causes the toggle button
to be activated). To remove a Control Panel from the group, click on its toggle
button to release it.

3. Once you have made the desired changes to the Control Panel group, click on
the Modify button at the bottom of the dialog box. This causes the change to
take effect.

To delete a Control Panel group:

1. Select the group by clicking on its name.
2. Click on the Delete button at the bottom of the dialog box.

Restricting Control Panel Access
Access to Control Panels is restricted using the Control Panel Access... dialog
box. This dialog box is opened by selecting the Control Panel Access in the
Option menu of the VPE, Image, or Control Panel windows. The Control Panel
Access dialog is used to restrict certain Control Panel names or Control Panel
groups names from appearing in the Open Control Panel by Name option in the
Windows window.

A Control Panel Access dialog box appears in Figure 65.

Figure 65. Control Panel Access Dialog Box

140 IBM Visualization Data Explorer: User’s Guide

Each Control Panel and Control Panel group is listed. To the left of each is a
toggle button. This toggle button is used to select which Control Panels or groups
can be accessed from the window in which the dialog box was opened. To the
right of the Control Panel names is an ellipsis toggle. (Note that Control Panel
groups do not have the ellipsis.) The ellipsis toggle is used to open (or raise) the
corresponding Control Panel when the button is activated. Once activated,
selecting the button again closes the Control Panel and pops up the button.

To restrict Control Panel access:

1. Click on each Control Panel access toggle button that you wish to exclude so
that those toggle buttons are deactivated. (Initially, all the toggle buttons are
activated.)

2. Once you have indicated which Control Panels and Control Panel groups you
wish to exclude, click on OK.

Selecting the Cancel pushbutton causes the dialog box to be closed and any
changes to be canceled.

Specifying a Startup Control Panel
Data Explorer allows you to choose whether a Control Panel opens automatically
when you start the system with the Image window or menu bar as the anchor
(using the -image or -menubar option). Using this option, you can have the
appropriate Control Panels be immediately available to a user running your visual
program. The Startup Control Panel option in the Options pull-down menu is a
toggle button, and is toggled on by default. If you do not want a particular Control
Panel to open automatically, toggle the option off by clicking on it in that Control
Panel.

The automatic startup feature can be suppressed by using the -suppress startup
flag when you run Data Explorer. See C.2, “Command Line Options” on page 295
for more information.

Opening Existing Control Panels GUI: Control Panels

You can open existing Control Panels associated with a visual program in the
following ways:

� Select the Open All Control Panels option from the Windows menu in the VPE
or Image window, or from the Panels menu in an already open Control Panel.

� Select the Open Control Panel by Name option from the Windows menu in the
VPE or Image window, or from the Panels menu in an already open Control
Panel. From the list of Control Panel names, click on the one you want to
open. (If there are no accessible Control Panels, no names are displayed.)

� Double-click on the interactor stand-in in the VPE whose Control Panel you
want to open. All Control Panels that contain that interactor are opened. If the
selected interactor does not currently have a Control Panel, Data Explorer
creates one for it.

Alternatively, you can select one or more interactor stand-ins in the VPE, then
choose Open Control Panel from the Windows menu in the VPE. All Control
Panels associated with the selected interactors are opened.

When Data Explorer is started with the Image window or menu bar as the anchor
window, some Control Panels may be opened automatically as a visual program is

 Chapter 7. Graphical User Interface: Control Panels, Interactors, and Macros 141

loaded. For visual programs you create, you can decide whether a Control Panel
should open automatically (see “Specifying a Startup Control Panel”).

 Using Interactors
You use interactors to dynamically change the inputs of a tool without making
modifications in the VPE window. Interactors reside in Control Panel windows. As
a visual program is built in the Editor window, the user selects the interactor
stand-ins from the Tool Palettes and places them on the canvas. Then the
corresponding interactors are placed into existing Control Panels or into a new
Control Panel, as described in “Building Control Panels” on page 129. Different
interactor stand-ins can be represented by different interactor styles.

Integer and Scalar Interactors
Integer and scalar interactor stand-ins can be represented by four styles:

 � Stepper
 � Dial
 � Slider
 � Text

For both integer and scalar stand-ins, the stepper is the default. You can change
the style at any time by using the Set Style option from the Edit pull-down menu
on the Control Panel.

Stepper: The Stepper (Figure 66) enables you to enter a value by typing it into
the text field or by using the arrow buttons to increase (right arrow) or decrease
(left arrow) a displayed value. The arrow buttons have a built-in acceleration
function so that the longer you depress a button, the faster the value changes.

Figure 66. Stepper Style

Dial: The Dial (Figure 67 on page 143) has circular shape. You can specify a
value by manipulating the dial indicator, or you can directly enter a value in the field
at the bottom of the interactor.

To manipulate the dial indicator, press and hold the mouse button in the circular
part of the interactor. Turning the dial clockwise increases the interactor value,
while turning it counterclockwise decreases the value. If you move the cursor
within the dial, shading occurs in intervals around the dial indicator. The shading
indicates whether the value change is positive or negative. The shading is light if
you move in a clockwise direction (positive); it is dark (negative) if the movement is

142 IBM Visualization Data Explorer: User’s Guide

counterclockwise. If you click the pointer within the shaded area, the dial indicator
jumps to the mouse pointer location, and the value changes accordingly.

Figure 67. Dial Style

The dial indicator can move clockwise or counterclockwise as many times as
determined by the increment values and minimum and maximum that are set.
These limits can be set in the Set Attributes dialog box, which you can display by
selecting the Set Attributes... option on the Options menu. When the interactor
reaches the limit, it can no longer be turned in that direction.

Slider: The Slider (Figure 68) enables you to enter a value by either moving the
tab on the Slider, typing in a number, or clicking on one of the arrow buttons to
increase (right arrow) or decrease (left arrow) a displayed value.

 GUI: Control Panels

Figure 68. Slider Style

Text: The Text style (Figure 69 on page 144) enables you to simply type in a
value. For more information on how to enter and modify text in a field, see “Editing
Text Fields” on page 64.

 Chapter 7. Graphical User Interface: Control Panels, Interactors, and Macros 143

Figure 69. Text Style

 String Interactor
The string stand-in has one style of interactor, which cannot be changed. This
interactor consists of a text field (Figure 70). (For information on how to enter and
modify text in a text field, see “Editing Text Fields” on page 64.) It enables you to
enter strings by typing directly into the text field, then pressing the Enter key.

Figure 70. String Interactor

 Value Interactor
The value stand-in has one style of interactor that cannot be changed. This
interactor consists of a text field. (For information on how to enter and modify text
in a text field, see “Editing Text Fields” on page 64.) This interactor enables you to
enter scalars, vectors, and lists by typing directly into the text field and pressing the
Enter key. The input into the text field must either begin with a numeric value, or
be enclosed by brackets ([]) for vectors. See “Vectors, Matrices, and Tensors” on
page 195 and “Lists” on page 196 for more information on the syntax of vectors
and lists.

 Vector Interactor
The vector stand-in has two styles of interactor; a stepper style and a text style.
The Vector interactor works like one, two, or three Steppers stacked in a column.
With it, you can specify the components of a vector (e.g, x, y, and z) from top to
bottom. See “Stepper” on page 142 for detailed information on the operation of a
Stepper. You can also change the dimensionality of the interactor using the Edit
menu Set Dimensionality option. The text style vector interactor is similar to that
of the value interactor.

144 IBM Visualization Data Explorer: User’s Guide

 List Interactors
Data Explorer provides six types of list stand-ins and interactors:

 � Integer
 � Scalar
 � Selector
 � Vector
 � String
 � Value

With the exception of Selector, these list interactors can have two styles: list-editor
and text. The text-style list interactor is similar to that of the value interactor.

The list-editor style list interactors consist of the following parts:

 � Title

� List of values

� Pushbuttons for adding and deleting elements

� A single stepper (for integer and scalar lists), three steppers (for a vector list),
or a text field (for string and value lists).

Figure 71 shows an example of a Vector list interactor. For the SelectorList
interactor, see “Selector and SelectorList Interactors” on page 146.

Figure 71. Sample Vector List Interactor

 GUI: Control Panels

 Chapter 7. Graphical User Interface: Control Panels, Interactors, and Macros 145

The top portion of the list interactor shows the current list of values. If the list
exceeds the length of the display area, a vertical scroll bar is provided. If the list
values exceed the width of the display, a horizontal scroll bar is provided.

Modifying an Element in the List: To modify an element, select it by clicking on
it. The stepper or text field is updated to show the element’s values. Use the
stepper or text field to change the values of the elements.

Appending an Element to the List: To append a value to a list, make sure that
no list elements are selected. (An element can be deselected by clicking on it.)
Use the steppers or text field at the bottom of the interactor to specify the value,
then click on the Add button.

Adding an Element to the Middle of the List: To add an element to the middle
of the list, select the element following the position you want the new value to
occupy. Click on the Add button. A copy of the selected element is added to the
list, becomes selected, and the steppers or text field display its current value. Use
the steppers or text field to adjust the value of the new element.

Deleting an Element from the List: To delete an element from the list, select it
by clicking on it, then click on the Delete button. After deleting the item, the next
item in the list becomes selected.

Selector and SelectorList Interactors
The Selector interactor (Figure 72.) can be used as a switch control in a visual
program. It can appear as an option menu (with only the current choice shown) or
as a “radio button” interactor, with all possible choices shown, and only the current
choice highlighted in the radio button next to the label. The SelectorList interactor
always appears as a list of toggle buttons.

Figure 72. Selector Interactor (Radio-button Style)

“Setting Selector and SelectorList Interactor Attributes” on page 136 describes how
to configure the selector interactor for your visual program, and also describes its
various uses.

 FileSelector Interactor
The FileSelector interactor can be used to select a file from within the file system
(Figure 73 on page 147).

146 IBM Visualization Data Explorer: User’s Guide

Figure 73. FileSelector Interactor

The interactor consists of a text field containing a string and a button labelled with
an ellipses. Clicking on the button causes a file selection dialog box to be opened.
The file selection dialog box, illustrated in Figure 74 on page 148, functions in a
similar manner to other file selection dialog boxes (for a description on how to use
file selection dialog boxes see “Saving and Restoring a Visual Program” on
page 115) with the exception of the buttons at the bottom of the dialog box.

OK causes the file name in the Selection area to be set in the text field of the
FileSelector interactor and closes the file selection dialog box. Filter applies the
filter string specified in the Filter area. Close closes the file selection dialog box
without any modification to the FileSelector interactor text field. Apply causes the
file name in the Selection area to be set in the text field of the FileSelector
interactor and leaves the file selection dialog box open.

An alternate way of specifying or modifying a file name in the FileSelector text field
is to directly type into the field. See “Editing Text Fields” on page 64 on how to
enter and modify text in a text field.

The FileSelector interactor produces two outputs: the first output is the contents of
the text field (typically a fully qualified path name set from the file selection dialog
box). The second output is the name of the file as it appears in the directory (that
is, excluding any directory name).

 GUI: Control Panels

 Reset Interactor
The Reset interactor outputs one value for the first execution after its toggle is set,
and a different value thereafter. This interactor appears only as a toggle button.

 Toggle Interactor
The Toggle interactor outputs one of two possible values. The values can be
strings, scalars, vectors, or matrices. This interactor appears only as a toggle
button.

Using Data-Driven Interactors
Most of the interactor types may be data-driven, meaning that their attributes, such
as minimum, maximum, increment, and label, may be set by connecting the output
of a tool to the input of the interactor stand-in in the VPE or by a value typed into
the interactor stand-in’s Configuration dialog box, rather than by using the Set
Attributes dialog box for the interactor.

 Chapter 7. Graphical User Interface: Control Panels, Interactors, and Macros 147

Figure 74. File Selection Dialog Box

If an interactor is data-driven, then the information transmitted via connections or
set in the Configuration dialog box overrides the values set via the Set Attributes
dialog box and causes the corresponding values in the Set Attributes dialog box
to be grayed out.

Data-driven interactors allow you to create visual programs that will work with a
variety of input data sets without the need to reset the interactor attributes to be in
a range appropriate for the data being used. For example, a scalar interactor
controlling an isosurface value can be data-driven by connecting the input data field
to it. The interactor is then automatically set so that its minimum and maximum
span the range of the data.

Data-driven interactors have a data input to which an input data field may be
connected. In this case the interactor automatically chooses the minimum,
maximum, and increment. However, if you would like to have more control over the
exact values that are used, the interactors allow you to specify them directly
through other input tabs that are by default hidden. For example, you may wish to
set the minimum and maximum for an interactor to go from the minimum of the
data values to the midpoint of the data values, rather than to the maximum. In this
case, you can use the “min” and “max” input tabs of the interactor rather than the
“data” tab.

The interactors that can be data-driven are Integer, Scalar, Vector, IntegerList,
ScalarList, VectorList, Selector, SelectorList, and Toggle. In Chapter 2, Functional
Modules in IBM Visualization Data Explorer User’s Reference, the inputs for each
of these interactors are described on the manual page corresponding to that
interactor.

148 IBM Visualization Data Explorer: User’s Guide

Each time an input to a data-driven interactor is changed (for example, by importing
a new data set) the interactor is reexecuted, updating its attributes. If the current
setting of the interactor lies within the new range allowed, the interactor value does
not change. If the current setting is outside the new allowed range, the current
setting is reset to the midpoint of the new minimum and maximum.

7.2 Creating and Using Macros
In general, macros are higher level processing functions that are constructed from
simpler ones. A Data Explorer macro is a sequence of modules collected together
that you can use as a single tool. This is useful if you have a sequence of modules
that provide a function that you need frequently in your visual programs. Macros
can help make your visual programs simpler by combining several tool icons into
one.

 Creating Macros
Macros are themselves visual programs and are created in much the same way.
For example, the macro represented in Figure 75 on page 150 maps data onto a
plane, colors it, and then performs a deformation using the RubberSheet module. It
is constructed by placing the appropriate tool icons on the VPE canvas and
connecting them.

Note: You can also create a macro directly from a visual program in the VPE
window. See “Creating Macros the Easy Way” on page 152.

Macro’s inputs and outputs are represented by the Input and Output tools from the
Special category. A macro has at least one input or output.

Note: Macros cannot include interactors, Sequencers, colormaps, probes, picks,
Display, or Image tools.

Place the Input icon on the canvas and connect it to the appropriate tool icon input
tab. The Input type conforms to that of the input tab to which it is connected. Like
other tools, the Input icon can be connected to multiple input tabs. You can use
the Configuration dialog box for the Input tool (Figure 76 on page 151) to specify:

� Tab position in the macro
� Name of the input
� Default value for the input
� Description of the input
� Whether the input is a required parameter
� Whether the input has a descriptive default value.

Some of these values are, by default, inherited from the input tab to which the
Input tool is connected, but many of them can be changed from the Configuration
dialog box. The fields in the Configuration dialog box for the Input tool are:

Position Specifies the tab position this input occupies on the resulting macro
icon. By default, the tab positions are assigned in the order that
you select the Input icons from the tool palette. For example, the
first icon you drag over to the canvas has position 1, the second
has position 2, and so on.

If an input is deleted from a macro, the position of the other inputs
are not automatically changed. For example, if the input at position
2 of a macro with three inputs is deleted, the other two inputs

 GUI: Control Panels

 Chapter 7. Graphical User Interface: Control Panels, Interactors, and Macros 149

Figure 75. Example of a Macro

remain at positions 1 and 3, with position 2 left empty. Each input
must have a different value for position.

Name Specifies the name of the input. This field must begin with a letter,
and no spaces or special characters, except for the at-symbol (@)
and the underscore character (_), are allowed.

Type Specifies the type of the input. The type conforms to the inputs that
the Input tool is connected to. When connecting it to more than
one input, the Input tool assumes the type of the most restrictive
input to which it is connected. For example, if the Input tool is
connected to two inputs, an object and a scalar, the Input tool type
would become a scalar type.

Default Value Specifies a default value for the input. If the descriptive value
toggle button is activated, the default value field of the macro is
treated as a description, not an actual value. You can use this to
indicate to users of the macro what sort of parameter this input
should be.

Description Provides a short description of the input for your own
documentation purposes. This description is used to generate the
Description window for the resulting macro tool, which you can
access through its Configuration dialog box.

150 IBM Visualization Data Explorer: User’s Guide

Figure 76. Input Configuration Dialog Box

Options The required parameter toggle button, when activated, indicates
that the input is required for the macro. The corresponding input
tab of resulting macro icon is highlighted with a different color. This
option is inherited from the input to which the Input tool is
connected.

The descriptive value toggle button is used with the Default
Value field, as described above.

Specify the macro’s outputs with the Output tool from the Special category. Place
the Output tool icon on the canvas and connect it to the appropriate output tab from
another tool icon. The Output also inherits its type from the output tab to which it is
connected.

The Configuration dialog box for the Output tool is similar to the one for Input, but
the Options toggle buttons and the Default Value field are grayed-out.

Before you can use the macro, you must first name it, save it, and then load it,
making it available in the tool palette.

To name the macro, select the Macro Name option from the Edit pull-down menu.
The Name... dialog box opens. The Name dialog box for the example macro is
illustrated in Figure 77 on page 152. Type a name for the macro in the Name field.
The name must consist only of letters and numbers (no spaces or underscores),
and must begin with a letter. By default, the macro is assigned to the “Macros”
category. You can assign the macro to a different category by typing a new name
in the Category field. The category you choose can be a new or existing category.

 GUI: Control Panels

 Chapter 7. Graphical User Interface: Control Panels, Interactors, and Macros 151

Figure 77. Macro Name Dialog Box

To save the macro after it has been named, use the Save As... option of the File
pull-down menu. Because macro files are saved as visual programs, and therefore
have .net extensions, it may be helpful to organize them in a separate directory to
distinguish them from other visual programs.

Creating Macros the Easy Way

For use in other visual programs or to simplify the “network” that appears in the
VPE canvas, you may want to combine some of the tools of a visual program in
a single macro. This can be done directly and easily in the VPE window if the
selection includes only allowed tools (see preceding Note, page 149).

1. On the VPE canvas, use the left mouse button to create a selection box
around the tool icons to be included in the macro. (It may be necessary to
first reposition some of the icons in order to simplify this “boxing” process.)

Note: Alternatively, you can “shift click” on all the desired tools.

2. Select Create Macro from the Edit pull-down menu.

3. In the Create Macro dialog box that appears, enter the required information:
macro name, category, description, and file or path name. The default
category (“macro”) and description (“new macro”) can be changed or left as
they are.

4. Click on OK. Unless you specified otherwise, the macro will be saved in the
directory from which Data Explorer was started, under the name you
specified (input and output names can be changed by editing this saved file)
using the Visual Program Editor. The new macro will appear in the
category specified, under the name specified in the dialog box.

 Loading Macros
For a macro to be available for use, it must be loaded into the tool palette. To load
a saved macro:

1. Select the Load Macro... option from the File pull-down menu in the VPE. A
file selection dialog box appears. For information about how to use the dialog
box, see “File Selection Dialog Boxes” on page 116.

152 IBM Visualization Data Explorer: User’s Guide

2. Use the dialog box to locate the macro you want to load, and select the desired
file. The macro name appears on the tool palette under its assigned category.

3. You can also load all the macros in a selected directory by clicking on Load All
Macros in the dialog box.

Note: If the macro you loaded has the same name as a macro previously
loaded, the “new” macro replaces the earlier one, whether or not they
were assigned to the same category.

When the new macro is available for use, it is listed in the tool palette as a member
of the category you assigned it to. For example, the MapAndDeform macro would
be listed under the MyMacros category.

When you save a visual program which uses a macro, the path to the macro is
saved in the visual program. When you reload the visual program, the macro will
automatically be loaded for you from the same location, so it will only be necessary
to explicitly load the macro if it has been moved to a new location. You can also
easily see what macros need to be included with a visual program, if for example,
you are sending a visualization program to another user. Simply look at the top of
the .net file for the list of referenced macros.

You can configure Data Explorer to automatically load macros from a specified
directory when you begin the Data Explorer program. To do this, use the -macros
pathlist option when starting Data Explorer, where pathlist specifies one or more
paths where the macros can be found. Alternatively, you can use the DXMACROS
environment variable. For more information on how to do this, see “Using
Environment Variables” on page 59, and C.1, “Environment Variables” on
page 292.

Using Macros in a Visual Program
After you have created and loaded a macro, you can use it the same way you use
other Data Explorer tools. Simply select it from the tool palette and place the icon
on the canvas. Figure 78 on page 154 shows the new icon created for the
MapAndDeform macro.

 GUI: Control Panels

 Chapter 7. Graphical User Interface: Control Panels, Interactors, and Macros 153

Figure 78. MapAndDeform Macro Icon

The macro has a Configuration dialog box describing the input and output
parameters. You can open the dialog box by double-clicking on the macro icon.

Viewing and Changing Macros
After you place a macro in a visual program, it is possible to view the macro
contents and to change some of the tools inside the macro.

To open a macro:

1. Select the macro icon by clicking on it.
2. Select the Open Selected Macro(s) option from the Windows pull-down menu. A

VPE window is opened, with the expanded macro representation.

You can repeat these steps for any macros contained in the newly opened VPE,
until only modules are present in the window.

With the macro opened, you can change the tools inside the macro. However, you
cannot change the number or ordering of inputs or of outputs.

Changing the tool in a macro affects only the current visualization session. If you
want the changes to be permanent, you must save the changed macro, using the
Save or Save As... options. If you want to restore the definition of the macro to
the way it was before you modified it, close the VPE window containing the macro
(without saving) and reload the macro from the main VPE window.

154 IBM Visualization Data Explorer: User’s Guide

Chapter 8. Graphical User Interface: Menus, Options, and the
Message Window

8.1 Using the Primary Window Pull-Down Menus and Options 156
VPE Window Menu Bar . 156
Control Panel Menu Bar . 162
Image Window Menu Bar . 165
Colormap Menu Bar . 168
Menu Bar Menu Bar . 170
Message Window Menu Bar . 172

8.2 Using the Message Window . 174

 GUI: Menus

 Copyright IBM Corp. 1991-1997 155

8.1 Using the Primary Window Pull-Down Menus and Options
This section provides illustrations of the primary windows with explanations of the
pull-down menu options on their menu bars. The discussions include:

� “VPE Window Menu Bar”
� “Control Panel Menu Bar” on page 162
� “Image Window Menu Bar” on page 165
� “Colormap Menu Bar” on page 168
� “Menu Bar Menu Bar” on page 170
� “Message Window Menu Bar” on page 172

The Sequencer and Help primary windows have no pull-down options, so they are
not discussed here. See “Using the Sequencer” on page 68 for information about
the Sequencer, and 5.3, “Using Online Help” on page 65 for information on the
Help window and Help menu options.

VPE Window Menu Bar
The menu bar displays the titles of seven menus:

 � File
 � Edit
 � Execute
 � Windows
 � Connection
 � Options
 � Help.

The following sections describe the menus and their options. For many of the
menu options, one or more tools on the canvas must be selected in order for the
option to be applied. If a menu option is grayed out, it is unavailable and cannot be
selected.

VPE File Menu
The File menu displays the options you can use to create new programs, view or
edit previously created programs, load macros, and save programs. You must
have write permission for a file to save changes directly to that file.

The following options appear on the File menu:

New Initializes the VPE for a new program and clears the canvas. If you
have opened Control Panels and Image windows from the VPE, they
are closed. If a program you changed but did not save currently exists
on the canvas, a dialog box appears so you can save changes. If you
opened the VPE using Open Macro or Open Visual Program Editor, this
option is grayed out.

Open Program...
Opens an existing visual program. A dialog box appears for you to
specify the desired program name. If a program you changed but did
not save currently exists on the canvas, a dialog box appears asking if
you want to save changes. If you opened the VPE using Open Macro,
this option is grayed out. See “File Selection Dialog Boxes” on
page 116 for more information.

156 IBM Visualization Data Explorer: User’s Guide

Save Program
Saves the current visual program, and associated Control Panels. This
option saves the following files: filename.net (for network; that is, a
Data Explorer visual program); filename.cfg (for configuration).

Save Program As...
Saves the current visual program and all associated Control Panels
under a name you type into the dialog box. This option saves the
following files: filename.net (for network; that is, a Data Explorer visual
program), filename.cfg (for configuration).

Program Settings
Brings up a cascade menu with two choices:

� Save As saves the current settings for the visual program (e.g.,
window placement, interaction mode, camera viewpoint, interactor
setup, etc. The settings are saved in a .cfg file.

� Load loads previously saved settings from a .cfg file.

Load Macro...
Loads a macro and makes it available in a tools palette. A file selection
dialog box appears for you to specify the desired macro file name. See
also “Loading Macros” on page 152

Load Module Definition(s)...
Loads a module definition and makes it available in a tool palette. A file
selection dialog box appears for you to specify the desired module file
name. The executable you are using must either include this module, or
this module definition must refer to an outboard or run-time loadable
module. See 9.2, “Loading and Using Outboard and Runtime-Loadable
Modules” on page 183.

Print Program...
Prints or saves to a file a representation of a visual program.

If the Label Set Input toggle button is activated, then any parameter
value(s) set in the configuration module’s Configuration dialog box will
also be printed next to the corresponding tab(s), if scale allows.

Quit or Close
Closes all windows created from the current VPE window. If you have
made changes since the last save, a dialog box appears so you can
save changes. If you opened the VPE from the Image window or with
the Open Macro option, Close appears as an option instead of Quit.
Quit is grayed out if the Execute menu title is highlighted. You must
select the End Execution option in the Execute pull-down menu; or if the
Sequencer is running, you must stop it or pause before quitting.

 GUI: Menus

VPE Edit Menu
The Edit menu lists options for manipulating tools on the canvas.

Configuration...
Displays a Configuration dialog box for setting and changing the values
of the selected tool. See “Entering Values in a Configuration Dialog
Box” on page 107.

Find tool...
Opens a dialog box that lists the tools in the visual network displayed on
the canvas. Double-click on the tool name (or type the name in the

 Chapter 8. Graphical User Interface: Menus, Options, and the Message Window 157

Selection field) to highlight the corresponding icon in the canvas. If the
icon falls outside the canvas, the canvas will automatically scroll to
display the part of the network in which it lies.

See “Locating Tools: The Find Tool Dialog Box” on page 111.

Input/Output Tabs
Brings up a cascade menu with the following options:

Add Input Tab Adds input tabs to the selected tool.

Remove Input Tab Removes input tabs from the selected tool.

Add Output Tab Adds output tabs to the selected tool.

Remove Output Tab
Removes output tabs from the selected tool.

Reveal All Tabs Reveals all tabs of the selected tool.

Hide All Tabs Hides all unconnected tabs of the selected tool.

Assign Get/Set Scope
Brings up a cascade menu with the following options:

Convert All Modules
Brings up a dialog which allows you to
interactively change all of the Get and Set tools in
your visual program to either the Local or Global
variety.

Set Selected Gets/Sets Local
Sets all of the selected Get and Set modules to
the Local variety

Set Selected Gets/Sets Global
Sets all of the selected Get and Set modules to
the Global variety

For additional information on the Get/Set tools see 4.6, “Preserving
Explicit State” on page 45.

Select/Deselect Tools
Brings up a cascade menu with the following options:

Select All Selects all tools on the canvas.

Select Connected Selects all tools connected to the currently
selected tool.

Select Unconnected
Selects all tools not connected to the currently
selected tool.

Select Upward Selects all tools (modules) that directly or
indirectly provide input to the selected tool.

Select Downward Selects all tools (modules) that directly or
indirectly accept output from the currently selected
tool.

Deselect All Deselects all selected tools.

Select Unselected Selects all unselected tools.

158 IBM Visualization Data Explorer: User’s Guide

Output Cacheability
Brings up a cascade menu with the following options:

Optimize Cacheability
Uses a heuristic for automatically selecting the
optimal cache setting for each module in a visual
program.

Set Output Cacheability
Brings up a cascade menu with the following
options:

Cache All Results Caches all results of the
selected tool(s)

Cache Last Result Caches only the last result of
the selected tool(s)

Cache No Results Caches no results.

Show Output Cacheability
Brings up a cascade menu with the following
options:

All Results Highlights all tools for which all
results are cached

Last Result Highlights all tools for which only the
last result is cached

No Results Highlights all tools for which no
results are cached

See “Cache Control: Executive” on page 215.

Delete
Deletes the selected tools and connections to other tools.

Cut
Deletes the selected tools but places them into a buffer so they can be
pasted.

Copy
Copies the selected tools and places them into a buffer so they can be
pasted.

Paste
Pastes the tools from the buffer into a selected location

Add Annotation
Adds annotation text to the canvas (see “Adding Annotation to a Visual
Program” on page 115).

Insert Visual Program
Brings up a file selection dialog box for selecting a visual program. The
selected program will be inserted to the right of all the tools in the
current program.

Create Macro
Creates a macro from the currently selected tools. See “Creating
Macros” on page 149 for more information.

 GUI: Menus

 Chapter 8. Graphical User Interface: Menus, Options, and the Message Window 159

Page
Brings up a cascade menu with the following options:

Create Empty Page creates an empty page
Create with Selected Tools

creates a new page containing the currently
selected tools

Delete deletes the currently displayed page (available
only if there is more than one page)

Configure brings up a dialog which allows you to specify the
name of the page, specify whether or not the
page is included in PostScript output (through the
Print Program option of the File menu), and
specify the tab position of the page.

Macro Name ...
Displays a Configuration dialog box for naming a visual program as a
macro. See “Creating Macros” on page 149 for more information.

Execution Groups...
Displays a dialog box for creating and modifying execution groups. (See
9.1, “Using Distributed Computation” on page 178.)

Comment ...
Displays a dialog box for documenting the function of a visual program
or macro. (See “Adding Comments to a Visual Program” on page 114.)

VPE Execute Menu
You can use the Execute menu to execute the current visual program in various
ways. This menu is the same as the Execute menus in control panels, the Image
window, the Colormap Editor, and the Message window. The options in the
Execute pull-down menu are grayed out when there is no connection to the server.

The Execute menu lists the following options:

Execute Once
Causes the visual program to execute only once, using current values
and configuration settings. Subsequent interactor value changes do not
cause program reevaluation until this command is reexecuted. This
option is grayed out if the Sequencer is running.

Execute on Change
Causes the visual program to execute each time a value or configuration
setting is changed. If you are changing values faster than Data Explorer
can generate images, the program executes as fast as possible, always
using the current settings at the time an execution cycle begins. This
option is grayed out if the Sequencer is running.

End Execution
Causes the visual program to stop executing.

Sequencer
Causes the Sequencer to display. This option is grayed out if there is
no Sequencer in the visual program. While the Sequencer is running,
you can change interactors, and those changes are reflected in
subsequent frames. You can pause the Sequencer on a particular
frame and explore that frame using the Execute Once and Execute on
Change options.

160 IBM Visualization Data Explorer: User’s Guide

“Using the Sequencer” on page 68 discusses the Sequencer in detail.

While the visual program is executing, the Execute label in the menu bar is
highlighted and remains so until execution is completed. If Execute on Change is
selected, the Execute label in the menu bar is highlighted with one color during
execution, and another color the rest of the time.

For more information, see 5.4, “Executing a Visual Program” on page 67.

VPE Windows Menu
The Windows menu allows a user to open and create control panels, open
previously defined macros included in the visual program, open the Image window,
and open the Colormap Editor.

These options appear on the Windows menu:

New Control Panel
Opens a new Control Panel. If you have selected one or more
interactor stand-ins on the VPE canvas, the new Control Panel contains
those interactors. If you have not selected anything on the canvas, the
panel is empty.

Open Selected Control Panel(s)
Opens all Control Panels containing selected (highlighted) interactor
stand-ins. Control Panels that are already open are unaffected.

Open All Control Panels
Opens all the Control Panels for the current visual program.

Open Control Panel by Name
Opens a cascade menu with the names of the existing control panels.
Using this, you can open a particular control panel.

Open Selected Macro(s)
Opens a VPE window containing the expanded representation of the
selected macro icon. From this newly opened window, you can open
the macros contained in the currently opened macro. You can repeat
this operation until only modules are contained in the window. See
“Using Macros in a Visual Program” on page 153 for more information.
This options is grayed out if no macro is selected.

Open Selected Image Window(s)
Opens an Image window for each selected Display or Image tool icon in
the current visual program. This option is grayed out if no Display or
Image icons are selected.

Open Selected Colormap Editor(s)
Opens a window where you can map colors and opacities to data
values, the results of which are displayed in the visual image. This
option is grayed out if a Colormap icon is not selected. Features of the
Colormap Editor allow you to:

� Control the range of data values over which the mapping occurs.

� Select the colors and opacities that are mapped to that range of
values.

The Colormap Editor is discussed in detail in 6.3, “Using the Colormap
Editor” on page 119.

 GUI: Menus

 Chapter 8. Graphical User Interface: Menus, Options, and the Message Window 161

Open Message Window
Opens a window where you can access error and warning messages
and working information about your execution. See 8.2, “Using the
Message Window” on page 174.

VPE Connection Menu
The Connection menu lists the following options:

Start Server Connects the user workstation to the server. For more
information, see 9.3, “Connecting to the Server” on page 183.

Disconnect from Server
Disconnects the user workstation from the server.

Reset Server Flushes the cache, forcing the visual program to reaccess the
data on the server the next time it executes.

See “Resetting the Server” on page 185.

Execution Group Assignment...
Displays a dialog box that allows you to assign execution groups
to specific machine host names.

See “Assigning Execution Groups to Workstations” on page 181.

VPE Options Menu
The Options menu allows you to customize tools and window features.

The Options menu lists the following options:

Tool Palettes
Toggles between displaying the tool palettes and not displaying them.
You can also use the Ctrl+T accelerator key.

Control Panel Access...
Allows you to specify which controls panels and control panel groups
are accessible from the VPE. (See “Control Panel Access, Groups, and
Hierarchies” on page 138.)

Control Panel Groups...
Displays a dialog box that allows you to create, modify and delete
control panel groups. (See “Control Panel Access, Groups, and
Hierarchies” on page 138.)

Grid ... Allows you to select the grid type you want to use on the canvas. A
dialog box displays the choices. See “Customizing the VPE Window” on
page 113 for more information about the Grid... option.

 Help Menu
The options in this menu are discussed in 5.3, “Using Online Help” on page 65.

Control Panel Menu Bar
The Control Panel menu bar (Figure 60 on page 129) displays the names of six
menus you can use within the Control Panel window:

 � File
 � Edit
 � Execute
 � Panels

162 IBM Visualization Data Explorer: User’s Guide

 � Options
 � Help.

The following sections describe the options available on these menus.

Control Panel File Menu
The File menu lists the following options:

Close Closes the current Control Panel.

Close All Control Panels
Closes all control panels.

Control Panel Edit Menu
The Edit menu lists the options you can use to edit and delete interactors in the
Control Panel.

Set Style...
Allows you to change the type of selected interactors on the layout area.
See “Changing the Interactor Style” on page 134.

Set Dimensionality...
Allows you to set the dimensionality of the selected interactors in the
layout area. See “Changing the Interactor Dimensionality” on page 134.

Set Layout...
Allows you to set the layout of the selected interactors in the layout
area. You can specify horizontal or vertical. See “Changing the
Interactor Layout” on page 134.

Set Attributes...
for integer, scalar, and vector values, allows you to specify:

� The minimum and maximum limits for the interactor values

� The number of decimal places displayed for scalar values

� The increment of change in value when using stepper, slider, dial, or
text style interactors

� Whether the specified increment applies to all instances of the
interactor or is local to the current interactor.

Vector interactors allow you to modify these attributes for each
component of the vector. Specify that component to modify by changing
the Component field at the top of the vector interactor’s Set Attributes
dialog box.

You can also open the Set Attributes window by double clicking on the
border area of the interactor inside the Control Panel.

See “Setting Interactor Attributes” on page 134 for detailed information.

Set Label
Allows you to change the title of the interactor. See “Changing the
Label on the Interactor” on page 137.

Delete Deletes selected interactors.

Add Element
Brings up a cascade menu with the choices Label and Separator.
These can then be added to the control panel. See “Control Panels as
Dialog Boxes” on page 138.

 GUI: Menus

 Chapter 8. Graphical User Interface: Menus, Options, and the Message Window 163

Add Selected Interactor(s)
Adds an interactor to the Control Panel for each stand-in that is selected
in the VPE window. See “Adding Interactors to an Existing Control
Panel” on page 130.

Show Selected Interactor(s)
Shows the relation between a selected interactor stand-in in the VPE
and the interactors in the Control Panels. See “Locating Interactor
Stand-ins” on page 132.

Show Selected Tool
Shows the relation between a selected interactor stand-in in a control
panel and interactor stand-ins in the VPE.

Comment...
Opens a dialog box with a text field. You can use this text field to
document the use of the Control Panel. See “Adding Comments to a
Control Panel” on page 133.

Control Panel Execute Menu
This execute menu is identical to that of the Visual Program Editor window. See
“VPE Execute Menu” on page 160 for descriptions of the Execute options. See
also 5.4, “Executing a Visual Program” on page 67.

Control Panel Panels Menu
The Panels menu allows you to open one or all existing control panels.

The Panels menu has the following options:

Open All Control Panels
Opens all existing control panels.

Open Control Panel by Name
Opens a cascade menu, from which you can select the name of the
control panel to open.

Control Panel Options Menu
The Options menu allows you to customize the Control Panel.

The Options menu contains the following options:

Change Control Panel Name...
Displays a dialog box where you can enter a new name for the current
Control Panel.

Control Panel Access...
Allows you to specify which control panels and control panel groups are
accessible from the Control Panel’s Open All Control Panels option
under the Windows menu. See “Restricting Control Panel Access” on
page 140.

Grid... Allows you to select the grid type you want to use on the layout area. A
dialog box displays the choices. See “Customizing the VPE Window” on
page 113 for more information about the Grid... option. See
“Changing the Alignment of Interactors in the Control Panel” on
page 134.

164 IBM Visualization Data Explorer: User’s Guide

Dialog Style
Changes a control panel to “dialog style” (see “Control Panels as Dialog
Boxes” on page 138).

Startup Control Panel
Allows you to specify whether the Control Panel is opened automatically
when Data Explorer is started with the Image window or menu bar as
the anchor window. See “Specifying a Startup Control Panel” on
page 141.

 Help Menu
The options in this menu are discussed in 5.3, “Using Online Help” on page 65.

Image Window Menu Bar
The Image window menu bar displays the names of six menus:

 � File
 � Execute
 � Windows
 � Connection
 � Options
 � Help.

Image Window File Menu
The File menu displays the options you use to open, save, and close visual
programs, and load macros.

The File menu lists the following options:

Open ... Displays a dialog box for specifying a file path name to load a visual
program or, if the path name ends in a directory, to show a list of visual
programs in that directory. To select a program, click on the name.
See “File Selection Dialog Boxes” on page 116 for more information.

Save Program
Saves the current visual program and associated Control Panels. This
option saves the following files: filename.net (for network; that is, a
Data Explorer visual program) and filename.cfg (for configuration). This
option is grayed out unless Data Explorer was started in -image mode.

Save Program As...
Saves the current visual program and all associated Control Panels
under a name you type in the dialog box. This option saves the
following files: filename.net (for network; that is, a Data Explorer visual
program) and filename.cfg (for configuration). This option is grayed out
unless Data Explorer was started in -image mode.

Program Settings
Brings up a cascade menu with two choices:

� Save As saves the current settings for the visual program (e.g.,
window placement, interaction mode, camera viewpoint, interactor
setup, etc. The settings are saved in a .cfg file.

� Load loads previously saved settings from a .cfg file.

 GUI: Menus

 Chapter 8. Graphical User Interface: Menus, Options, and the Message Window 165

Load Macro...
Loads a macro for use, making it available in the tool palette. A file
selection dialog box appears for you to specify the desired macro file
name. See “Loading Macros” on page 152.

Load Module Definition(s)...
Loads a module definition for use, making it available in the tool palette.
A file selection dialog box appears for you to specify the desired module
file name. The executable you are using must also include this module.
See 9.2, “Loading and Using Outboard and Runtime-Loadable Modules”
on page 183.

Save Image...
Displays a dialog box that allows you to save the image and specify the
format, layout, resolution, and page size of the image. See “Saving an
Image” on page 94.

Print Image...
Displays a dialog box that allows you to specify the format, layout,
resolution, and page size of the print. See “Printing an Image” on
page 97.

Close or Quit
Closes the Image window. If you opened the Image window from the
VPE, Close appears is the option. If you started Data Explorer with the
Image window as the anchor, Quit is the option. Quit is grayed out if
the Execute menu title is highlighted. You must select the End
Execution option in the Execute pull-down menu; or if the Sequencer is
running, you must stop it or pause before quitting.

Image Window Execute Menu
This execute menu is identical to that of the Visual Program Editor window. See
“VPE Execute Menu” on page 160 for descriptions of the Execute options. See
also 5.4, “Executing a Visual Program” on page 67.

Image Window Windows Menu
The Windows menu allows you to open a VPE window containing the program
layout or the Control Panels associated with the visual program. All windows
created from this Image window become its children. Quitting the Image window
causes all of its child windows to close. Before the window closes, a dialog box
appears to request confirmation.

The Windows menu offers the following options:

Open Visual Program Editor
Opens a VPE window containing the current visual program. This
option is disabled if you have not loaded a visual program or if the VPE
is the anchor window.

Open All Control Panels
Opens all the Control Panels and macro Control Panels for the current
visual program unless the macro Control Panels are already contained
in another Control Panel. This option is disabled if you have not loaded
a visual program.

166 IBM Visualization Data Explorer: User’s Guide

Open Control Panel by Name
Opens a cascade menu, from which you can select the name of the
control panel to open.

Open All Colormap Editors
Opens all the Colormap Editors for the current visual program.

See 6.3, “Using the Colormap Editor” on page 119.

Open Message Window
Opens the Message Window that displays error and warning information
about your execution.

See 8.2, “Using the Message Window” on page 174.

Image Window Connection Menu
The Connection menu allows you to monitor and control communication functions
between the workstation and the server.

The Connection menu lists the following options:

Start Server... Connects the user workstation to the server. For more
information, see 9.3, “Connecting to the Server” on page 183.

Disconnect from Server
Disconnects the user workstation from the server.

Reset Server Flushes the cache, forcing the visual program to reaccess the data
on the server the next time it executes.

See “Resetting the Server” on page 185.

Execution Group Assignment...
Displays a dialog box that allows you to assign execution groups
to specific machine host names.

See “Assigning Execution Groups to Workstations” on page 181.

Image Window Options Menu
The Options menu provides the following options, which are available only when
the Image tool is used in a visual program:

View Control ...
Opens a dialog box with various view control options. For more
information on this menu option, see “Controlling the Image: View
Control...” on page 74.

Undo Returns to the view of the image that was displayed before the most
recent action (effectively undoing the action). See “Restoring Images”
on page 84.

Redo Restores the view of the image that was displayed before the last Undo
action. See “Restoring Images” on page 84.

Reset Resets the camera to its initial position and direction. See “Restoring
Images” on page 84.

AutoAxes...
Places axes around the image the next time you execute the visual
program. See “AutoAxes...” on page 88.

 GUI: Menus

 Chapter 8. Graphical User Interface: Menus, Options, and the Message Window 167

Set Background Color...
Sets the background color of the image. See “Set Background Color...”
on page 89.

Display Rotation Globe
Enables and disables the wire-framed globe display in many of the view
control options. While the toggle button is pressed in, the globe display
is enabled. See “Rotating the Object” on page 77.

Rendering Options...
Displays a dialog box, allowing you to choose hardware or software
rendering options. See “Rendering Options...” on page 91.

Image Depth
Specifies the number of bits (8, 12 or 24) per color. See “Image Depth”
on page 93.

Throttle...
Specifies the minimum number of seconds to display each frame. See
“Changing the Rate of Frame Display: Throttle...” on page 93.

Change Image Name...
Opens a dialog box in that you can specify a new title for the Image
window. See “Changing the Title of an Image Window” on page 93.

Control Panel Access...
Allows you to specify which control panels and control panel groups are
accessible from the Image Window’s Open All Control Panels option
under the Windows menu. See “Control Panel Access...” on page 94.

 Help Menu
The options in this menu are discussed in 5.3, “Using Online Help” on page 65.

Colormap Menu Bar
The Colormap menu bar displays the name of five menus you can use:

 � File
 � Edit
 � Execute
 � Options
 � Help.

Colormap File Menu
The Colormap File menu provides the following options:

New Replaces Colormap Editor values with default values.

Open... Opens an existing Colormap as specified in the dialog box
that appears. If a current Colormap is on display and
changes have been made, a dialog box appears for
applying wanted changes.

Save As... Saves the current Colormap configuration as the name
typed into the dialog box that appears.

Close Closes the Colormap window.

168 IBM Visualization Data Explorer: User’s Guide

Colormap Edit Menu
The Colormap Edit menu displays the options used to edit the current color map.

The following options appear on the Edit menu:

Undo
Returns an operation to its previous value. Undo retains a stack of 10
operations.

Copy
Copies selected control points to a buffer so that they can be pasted to
another field. See “Copying and Pasting Control Points” on page 124.

Paste
Pastes selected control points to a different field. See “Copying and
Pasting Control Points” on page 124.

Use Application Default
If the Colormap Editor is data-driven, it is still possible to override its
data-driven values by explicitly setting them in the Colormap Editor. The
Use Application Default option restores the data-driven values. It
generates a cascade menu with four suboptions:

Color (HSV) Map If a color map was provided to the color-map tab of the
Colormap tool, and was subsequently modified by the user
(i.e, adding, moving, or deleting control points), selection of
this suboption restores the original color map.

Opacity Map If an opacity map was provided to the opacity tab of the
Colormap tool, and was subsequently modified by the user
(i.e, adding, moving, or deleting control points), selection of
this suboption restores the original opacity map.

Minimum If the minimum was set either by a field passed to the data
tab of the Colormap tool or by a value passed to or set for
the min parameter of Colormap, and was subsequently
modified by the user in the Colormap Editor, this suboption
restores the original value.

Maximum If the maximum was set either by a field passed to the data
tab of the Colormap tool or by a value passed to or set for
the max parameter of Colormap, and was subsequently
modified by the user in the Colormap Editor, this suboption
restores the original value.

All Restores all values to their data-driven settings.
Minimum & Maximum Restores both the minimum and the maximum

values of the original color map.

Add Control Points...
Brings up a dialog box in which you can enter the exact numerical
location for control points to be added as the data value and as the
value for either the Hue, Saturation, Value, or Opacity area of the color
map. See “Adding Control Points” on page 122.

Constrain Horizontal
Constrains the horizontal movement of all control points in all areas of
the Colormap. See “Moving Control Points” on page 123.

Constrain Vertical
Constrains the vertical movement of all control points in all areas of the
color map.

 GUI: Menus

 Chapter 8. Graphical User Interface: Menus, Options, and the Message Window 169

Generate Waveforms
Displays a dialog box that allows you to select from a menu of
waveforms. The waveforms can be applied to the full range of hue,
saturation, value or opacity or to a selected range. See “Creating
Waveforms” on page 124.

Delete Selected Control Points
Deletes selected control points in the selected area of the Colormap.

Select All Control Points
Selects all the control points in the selected area of the Colormap.

Colormap Execute Menu
This execute menu is identical to that of the Visual Program Editor window. See
“VPE Execute Menu” on page 160 for descriptions of the Execute options. See
also 5.4, “Executing a Visual Program” on page 67.

Colormap Options Menu
The Colormap Options menu displays the options used to edit the current color
map.

The Colormap Options menu lists the following options:

Set Background Style to Checkerboard (or Stripes)
Changes the background bar from two vertical stripes to a
checkerboard.

Note: The opacity must be less than 1 to make this pattern visible.

Axis Display
Allows you to choose between Ticks, Histogram, and Log(Histogram).
See “Axis Display” on page 124.

Number of histogram bins...
Allows you to select the number of histogram bins. See “Axis Display”
on page 124.

Display Control Point Data Value
Allows you to specify which control point values will be displayed. See
“Display Control Point Values” on page 124

Change Colormap Name
Sets the name of the Colormap Editor. See “Changing the name of the
Colormap Editor” on page 124.

 Help Menu
The options in this menu are discussed in 5.3, “Using Online Help” on page 65.

Menu Bar Menu Bar
A menu bar is displayed as the anchor window when the user specifies the
-menubar option on the command line to Data Explorer. The menu bar displays the
titles of five menus:

 � File
 � Execute
 � Connection
 � Windows
 � Help.

170 IBM Visualization Data Explorer: User’s Guide

Menu Bar File Menu
The File menu lists the following options:

Open ... Displays a dialog box for specifying a file path name to load a visual
program or, if the path name ends in a directory, to show a list of visual
programs in that directory. To select a program, click on the name.
See “File Selection Dialog Boxes” on page 116 for more information.

Program Settings
Brings up a cascade menu with two choices:

� Save As saves the current settings for the visual program (e.g.,
window placement, interaction mode, camera viewpoint, interactor
setup, etc. The settings are saved in a .cfg file.

� Load loads previously saved settings from a .cfg file.

Load Macro...
Loads a macro for use, making it available in the tool palette. A file
selection dialog box appears for you to specify the desired macro file
name. See “Loading Macros” on page 152.

Load Module Definition(s)...
Loads a module definition for use, making it available in the tool palette.
A file selection dialog box appears for you to specify the desired module
file name. The executable you are using must also include this module.
See 9.2, “Loading and Using Outboard and Runtime-Loadable Modules”
on page 183.

Quit Closes the Menu Bar window

Menu Bar Execute Menu
This execute menu is identical to that of the Visual Program Editor window. See
“VPE Execute Menu” on page 160 for descriptions of the Execute options. See
also 5.4, “Executing a Visual Program” on page 67.

Menu Bar Connection Menu
The Connection menu allows you to monitor and control communication functions
between the workstation and the server.

The Connection menu lists the following options:

Start Server... Connects the user workstation to the server. For more
information, see 9.3, “Connecting to the Server” on page 183.

Disconnect from Server
Disconnects the user workstation from the server.

Reset Server Flushes the cache, forcing the visual program to reaccess the data
on the server the next time it executes.

See “Resetting the Server” on page 185.

Execution Group Assignment...
Displays a dialog box that allows you to assign execution groups
to specific machine host names.

See “Assigning Execution Groups to Workstations” on page 181.

 GUI: Menus

 Chapter 8. Graphical User Interface: Menus, Options, and the Message Window 171

Menu Bar Windows Menu
The Windows menu allows you to open a VPE window containing the program
layout or the Control Panels associated with the visual program. All windows
created from this Image window become its children. Quitting the Image window
causes all of its child windows to close. Before the window closes, a dialog box
appears to request confirmation.

The Windows menu offers the following options:

Open Visual Program Editor
Opens a VPE window containing the current visual program. This
option is disabled if you have not loaded a visual program or if the VPE
is the anchor window.

Open All Control Panels
Opens all the Control Panels and macro Control Panels for the current
visual program unless the macro Control Panels are already contained
in another Control Panel. This option is disabled if you have not loaded
a visual program.

Open Control Panel by Name
Opens a cascade menu, from which you can select the name of the
control panel to open.

Open All Colormap Editors
Opens all the Colormap Editors for the current visual program.

See 6.3, “Using the Colormap Editor” on page 119.

Open Message Window
Opens the Message Window that displays error and warning information
about your execution.

See 8.2, “Using the Message Window” on page 174.

 Help Menu
The options in this menu are discussed in 5.3, “Using Online Help” on page 65.

Message Window Menu Bar
The Message window menu bar displays the names of five menus:

 � File
 � Edit
 � Execute
 � Options
 � Help

Message Window File Menu
The Message window File menu provides the following options:

Clear Clears the Message window.

Log... Allows you to designate a file that will receive all subsequent
messages displayed in the Message window.

Save As... Saves the current contents of the Message window to the file
named in the dialog box that appears.

Close Closes the Message window.

172 IBM Visualization Data Explorer: User’s Guide

Message Window Edit Menu
The Message window Edit menu displays the options used to edit the current
Message window.

The following options appear on the Edit menu:

Next Error
Displays and highlights the next error in the Message window and
highlights the tool that reported it.

Previous Error
Displays and highlights the previous error in the Message window and
highlights the tool that reported it.

Message Window Execute Menu
This execute menu is identical to that of the Visual Program Editor window. See
“VPE Execute Menu” on page 160 for descriptions of the Execute options. See
also 5.4, “Executing a Visual Program” on page 67.

Message Window Commands Menu
The Message window Commands menu displays the options for running specific
commands. The following options appear on the Commands menu:

Debug Tracing
When enabled, displays instance numbers on each tool in a visual
program (to distinguish between multiple instances of a tool) and turns
on tracing in the message window so that as each module is run its
name and instance number is displayed.

Execute Script Command
Allows commands to be issued directly to the server (see “Executive” on
page 126 in IBM Visualization Data Explorer User’s Reference).

Show Memory Use
Displays the current memory usage (see “Usage” on page 362 in IBM
Visualization Data Explorer User’s Reference).

Message Window Options Menu
The Message window Options menu displays the options used to edit the current
Message window.

The Message Window Options menu lists the following options: See also 8.2,
“Using the Message Window” on page 174.

Information Messages
Allows you to either display or not display Information messages.

Warning Messages
Allows you to either display or not display Warning messages.

Error Messages
Allows you to either display or not display Error messages.

 GUI: Menus

 Chapter 8. Graphical User Interface: Menus, Options, and the Message Window 173

8.2 Using the Message Window
The Message window allows you to monitor the progress of a visual program as it
executes. It displays information, warning and error messages from the executive
and output from the Print and Echo modules (if you include them in your visual
program).

You can use the Print module, for example, to print the contents of an object. See
Print in IBM Visualization Data Explorer User’s Reference for more information.
You can use the Echo module to print values or strings. See Echo in IBM
Visualization Data Explorer User’s Reference.

To open the Message window, select the Open Message Window option from the
Windows pull-down menu of either the Image window or the VPE window. The
Message window consists of a text window and various pull-down menus. When a
visual program is running, any information, warnings, or errors sent by the server to
the user interface are shown in the display area. (See also “Error Messages” on
page 71.)

The Message window allows users to save the contents of the text window in two
different ways. The Save As... command of the Message window’s File menu
brings up a File Selection dialog box that allows the user to designate a file to
which the current contents of text window are to be saved. Alternatively, the
Log... command of the File menu brings up a File Selection dialog box that
allows the user to designate a file that will receive all subsequent messages
displayed in the text window.

The Message window provides a number of techniques to help the user locate the
source of errors and warnings. Before each successful execution of the visual
program, the string “Begin execution” is placed in the text window. This allows the
user to more easily determine whether messages are the result of the most recent
execution. Also, any line in the text window can be highlighted before execution.
Highlighted lines remain highlighted over executions, making it easy to locate a
marker indicating the beginning of execution. This technique is particularly useful
when a large amount of information (from Print or Echo) is being displayed in the
Message window. Alternatively, the contents of the text window can be removed
with the Clear option of the Message window’s File menu.

When an error occurs during the execution of a module, the errant module can be
located in the VPE by double-clicking on the line in the Message window’s text
window containing the error message. This selection causes the VPE’s canvas to
shift so that the indicated module is within the canvas’s scrolled viewing area.
Errors for the last execution can also be located using the Next Error and Previous
Error commands of the Message window’s Edit menu. These commands expose
and highlight errors that occurred before or after the currently highlighted error. If
no error is currently highlighted, then Previous Error indicates the last error during
execution and Next Error indicates the first error.

The Message window can be configured so that it does not display certain
message types in the text window (by using the Error Messages, Warning Messages,
and Information Messages buttons in the Message window’s Options pull-down
menu). If a toggle button is activated (colored), the corresponding message type is
displayed. The default behavior is to display all error, warning, and information
messages. You can change this default behavior with the infoEnabled,

174 IBM Visualization Data Explorer: User’s Guide

warningEnabled, and errorEnabled configuration options described in Appendix D,
“User Interface Configuration” on page 299. By default, the Message window pops
up when an error is displayed in the text window and does not automatically pop up
when information or warning messages are displayed. You can also change this
default behavior with the infoOpensMessage, warningOpensMessage, and
errorOpensMessage configuration options described in Appendix D, “User Interface
Configuration” on page 299.

Lastly, when connected to the server, the Execute Script Command... command of
the Message window’s Options menu allows commands to be issued directly to the
server. However, only advanced users should use this feature, as the results of the
commands entered can upset the state of the visual program. This command
brings up the Execute Script Command dialog box, which will accept a single
command in a 1-line text window. Any messages that result from this command
appear in the Message window’s text window.

 GUI: Menus

 Chapter 8. Graphical User Interface: Menus, Options, and the Message Window 175

176 IBM Visualization Data Explorer: User’s Guide

 GUI: For Advanced Users

Chapter 9. Graphical User Interface: For Advanced Users

9.1 Using Distributed Computation . 178
Creating, Modifying, and Deleting Execution Groups 178
Displaying the Tools in an Execution Group 180
Assigning Execution Groups to Workstations 181
Restrictions . 182

9.2 Loading and Using Outboard and Runtime-Loadable Modules 183
9.3 Connecting to the Server . 183

Resetting the Server . 185

 Copyright IBM Corp. 1991-1997 177

9.1 Using Distributed Computation
Data Explorer provides you with the capability to distribute your visual program
across a network of heterogeneous workstations. Distributing your visual program
provides you with parallelism and enhanced resource utilization. Parallelism is
achieved by the simultaneous execution of different portions of the visual program
on each of the workstations. The amount of parallelism that you can achieve is
dependent on the organization of your visual program and the number of available
workstations.

Enhanced resource utilization can be achieved, for example, by assigning
computationally intensive portions of the visual program to the more powerful
workstations. If the data you are visualizing is located on one or more
workstations, then performing some of the data realization and transformation on
the workstations containing the data can reduce data transfer overheads.

Distributed processing in Data Explorer is achieved in two ways: by using
“outboard” modules (user supplied) or by placing groups of tools to “execution
groups”. These two methods can be used independently or in combination. For a
discussion of outboard modules see 10.3, “Inboard, Outboard, and
Runtime-loadable Modules” on page 85 in IBM Visualization Data Explorer
Programmer’s Reference. Execution groups can be created and modified using the
Visual Program Editor or by using attributes if you are using the Data Explorer
scripting language (see Chapter 10, “Data Explorer Scripting Language” on
page 187). Once the execution groups are created, you assign each group to the
workstations over which you wish to distribute the visual program. You can assign
more than one group per workstation. Note that if more than one group is assigned
to a given workstation, the groups will not be run as separate processes.

Data Explorer uses this two part approach of creating groups and assigning groups
to make it easier for you to change the set of workstations over which you distribute
your visual programs. This utility is especially convenient if you share visual
programs with other users.

When you execute a visual program for the first time, the Data Explorer executive
is started on each workstation over which the program is to be distributed. Each
executive “plans” the execution and executes each of the execution groups
assigned to it. This means that not only is the computation and data flow
distributed, but the control flow is distributed as well. One of the workstations is a
“master”—the workstation to which the user interface is connected. The master
creates and initiates the communication between the other workstations and
distributes commands from the user interface to all the workstations. The master
also executes any execution group that is not assigned to another workstation in
addition to its own assigned groups.

Creating, Modifying, and Deleting Execution Groups
By default, all tools in a visual program belong to a single unnamed execution
group. This group is executed on the master workstation. New execution groups
are created and existing execution groups are modified and deleted using the
Execution Group dialog box (Figure 79 on page 179).

The dialog box consist of three parts:

178 IBM Visualization Data Explorer: User’s Guide

 GUI: For Advanced Users

Groups
Displays the current set of execution groups. A group name can be selected
by clicking on the name. It can be deselected by clicking on the name a
second time or by clicking on another name.

Name
A text field for specifying the name of a new execution group, the name of
an execution group to modify or the name of an execution group to be
displayed. If an execution group is selected, the name of the group is
displayed in the Group Name text field.

Pushbuttons
Create causes a new execution group to be created. Add To causes a set
of selected tools to be added to an existing execution group. Remove From
causes a set of selected tools to be removed from an execution group.
Delete causes an existing execution group to be deleted (the tools in the
group are not deleted from the VPE canvas). Show causes all the tools on
the canvas that are members of the selected group to be selected. Close
causes the dialog box to be closed.

Figure 79. Execution Group Dialog Box

 Chapter 9. Graphical User Interface: For Advanced Users 179

Creating an Execution Group
To create an execution group

1. Select the tools on the VPE canvas that are to be placed in a single execution
group. This can be done by a rubber-band selection or using a shift-click
selection or a combination of both.

2. Open the Execution Group... dialog box by selecting the Edit menu Execution
Group... option.

3. In the Group Name text field, enter a name for the execution group.
4. Click on the Create button.

The newly created execution group will appear in the list of execution groups.

Note: If a tool is a member of an existing execution group and it is placed into a
new group, the tool is automatically deleted from the existing group. A
single tool can not be a member of two execution groups.

Modifying Execution Groups
Execution groups can be modified by adding new tools to the group or removing
tools from the group.

To add tools to an Execution Group:

1. Select the tool or tools to be added to a group.
2. Open the Execution Groups... dialog box by selecting the Edit menu

Execution Groups... option.
3. Select the name of the execution group to which the tool(s) are to be added.
4. Click on the Add To button.

To remove tools from an Execution Group:

1. Select the tool or tools to be removed from a group.
2. Open the Execution Groups... dialog box by selecting the Edit menu

Execution Groups... option.
3. Select the name of the execution group from which the tool(s) are to be

removed.
4. Click on the Remove From button.

Deleting an Execution Group
To delete an execution group:

1. Open the Execution Groups... dialog box by selecting the Edit menu
Execution Groups... option.

2. Select the name of the execution group to be deleted.
3. Click on the Delete button.

Displaying the Tools in an Execution Group
Data Explorer provides you with the ability to display all the tools that are members
of an execution group. To display the tools:

1. Open the Execution Groups... dialog box by selecting the Edit menu
Execution Groups... option.

2. Select the name of the execution group to be displayed.
3. Click on the Show button.

180 IBM Visualization Data Explorer: User’s Guide

 GUI: For Advanced Users

The tools that are members of the execution group become selected. If the
selected tools are not part of the currently displayed portion of the visual program,
the VPE will be updated so that the selected tools will be displayed.

Assigning Execution Groups to Workstations
Once you have decomposed your visual program into execution groups, you can
assign these groups to workstations (or hosts). If you do not specify a host for a
particular execution group, the group will be executed on the master. Execution
groups are assigned to a host using the Execution Group Assignment... dialog box
(Figure 80 on page 182).

The dialog box consists of three parts:

Groups and Hosts
Displays the name of an execution group and the host on which the
group is executed. If a host name is not given, then “localhost” is
displayed as the host name.

Host Name A text field for specifying the name of a host on which an execution
group is to be executed.

Pushbuttons
OK causes the assignments of executions groups to host names and
closes the dialog box. Options... opens a dialog box that allows
you to specify startup options (e.g., memory size, or the Data
Explorer executive that will be started on the host.

 Chapter 9. Graphical User Interface: For Advanced Users 181

Figure 80. Execution Group Assignment Dialog Box

To assign an execution group to a workstation:

1. Open the Execution Group Assignment... dialog box by selecting the
Connection menu Execution Group Assignment... option in either the Visual
Program Editor or Image Window.

2. Select the execution group that you wish to assign to a host by clicking on its
name.

3. Enter the host name in the Host Name text field and hit Enter.
4. Click on the Options... button to specify any options for the host, for

example memory size.
5. If there are more groups to assign to hosts repeat Steps 2 through 4,

otherwise, click on OK.

 Restrictions
In general, you can place any tool in any execution group, alter the members of an
execution group at any time, or change the assignment of an execution group from
one host to another at any time. The exceptions to these rules deal with:

� Modules maintaining state (e.g., Streakline)
 � Hardware rendering
� The Pick Module.

Modules that maintain internal state information using private cache objects cannot
be freely moved between hosts. Doing so will cause the module to lose its state

182 IBM Visualization Data Explorer: User’s Guide

 GUI: For Advanced Users

information or obtain old state information. If you do reassign a module maintaining
state to another host, you should reset the server using the Connection menu
Reset Server option to ensure correct execution. The only Data Explorer module
provided with the system that maintains state information is Streakline.

When you are using the hardware rendering option with either the Display or Image
tools, the tool should be assigned to execution on the host physically connected to
your display.

The Pick module must be run on the same host as the Image tool.

9.2 Loading and Using Outboard and Runtime-Loadable Modules
Data Explorer allows the following types of user-written module:

inboard modules are compiled and linked into the Data Explorer Executive.

outboard modules are run as separate processes.

runtime-loadable modules are loaded at runtime and effectively become inboard
modules.

For an outboard or runtime-loadable to be available for use, its module description
file must be loaded into the tool palette. To load a module description file:

1. Select the Load Modules Description(s)... option from the File pull-down
menu in the VPE. A file selection dialog box appears. For information about
how to use the dialog box, see “File Selection Dialog Boxes” on page 116.

2. Use the dialog box to locate the description file for the module you want to
load, and select the desired file. The module name appears on the tool palette
under its assigned category.

Note: If the module description you loaded has the same name as an module
description loaded previously, the more recent description replaces the
less recent, regardless of whether they were assigned to the same
category.

When the new module is available for use, it is listed in the tool palette as a
member of the category you assigned it to.

You can configure Data Explorer to automatically load module descriptions when
you begin the Data Explorer program. To do this, use the -mdf filename option
when starting Data Explorer, where filename specifies one or more module
definitions. Alternatively, you can use the DXMDF environment variable. For more
information on how to do this, see “Using Environment Variables” on page 59 and
C.1, “Environment Variables” on page 292.

9.3 Connecting to the Server
Before you can execute a visual program, your workstation must have established
connection to the server. When you start Data Explorer, the program automatically
starts the server connection, unless you specified that only the user interface was
to be started. However, if for some reason your workstation becomes disconnected
between the time you start Data Explorer and the time you are ready to run a
program, you must reestablish connection with the server.

 Chapter 9. Graphical User Interface: For Advanced Users 183

To start the server connection, select the Start Server... option from the
Connection pull-down menus in the VPE or Image window. A dialog box appears
(Figure 81 on page 184).

Figure 81. Start Server Dialog Box

The Hostname field, by default, contains the name “localhost.” If the DXHOST
environment variable or the -host argument was specified, this field contains the
setting of that variable.

You can change the Hostname field by clicking on it and typing in the new name.
When it displays the desired name, connect to the server by clicking on the Connect
button.

To change the options associated with starting the server, click on the Options...
button. This opens the Options... dialog box (Figure 82). Most of the time, it is
not necessary to use these options.

Figure 82. Start Server Options Dialog Box

The fields of this dialog box are as follows:

184 IBM Visualization Data Explorer: User’s Guide

 GUI: For Advanced Users

Executive
Specifies the name of the executive to run. You might change this field if you
want to run a customized version of Data Explorer.

Working Directory
Specifies the default directory to search for files.

Memory Size
Specifies the amount of memory to use, in megabytes.

Options
Specify options in this text box as you would on the command line when
invoking Data Explorer; that is, each option must be preceded by a dash.

-cache on saves the state of the visual program in memory after an
execution. If the visual program changes, Data Explorer reexecutes only the
portion of the program affected by the change. If -cache off is specified,
Data Explorer must reexecute the entire program for each change. (The
default setting is on.)

-trace on displays each execution step, as it happens, in the Debug window.
It is mainly used for debugging purposes. (The default setting is off.)

-log on saves all communication between the server and the user interface to
a file. (The default setting is off.)

Other options are listed in C.2, “Command Line Options” on page 295.

Connect to already running server radio button
Specifies that the user interface should connect with a server that was started
earlier.

You might use this option to set up a connection to a debugging session for a
customized version of the Data Explorer executable. You can specify the port
number in using the stepper below the button. Note that when this button is
toggled on, all other fields in this dialog box become disabled.

Resetting the Server
If the data set your visual program is using changes (e.g., by being edited) during
your Data Explorer session, and the cache is enabled (the default condition), it may
be necessary to force Data Explorer to reinitialize the server executive to access
the new data. To do this, select the Reset Server option from the Connections
pull-down menu.

The action of resetting the server flushes the executive cache. The next time you
execute the visual program, it executes the entire network, not just the portions
affected by changes internal to the Data Explorer session, and will thus reaccess
the data set.

 Chapter 9. Graphical User Interface: For Advanced Users 185

186 IBM Visualization Data Explorer: User’s Guide

Chapter 10. Data Explorer Scripting Language

10.1 Starting Data Explorer in Script Mode 188
Setting Environment Variables . 189

10.2 Understanding the Script Structure . 189
10.3 Language Delimiters . 191

Commenting Scripts . 191
Naming Variables and Macros . 192
Specifying Values in a Script . 193

10.4 Building Expressions and Statements 197
Arithmetic Expressions . 197
Assignment Statements . 198
Function Call Assignments . 199

10.5 Invoking Data Explorer Macros and Modules 200
Function Call Arguments . 200
Function Call Attributes . 202

10.6 Defining Macros . 204
Macro Header . 204
Macro Body . 205
Macro Examples . 205

10.7 Using Data Explorer Script Commands 206
Sequencer . 206
File Inclusion . 207
Prompts . 207

10.8 Understanding the Script Execution Model 208
Top-level Environment . 208
Function Execution . 208
Macro Expansion . 208
Variables Used in Macros . 208
Assignment and Function Call Semantics 209
Execution Example . 210

10.9 Running .net files in script mode . 210

 Scripting Language

 Copyright IBM Corp. 1991-1997 187

When you create a visual program with the graphical user interface, Data Explorer
saves the program in a .net file. This saved version is actually a set of
scripting-language commands. You do not need to understand the script language
unless you are running Data Explorer in script mode.

In Data Explorer script mode you can also perform tasks that would be awkward
with a visual program (e.g., facilitation of batch processing or debugging of a
module).

10.1 Starting Data Explorer in Script Mode
To run Data Explorer in script mode on a workstation, you must have an account
on that workstation.

To start Data Explorer, follow these steps:

1. Start the X Window System session on the workstation.

 2. Type:

dx -script

When script mode starts, you will see a prompt symbol (dx>), indicating that
Data Explorer is ready to accept input. (If you want to change the prompt
symbol, see 10.7, “Using Data Explorer Script Commands” on page 206.)

(All of the command line options for Data Explorer are described in C.2, “Command
Line Options” on page 295.)

You can type commands directly at the command line, but you may find it more
convenient to create a script and submit it to Data Explorer for execution. To
submit a script, type:

include "scriptname"

at the prompt, where scriptname is the name of the script.

Once you have submitted a script, Data Explorer will process the commands it
contains. Note that none of the direct interactor options are available in script
mode: you must use the Image tool in the graphical user interface to take
advantage of those options.

After the included script has been processed, you can include another script. To
terminate your Data Explorer session, type:

quit

You can also include a script name directly in the script command: add the name of
the script after the -script option. Data Explorer will terminate automatically when
it has executed the script. For example, type:

include "/usr/lpp/dx/samples/scripts/scriptexample"

You will see a sequence of images created with sequencer commands. The
directory /usr/lpp/dx/samples/scripts contains examples for many modules. You
may find it helpful to experiment with them to learn how they function.

Note: To ensure that an example program does not exit before you want it to,
invoke script mode first and then “include” the program. Otherwise, some programs
will execute and disappear so quickly that you won’t be able to identify the image.

188 IBM Visualization Data Explorer: User’s Guide

Setting Environment Variables
There are several environment variables that you may find useful to customize Data
Explorer. These can be set in your login profile.

DXDATA: The DXDATA environment variable specifies a list of directories in
which Data Explorer will search for data files. If the data you wish to import is in
one of the directories specified in the DXDATA environment variable, you do not
need to provide the complete path name to the Import tool. Specify the file name,
and the Import module will look in the specified directories for the data file. The
directories will be searched in the order in which they are listed in the environment
variable; and the first occurrence of the data file will be used.

An example of a statement that sets the DXDATA environment variable (in the C
shell environment) is the following:

setenv DXDATA /usr/mydirectory/mydata:/usr/group/groupdata

where /usr/mydirectory/mydata and /usr/group/groupdata are two directories that
contain data files. Multiple directories can be listed, with each directory name
separated by a colon.

DXHOST: The DXHOST environment variable is the initial machine name of the
server on which to run the executive. If DXHOST is not specified, then a default of
“localhost” is used. See 9.3, “Connecting to the Server” on page 183 for more
information on how to connect to the server. The host name should be the name
that results when you issue the uname -n shell command.

DXINCLUDE: If this environment variable is set, Data Explorer looks for included
scripts first in the current directory, and then in each of the directories specified in
the colon-separated list specified by this variable.

DXMACROS: The DXMACROS environment variable is a list of the directories in
which Data Explorer will look for macros.

 Scripting Language

10.2 Understanding the Script Structure
The following example illustrate some of the more important characteristics of
scripts; a detailed description of each of the elements follows. However, you may
prefer to simply study these examples (and perhaps those in
/usr/lpp/dx/samples/scripts) and then begin writing your own scripts.

Example 1. A Simple Script
In this example, the data found in /usr/...cloudwater is imported and assigned to the
variable data. Then the Isosurface module is called on data (with no other
parameters set) and the result is assigned to iso. A Camera is created using
AutoCamera, and the isosurface is displayed using Display (note that the Image
tool is not available in the scripting language.

data = Import("/usr/lpp/dx/samples/data/cloudwater");

iso = Isosurface(data);

camera = AutoCamera(iso);

Display(iso, camera);

 Chapter 10. Data Explorer Scripting Language 189

Example 2. Setting Parameters
Suppose that in the previous example we wished to set the Isosurface “number” to
3. number is the third parameter to Isosurface. We can replace the second line of
the script in Example 1 with:

iso = Isosurface(data, NULL, 3);

or, alternatively,

iso = Isosurface(data, number=3);

Example 3. Using a Macro
It is possible to create and use macros in the scripting language. A macro is
defined using the keyword “macro,” as in the following example.

macro make_iso(data, isovalue) -> (isosurface)

{

isosurface = Isosurface(data, isovalue);

}

To use the macro, simply call it with the required parameters:

iso1 = make_iso(data, ð.1);

iso2 = make_iso(data, ð.2);

...

A macro can have as many inputs or outputs as desired. Note that it is not
necessary to pass parameters into a macro; the parameters will be found in the
environment outside of the macro if necessary. However, it is necessary to pass
any parameters out of the macro that are intended to be used outside of the macro.

Example 4. Using Route in the Script Language
The Route module is used to choose between different destinations for a particular
object. For example, you could choose to either write an image to a file or display
the image to the screen.

In order to use Route in a script, the Route module and the tools that consume the
outputs of Route must be contained in a macro.

data = Import("/usr/lpp/dx/samples/data/cloudwater");

iso = Isosurface(data);

camera = Autocamera(iso);

image= Render(iso, camera);

macro do_which(which, image)

{

image_to_display, image_to_write = Route(which, image);

 Display(image_to_display);

 WriteImage(image_to_write);

}

do_which(1, image);

The call to the macro do_which with a value of 1 causes the first output branch
(Display) to be executed. WriteImage is not executed. If do_which had been
called with a value of 2, however, then WriteImage (and not Display) would have
been executed.

190 IBM Visualization Data Explorer: User’s Guide

Example 5. Using the Sequencer
You can use the Sequencer in script mode. The special variables you use are:

@startframe the starting integer of the sequence

@endframe the ending integer of the sequence

@deltaframe the increment between frames (default = 1)

@frame contains the sequence number of the current frame.

The keyword “sequence” identifies the macro that will be run each time @frame is
incremented, and the keyword “play” will start the sequence.

The following script will call the macro “doit” with the values 0, 2, 4, 6, 8, 10:

@startframe =ð;

@endframe =1ð;

@deltaframe =2;

macro doit(i)

{

 Echo(i);

}

sequence doit(@frame);

play;

 Scripting Language

 10.3 Language Delimiters
As the preceding examples show, the Data Explorer scripting language resembles
a conventional programming language. Unlike some programming languages that
treat all characters as uppercase, the scripting language is case sensitive. Also,
you can type statements beginning at any column in the line. This allows you to
indent sections to clarify the program structure.

Data Explorer uses the following characters to separate or delimit elements of the
scripting language:

; A semicolon terminates a script statement.

, A comma separates keywords, arguments, lists, or vectors.

[] Brackets enclose vectors, matrices, and tensors.

{ } Braces enclose lists and blocks of statements in macros.

In some places, one or more blank spaces can be used in place of a comma (e.g.,
in separating elements of a vector).

 Commenting Scripts
A comment is defined as two slashes (//) followed by a sequence of characters and
terminated by the end of the line. Comments have no effect on the script other
than to enhance its readability. For example:

// This is a valid comment

 Chapter 10. Data Explorer Scripting Language 191

Naming Variables and Macros
You can name the variables and macros with identifiers. Identifiers are sequences
of characters selected from the following:

� Uppercase alphabetic characters (A-Z)
� Lowercase alphabetic characters (a-z)

 � Numerals (ð-9)
 � Special characters:

 – Underscore (_)
– Single quote (’)
– “At” sign (@)

All identifiers must start with either an alphabetic character, an underscore (_), or
an “at” sign (@). Remember that the Data Explorer script language is case
sensitive: identifiers that differ in the case of at least one character are considered
to be different identifiers. Identifiers are currently limited to a length of 200
characters.

Note: IBM reserves the definition and use of most identifiers that begin with @.
However, there are some built-in @ variables that you can set; these are
discussed in 10.7, “Using Data Explorer Script Commands” on page 206.

The following are valid, unique identifiers:

ComputeSine

Compute_Sine

cðmpute_sine

compute_s1ne

compute_sine'

Identifiers can be used as:

 � variable names
 � function names.

Some identifiers are reserved and cannot be used as a variable or a function name.
Every other identifier can be used both as a variable and as a function name. The
proper use of the identifier is determined by its context.

 Reserved Words
The identifiers in the following list cannot be used for variable or function names.
Those marked with asterisks are reserved for use in future releases.

The identifier NULL is a reserved variable name. It can be used to initialize other
variables or function arguments to have no value assigned to them.

and\
backward
cancel\
else\
false\
for\
forward
if\
include

loop
macro
not\
off
on
palindrome
pause
play
quit

repeat\
or\
sequence
step
stop
then\
true\
until\
while\

192 IBM Visualization Data Explorer: User’s Guide

Specifying Values in a Script
You can specify values in a Data Explorer script as any of the following:

 � String constants
� Scalar numeric constants
� Vectors, matrices, and tensors

 � Lists

You can use any of the formats described in the following sections to specify
values to Data Explorer. To have Data Explorer use a particular format to echo
these values to you, you must first format a string with the Format module (as
described in “Format” on page 146), and then echo the string using the Echo
module.

 Scripting Language

 String Constants
String constants consist of a sequence of any characters delimited by the double
quote character ("). However, a null character in a string delimited by double
quotation marks (for example, “str\0ing”) causes the string to be terminated at the
null character.

String constants have the following characteristics:

� They are delimited with double quotes.

� They can be up to 4000 characters long.

� They may extend over multiple lines, providing that the last character on each
line (except for the last line) is a backslash. For example, the following lines,

a = "123\

456";

are equivalent to

a = "123456";

You can use the following escape sequences to include special characters in a
string constant:

The following are examples of valid string constants:

"" // an empty string

"this a string: ˜!@#$%^&\()_+"

Description Character Escape Sequence

newline NL (LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
formfeed FF \f
audible alert BEL \a
backslash \ \\
question mark ? \?
single quote ' \'
double quote " \"
octal number (ooo) \ooo
hex number (hh) \xhh

 Chapter 10. Data Explorer Scripting Language 193

Scalar Numeric Constants
Scalar numeric constants are sequences of numeric characters that can be used in
two ways:

� As values themselves
� As components of a vector, matrix, tensor, or list.

There are two kinds of scalar numeric constants:

 � Integer
 � Floating point

The following sections describe these constants.

Integer: Integers are the set of counting numbers, or their negatives (e.g., 0, 1,
2,...). By virtue of their 32-bit internal representation, integer values range from
−231 to 231 − 1. They can be prefixed with a minus sign (–) to represent a negative
number. Integers in Data Explorer can be represented in the following base
systems:

Decimal
Decimal notation (base 10) is the most common notation for integers.
Decimal numbers are constructed from sequences of numerals (0, 1, ..., 9).

Octal
When a sequence of numerals begins with the numeral zero (0) followed by a
numeral from 0 to 7, Data Explorer treats it as an octal, or base-8, number. If
a numeric sequence starts with a zero but contains either an 8 or 9, then
these digits are identified as invalid octal digits. They are, however, correctly
converted. For example, although the following octal numbers are both
converted to the decimal number 17, the first produces an error message, but
the second does not:

ð19

ð21

Hexadecimal
Hexadecimal, or base 16, numbers can be constructed from both the
numerals (0 to 9) and the extended hex-digits (a to f, or A to F). To
differentiate them from decimal and octal integers, hexadecimal numbers start
with either the sequence ðx or the sequence ðX (the numeral zero followed
by the letter X).

The following are examples of valid integers, all of which have the value
95 base 10:

 95

ð137

ðx5f

Floating Point: Floating-point numbers are used to represent the set of real
numbers. These numbers encompass both rational and irrational numbers. By
virtue of their 32-bit, IEEE single-precision internal representation, they lie in the
range of ±3.4028 x 1038. The smallest step between values is ±1.1754 x 10−38.
Like integers, floating-point numbers can be prefixed by a minus sign (–) to
represent a negative number. Floating-point numbers can be expressed in two
ways:

194 IBM Visualization Data Explorer: User’s Guide

Standard representation
The standard representation of a floating-point number consists of a decimal
number followed by a decimal point (.), followed by another decimal number.
The first decimal number represents the whole part of the floating-point
number. The second represents the fractional part. Either the first or the
second of the numbers surrounding the decimal point can be omitted, but not
both. If the first is omitted, then the number is purely fractional. If the second
is omitted, then the number does not contain a fractional part. This second
alternative is useful for representing integer values that lie outside of the
range representable by the integer format.

Scientific notation
Scientific notation is an alternative means of representing floating-point
numbers. A number in scientific notation has the form xey (or xEy). The
number x can be either a standard floating-point number or a decimal integer.
The number y must be a decimal integer. It can be prefixed by a minus sign.
This scientific notation is simply shorthand for writing x×10y. The effect of the
decimal value y is to specify the number of places the decimal point should
be shifted to the right, or if y is negative, to the left.

The following are examples of valid floating-point numbers, all of which have the
value 95.0:

95.

95.ð

95eð

9.5E1

95ðe–1

9.5ðe+1

 Scripting Language

Vectors, Matrices, and Tensors
Vectors, matrices, and tensors are higher dimensional mathematical entities that
are used for the representation of specific kinds of data.

Vectors: A vector is a quantity that has both magnitude and direction in
n-dimensional space. It corresponds to a directed line segment whose length
represents the magnitude of the vector and whose orientation corresponds to its
direction.

Vectors are composed of a sequence of scalar values enclosed by square brackets
[]. The scalar values can be separated by commas if desired, although this is not
necessary. If the elements of a vector are not homogeneous, (e.g., if they are both
integer and floating-point elements), then the integer elements are converted to
floating point. The following are all valid vectors:

[ð.ð ð.ð ð.ð] // the origin of a 3-D space

[ð, ð, 1] // an axis in a 3-D coordinate system

[1, 1.ð 1, 1.ð 1] // a vector in a 5-D space

Matrices: Matrices are 2-dimensional collections of scalars. They are used to
represent, among other things, the coefficients of a set of simultaneous equations
or a transformation of a vector.

 Chapter 10. Data Explorer Scripting Language 195

Matrices are constructed from a sequence of vectors enclosed by square brackets.
Each of the vectors contained in a matrix must have the same length as all of the
others. The following are all valid matrices:

[[1 ð ð ð][ð 1 ð ð][ð ð 1 ð][ð ð ð 1]] // a 4x4 identity matrix

[[ð.7ð7 ð.7ð7 ð.ððð] // a 45-degree rotation

 [–ð.7ð7 ð.7ð7 ð.ððð] // about the Z axis

 [ð.ððð ð.ððð 1.ððð]]

[[1 1 1 1][2 2 2 2]] // a 2x4 matrix

Tensors: Tensors are a generalization of the concept of vectors. On one hand,
the elements in a tensor have meanings that are independent of the coordinate
system in which they are embedded. On the other hand, one can associate certain
metrics to them that vary among coordinate systems.

In general, a rank n tensor can be formed by surrounding k rank n−1 tensors with
square brackets. (Note that scalars, vectors, and matrices are rank 0, 1, and 2
tensors, respectively.) As with the matrices, all of the subtensors must have the
same shape.

The following are valid tensors:

[[[[[ðxabcd]]]]] // a 1x1x1x1x1 rank 5 tensor

[[[1 ð ð] // a 3x3x3 rank 3 tensor with

[ð ð ð] // 1’s on the diagonal

[ð ð ð]]

 [[ð ð ð]

[ð 1 ð]

[ð ð ð]]

 [[ð ð ð]

[ð ð ð]

[ð ð 1]]]

 Lists
Unlike the vector, matrix, and tensor constructions that aggregate several lower
dimensional data elements into a single higher one; the list construction collects
several homogeneous elements together so that they can be handled as a single
entity while still retaining their individuality.

Lists are constructed by enclosing a sequence of scalars, vectors, matrices, rank n
tensors, or string constants in braces ({ }). The elements of a list can be
separated by commas, although they need not be. In Data Explorer, a list is the
same as an Array (see “Arrays” on page 28).

The following are examples of valid lists:

196 IBM Visualization Data Explorer: User’s Guide

{1.ð 2.ð 3.ð} // 3 scalar values (for isovalues)

{[ð.ð ð.ð ð.ð], // 4 vector values for use as

 [1.ð ð.ð ð.ð], // streamline seed points

 [2.ð ð.ð ð.ð],

 [3.ð ð.ð ð.ð]}

{“a” “list” “of” “string”

“constants”}

Lists of scalars can also be defined with a convenient shorthand notation that
specifies the following:

� The list’s starting value
� The list’s ending value
� A stepping increment (optional).

If you do not specify a stepping increment, then the default is 1. If any of the
values in the list constructor (including the stepping increment) are specified as
floating point numbers, then the generated list contains floating-point numbers;
otherwise, it contains integers. If the starting value is smaller than the ending
value, the list elements are generated in increasing order; otherwise they are
generated in decreasing order. Also, only the magnitude of the stepping increment
is important, not the sign. A negative stepping increment produces the same
results as a positive one.

The values included in the list are generated by continually adding the value of the
stepping increment to the starting value until the resultant value passes the ending
value. Each of the following produces the same list:

{-1 1 3 5 7 9}

{-1 .. 9 : 2}

{-1 .. 9 : -2}

{-1 .. 1ð : 2}

Note: Spaces are required around the .. operator.

Lists specified using this notation will be represented as a Regular Array of
1-vectors. See “Arrays” on page 28 for a discussion of Array types.

 Scripting Language

10.4 Building Expressions and Statements
You can use the basic elements of the Data Explorer scripting language to build
expressions and assignment statements. Most statements in the scripting language
are assignment statements; however, a special group of script commands with their
options can form a statement. These commands are described in 10.7, “Using
Data Explorer Script Commands” on page 206. The following sections tell you how
to write Data Explorer script expressions and statements.

 Arithmetic Expressions
You can combine scalar values and variables that contain values with the arithmetic
operators listed below to derive new values. Lists of scalars can also be combined
if the lists have the same cardinality (number of elements), or if one of the lists has
just a single element. If the two lists being operated upon have the same number
of elements, then the operator is applied to the corresponding element pairs in
each list to produce a new list of the same cardinality. If one of the lists has just a

 Chapter 10. Data Explorer Scripting Language 197

single element, then the operator is applied, in turn, to each of the elements of the
larger list and to that single element to produce a list whose size is the same as the
larger list.

If both of the elements in an operation are the same type, either integer or floating
point, then the result of the operation is also of the same type. If, however, one of
the elements is an integer and the other is a floating-point value, then the result is
a floating-point value. Given this automatic type conversion, a simple way to
convert an integer value to a floating-point value is to add 0.0 to it.

 Operators
The operators listed in the following table can be used in arithmetic expressions. In
the table, a horizontal line separates each precedence level and the higher levels
are placed above the lower ones. Operators with higher precedence are evaluated
before those with lower precedence. Operators with the same precedence are
evaluated from left to right. Because expressions in parentheses are evaluated
first, you can use parentheses to alter the grouping of operands, thereby changing
the precedence levels.

The following expressions all have the value {2.0 4.0 8.0}:

{3.ð 5.ð 9.ð} − {1.ð 1.ð 1.ð}
{2 4 8} + ð.ð

8 \ {.25 .5ð 1eð}

2 ^ {1.ð 2.ð 3.ð}

({2 2 2} – 1.ð) \ {2 4 8}

Operator Description

– Unary minus

^ Exponentiation
\\ Exponentiation (alternate form)

\ Multiplication
/ Division

+ Addition

– Subtraction

 Assignment Statements
Assignment statements store values in variables. The general form of an
assignment statement is:

left-side[attribute_name:value,...] =
right-side[attribute_name:value,...]

The left-side portion of an assignment statement is a sequence of one or more
identifiers separated by commas. The [attribute_name:value,...] value pair lists
and the brackets are optional, and are discussed in “Function Call Attributes” on
page 202. The equal sign (=) is the assignment operator. It stores the values
specified in the right-side portion of the statement in the variables named by the
identifiers specified in the left-side portion of the statement. You can specify the
values in the right-side portion of the statement as a sequence of expressions or as
the result of a single function call.

198 IBM Visualization Data Explorer: User’s Guide

You can also use either of two additional symbols, <– or :=, as the assignment
operator. An assignment statement is terminated with a semicolon, indicating the
end of the right-side portion of the statement.

The values specified to the right of the assignment operator are assigned to the
identifiers to the left of the assignment operator. If the number of values equals the
number of identifiers, the first value is stored in the first identifier, the second in the
second, the third in the third, and so on. If the number of values is greater than the
number of identifiers, the extra rightmost values are ignored. If the number of
values is less than the number of identifiers, the values are assigned in order to the
leftmost identifiers.

Those identifiers not receiving a value from the right-side list are set to the value
NULL. In addition, if an identifier is repeated in the left-side list, then the right-side
associated with that identifier is the value associated with its rightmost instance.

All identifiers that have not had a value explicitly assigned to them have the value
NULL.

 Scripting Language

 Expression Assignments
The values for the right-side portion of an expression assignment statement consist
of a sequence of constant values, variables, arithmetic expressions, and the value
NULL, separated by commas. The various values need not be of the same kind,
data type, or dimension.

The following examples all assign the value “A string” to the variable a, the value
2.0 to the variable b, and the value NULL to the variable c.

a = "A string"; // These 3 lines

b := 2 \ (2 – 1eð); // constitute a single

c <– NULL; // example.

a, b, c = "A string", 2.ð, NULL;

a, b, c <– "A string", 5 / 2.5, NULL;

a, b, c = "A string", 2.ð;

a, b, c, d = "A string", 2.ð;

a, b, c, a = [[1 ð][ð 1]], 2.ð, NULL, "A string", [1 2 3];

The following example illustrates a simple way to swap values:

a = 2;

b = 4;

c = 6;

d = 8;

e = 1ð;

a, b = b, a; // Values are swapped, so a = 4, b = 2

c, d, e = e, c, d; // c = 1ð, d = 6, e = 8

Function Call Assignments
A function call can refer either to a function defined as a module (a function
compiled into the system), or to a macro (a function defined in the scripting
language itself). The values for the right-side portion of a function call assignment
statement are the values returned by a single function call.

The Statistics function, which is used in the following examples, returns five values:

 Chapter 10. Data Explorer Scripting Language 199

� Mean of the data
� Standard deviation of the data
� Variance of the data
� The minimum value in the data
� The maximum value in the data

In the first example, all of these values are assigned to variables for later use. In
the second example, the minimum and maximum values are ignored. In the third
example, only the minimum and maximum values are being saved for later use.

(1) mean, sd, var, min, max = Statistics (data);

(2) mean, sd, var = Statistics (data);

(3) min, min, min, min, max = Statistics (data);

10.5 Invoking Data Explorer Macros and Modules
This section describes the procedures and features for invoking macros and
modules. It describes function call arguments and attributes.

Function Call Arguments
Data Explorer provides a flexible function-calling mechanism for invoking macros
and modules.

A macro’s definition includes a list of identifiers that are used as its input formal
parameters. The formal parameters act as names and place holders for the
arguments that you supply when the macro is called.

Modules (functions that are compiled into the system) have named formal
parameters. The general form of a function (macro or module) call, whether used
as the right hand side of an assignment statement or on its own, is:

Name (arglist)[attribute_name:value,...]

where Name is the name of the function being called and arglist is a list of
arguments that are separated by commas (the list can be empty). Following the
function may optionally be a list of attribute_name:value pairs enclosed in square
brackets. Each argument’s value can be either a variable identifier, a constant
value, an expression, or the special identifier NULL. Note that nested function calls
cannot be passed as arguments. The argument values can be passed either by
position or by name, as described in the following sections.

 Positional Arguments
The positional argument-passing mechanism is similar to the mechanism found in
most programming languages that use subroutines. Given a function declared with
n input formal parameters, the first n values supplied in the function call are
assigned to the first n formal parameters. If you supply i < n values in the function
call, then only the first i of the function’s formal parameters are assigned the
supplied values.

The missing arguments are assigned the value of NULL.

200 IBM Visualization Data Explorer: User’s Guide

 By-Name Arguments
The “by name” argument-passing mechanism provides more flexibility in specifying
arguments. When an argument is passed by name, the following syntax is used for
the argument:

Fname = value

Fname is an identifier that corresponds to one of the function’s input formal
parameters. Value is one of the types of values that are valid for that argument to
the function. If the function is a macro, the arguments are named in the definition
of the macro in the script. If the function is a module, the argument names are
provided in the description of the module in Chapter 2, “Functional Modules” on
page 15 in IBM Visualization Data Explorer User’s Reference.

Notes:

1. Positional arguments can be supplied only prior to by-name arguments,
because the positional context is lost once a name has been supplied.

2. If an argument is supplied both by position and by name, then the value given
by name takes precedence.

3. If an argument is supplied by name more than once in a given function call,
then the value associated with the last (rightmost) instance of the input formal
parameter is used.

4. A name that does not correspond to one of the function’s formal parameters
and its associated values is considered a semantic error.

 Scripting Language

 Missing Arguments
Any formal parameter of a module that has not had a value passed to it, either by
position or by name, is initialized to the value NULL. If NULL is explicitly passed into
the module, the module may still use the default value, provided it is designed to do
so. The NULL value allows modules to use internal defaults for those values that
are not specified in a function call. The default value must be specified in the code
of the module (see IBM Visualization Data Explorer Programmer’s Reference for
information).

If the function is a macro, a missing argument or an argument explicitly specified as
NULL causes the default value to be used. If no default is specified, the parameter
is set to NULL.

 Example
The module Camera takes the following arguments:

to The position in space to which the camera is pointed. The default is
[0, 0, 0].

from The position in space where the camera is located. The default is [0,
0, 1].

width The width, in user units, of the camera’s view. The default is 100.

resolution The horizontal resolution, in pixels, of the image generated by the
camera. The default is 640.

aspect The aspect ratio of the image generated by the camera (i.e., its height
divided by its width). The default is 0.75.

 Chapter 10. Data Explorer Scripting Language 201

up The direction, in the world coordinate system, that the camera
considers “up” The default is [0, 1, 0].

perspective The projection method. The default is 0, indicating orthographic
projection.

view angle The viewing angle. This applies only in perspective projection, and
the default is 30.

background The image background color. The default is “black”.

The following function calls are all equivalent and construct the default Camera
Object:

c1 = Camera ([ð, ð, ð], [ð, ð, 1], 1ðð, 64ð, ð.75, [ð, 1, ð], ð, "black");

c2 = Camera (NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL);

c3 = Camera ();

c4 = Camera (NULL, NULL, NULL, NULL, NULL, [ð, 1, ð], NULL, NULL);

c5 = Camera (up = [ð, 1, ð]);

c6 = Camera ([5, 5, 5], [ð, ð, 1], NULL, to = [ð, ð, ð]);

c7 = Camera (width = 512, width = 64ð);

Function Call Attributes
Functions may optionally have attributes associated with each invocation of the
functions, and attributes may also be associated with specific outputs of a module.
The Data Explorer scripting language provides three function call attributes:

instance Identifies the instance of a function call. This can help you locate errors
in scripts. To use the instance attribute, follow the function call with
instance and the instance number separated by a colon and enclosed in
brackets. For example:

out1 = Color(surface,"blue") [instance:1];

out2 = Color(surface,"green") [instance:2];

In this example, each instance of the Color module is identified uniquely.
If an error occurs, the error message will report the module name, in this
case Color, plus its instance number. If the instance numbering was not
used, the error message will only report the name of the module.

cache Specifies whether the system writes the outputs of a module into the
cache. The cache is a portion of memory in which results of previously
executed functions are stored. If the inputs to a module do not change
the module will not be invoked in subsequent executions, rather the
module results are retrieved from the cache. If the module results are
not found in the cache, because they were purged in order to make
room for some other result or they were never stored in the cache, the
module will be reexecuted.

The cache attribute can have one of three values:

[cache:0] - Do not cache the module outputs

[cache:1] - Cache all the results of the modules outputs

[cache:2] - Cache only the results of the modules outputs for the
last execution of the module

The cache attribute can be associated with the individual outputs of a
module, with the entire module (affecting all the outputs) or a
combination of both. When output-associated and module-associated

202 IBM Visualization Data Explorer: User’s Guide

cache attributes are used in combination the output-associated attributes
override the effects of the module-associated attributes.

The following two examples illustrate how the cache attribute can be
used. In the first example the attribute is associated with the module.
In the second example the attribute is associated with the module
output. The results of both of these examples are identical since
Isosurface has only one output.

iso = Isosurface(data,value) [cache:ð];

iso [cache:ð] = Isosurface(data,value);

The following examples look similar to those above, but there is a
difference because DivCurl produces two outputs. In the first example,
only the last result of both outputs of DivCurl are stored in the cache. In
the second example the last result of div is placed in the cache, but all
results of curl are placed in the cache.

div, curl = DivCurl(data) [cache:2];

div [cache:2], curl = DivCurl(data);

In the following example all outputs of Statistics are not cached except
for min. Since a cache attribute with a value of 2 was associated with
min, the last result of the min output of Statistics will be stored in the
cache.

mean, sd, var, min [cache:2], max = Statistics(data) [cache:ð]

If no cache attribute is associated with the module, all results of the
outputs will be cached unless an individual output has a cache attribute
associated with it. The following example is similar to the one above,
except that all results of module outputs are cached with the exception
of min. Since a cache attribute with a value of 2 was associated with
min only the last result of the min output of Statistics will be stored in
the cache.

mean, sd, var, min [cache:2], max = Statistics(data);

group Identifies which execution group a module belongs to. This attribute is
used to distribute parts of a visualization across multiple workstations.
This attribute does not bind a module to a specific workstation, but
identifies it to be a member of a group that may be assigned to a
workstation. The assignment of an execution group to a workstation is
done using the Executive module (see “Executive” on page 126 in IBM
Visualization Data Explorer User’s Reference).

The following example illustrates how the group attribute can be used.

cwater = Import("cloudwater");

iso = Isosurface(cwater);

wind = Import("wind") [group: "group2"];

x = Compute("$ð.x",wind) [group: "group2"];

mapped = Map(iso,x);

colored = Color(mapped);

camera = Camera(colored);

Display(colored,camera);

The second Import and the Compute will be placed into an execution
group called “group2”. All other modules will be placed into one default
execution group.

 Scripting Language

 Chapter 10. Data Explorer Scripting Language 203

You can combine the various attributes for a single function call by
separating them with commas, as in the following examples:

wind = Import("wind") [instance:2, group: "group2"];

Colored = Color(iso,"blue") [instance:1, cache:2];

Colored = Color(iso,"green") [instance:2, cache:2, group:"group"];

one shot Represents the script language implementation of the Reset interactor in
the user interface. It sets the value of a variable to one value for the
first execution and a different value (resetvalue) there after. The syntax
is:

x[oneshot:resetvalue] = value;

 10.6 Defining Macros
Macros are higher level processing functions that are constructed from simpler
ones. A macro definition consists of two parts:

� A macro header
� A macro body

The following sections define these parts.

 Macro Header
The macro header defines the macro’s name, its formal parameters, and the names
of values that it returns. The syntax of a macro header is

macro MacroName (inputs) [-> (outputs)]

where:

� The keyword macro indicates that a new macro definition has started.

� MacroName is an identifier of the name that is being associated with the macro
definition.

� The inputs portion of a macro header is a list of identifiers separated by
commas. The list may be empty. These identifiers act as place holders for the
arguments passed to the macro when it is called. If the macro does not require
any arguments, then you can omit the list (but not the enclosing parentheses).
The right-arrow symbol is needed only for macros with outputs. The following
are examples of valid headers for macros without outputs:

macro MyMacro(x,y)

macro MyMacro()

You can also specify default values for the inputs. Consider the following
example:

macro X (a = "no input", b = 4)

{

Echo (a, b);

}

The values of the arguments a and b vary, depending how the macro is
invoked. For example:

204 IBM Visualization Data Explorer: User’s Guide

X(); // a and b are set to the defaults, "no input" and 4

X("new value", 3); // a is set to "new value", b is set to 3

X(NULL); // a and b are set to the defaults, "no input" and 4

X(b = 6); // a gets default of "no input", b is set to 6

See 10.5, “Invoking Data Explorer Macros and Modules” on page 200 for
further explanation of the function-calling mechanism.

� The outputs portion of a macro’s header is a list of identifiers separated by
commas.

These identifiers act as place holders for the values returned by the macro
when the macro is executed. If the macro does not return any values, then the
right-arrow portion, -> (), is not necessary.

 Scripting Language Macro Body
The macro body consists of a sequence of assignment statements and function
calls surrounded by braces { }. The functions referred to in these statements need
not exist when a macro is defined; however, they must exist when it is executed.

Recursive and mutually recursive macro invocations are detected and prevented
from executing. Statements are not guaranteed to execute in the order given in the
macro’s declaration, although some partial ordering is always preserved. Calls to
modules that cause external side effects (such as Display) are always executed in
the order in which they were specified.

 Macro Examples
The first example macro, Sum, takes two arguments. The macro computes and
returns their sum.

macro Sum (arg1, arg2) -> (sum)
{

sum = arg1 + arg2;

}

The second example macro, PrintSum, also takes two arguments and computes
their sum. However, unlike the macro Sum, it does not return the computed value.
Instead, it prints out using the Echo module. This example illustrates a function call
(to Echo) that either does not return a value or whose return values are ignored.

macro PrintSum (arg1, arg2)

{

sum = arg1 + arg2;

 Echo (sum);

}

The third example macro, VectorManip, implements a function to compute the cross
product, dot product, and cosine of two 3-vectors. Note that the returned values do
not need to be computed in the order in which they are declared.

macro VectorManip (vectlist1, vectlist2) -> (dot, cross, cos)
{

cross = Compute("cross($ð, $1)", vectlist1, vectlist2);

dot = Compute("dot($ð, $1)", vectlist1, vectlist2);

cos = Compute("$ð/(mag($1)/mag($2))", dot, vectlist1, vectlist2);

}

 Chapter 10. Data Explorer Scripting Language 205

Note that the Data Explorer script language does not allow nested function calls.
The following example illustrates a syntactically invalid function call:

Echo (Sum (arg1, arg2));

10.7 Using Data Explorer Script Commands
The Data Explorer scripting language provides commands to control the following
aspects of the script environment:

Sequencer
These commands set up and control the Sequencer to display a series
of frames.

File inclusion
This command lets you include other scripts in your program.

Prompts
These commands let you change the appearance of the prompt in the
script environment.

The Data Explorer commands and parameters (if any) are complete scripting
language statements and are usually terminated with a semicolon (;). There are
additional commands that can be executed in the script environment by using the
Executive module. See “Executive” on page 126 in IBM Visualization Data
Explorer User’s Reference.

 Sequencer
Data Explorer provides the following commands that allow you to control the
Sequencer. You can use these commands in a script or by typing them to the
executive.

sequence
The sequence command defines the frames that you specify in the Sequencer
variables using the images supplied by a function call or expression. The
following table defines the Sequencer variables:

In the following example, the sequence command defines eleven frames for the
Sequencer. These frames can be displayed using other Sequencer
commands.
...

@startframe=ð;

@endframe=1ð;

@nextframe=@startframe;

sequence displayobject(2ð\@frame);
...

Name
Read
Only

Read/
Write

Description

@deltaframe √ The number of steps between frames.
@endframe √ The index of the last frame.
@frame √ The index of the current frame.
@nextframe √ The index of the next frame.

@startframe √ The index of the first frame.

206 IBM Visualization Data Explorer: User’s Guide

play
This command begins execution on the frames that have been defined with the
sequence command.

pause
This command stops the sequence at the current frame.

step
This command displays the next frame in the current sequence direction.

stop
This command stops the sequence display and returns to the first frame in the
sequence.

forward
This command sets the forward direction of the sequence.

backward
This command sets the backward direction of the sequence.

'palindrome on' | off
The palindrome command with its parameters sets or unsets the palindrome
mode. When you display frames in the palindrome mode, the current direction
changes at the first or last frame in the series.

'loop on' | off
The loop command with its parameters sets or unsets the loop mode. When
you display frames in the loop mode, the series of frames repeats using the
settings of the forward, backward, and palindrome commands.

 Scripting Language

 File Inclusion
include

The include command is used to interpose the contents of a file into the input
stream being sent to Data Explorer. The file being included can contain both
scripting language constructs and executive commands. This means an
included file can, in turn, include other files.

There is currently a limit of 32 nested levels of inclusion, after which the
include commands are ignored.

To include the file my.script, issue the following command:

include "my.script"

 Prompts
@prompt and @cprompt

There are two at-sign (@) variables that you can set in the executive (or in a
script) to customize the Data Explorer script prompt (@prompt) and continuation
prompt (@cprompt). (The continuation prompt appears when you enter an
incomplete command in the script environment. It indicates that you must
complete the command before it can be acted upon.)

The default prompt and continuation prompt are dx> and > respectively.

The following example show how to set these variables. Note that this
example shows the Data Explorer prompts as they would be displayed in the
executive.

 Chapter 10. Data Explorer Scripting Language 207

dx> @prompt = "DATA EXPLORER>";

DATA EXPLORER> @cprompt = " more>";

If, after these commands, an incomplete statement was entered, Data Explorer
would respond as follows:

DATA EXPLORER> a =

more> 3 \ 5;

10.8 Understanding the Script Execution Model
An execution model is applied to the constructs defined by the Data Explorer
scripting language. This model consists of the environment structure that is
maintained during function calls, the behavior associated with macro expansions,
the scope rules used for locating the value associated with a variable, and the
semantics associated with assignment statements and function calls.

 Top-level Environment
All global assignment statements and initial function invocations occur in the
top-level environment. This environment is special in that all assignment
statements and function invocations initiated in this environment are always
executed.

 Function Execution
When either a macro or a module function is executed, a new dynamically scoped
environment specific to that function call is created. Variables that correspond to
the function’s input and output formal parameters are created in this new
environment. The variables corresponding to the output formal parameters are
initialized to NULL. Those variables corresponding to the input formal parameters
are initialized in the manner described in the preceding section. If an input and an
output formal parameter both have the same name, then they share a single
parameter and are initialized to the value passed as input when the function is
called.

 Macro Expansion
When the function being called is a macro, the macro is effectively expanded in-line
after first constructing the necessary environment for its input and output
parameters. This guarantees that the partial orderings defined by macros are
maintained.

Variables Used in Macros
The Data Explorer allows you to use variables on both the left and right sides of a
function assignment; that is, as both left-side and right-side.

Variables as Left-Side Values
All assignments in a macro’s environment affect variables that are local to the
macro. These variables, if they do not already exist, are created in the macro’s
environment when they are first used on the left-hand side of an assignment
expression. Thus, a variable outside of a macro cannot be modified with that
macro.

208 IBM Visualization Data Explorer: User’s Guide

The only way to make such a change is to propagate a new value out of the macro
using its output formal parameters, and to use this returned value in an assignment
statement in the enclosing environment.

Given these semantics, it is possible for a local version of a variable to come into
existence and obscure a more global version of a variable, midway through a
macro’s execution.

 Scripting Language

Variables as Right-Side Values
The values of variables used in a macro in expressions and as function arguments
are found according to standard dynamic scoping rules. If the variable exists in the
macro’s local environment, then its value is used. Otherwise, the enclosing
environments, all the way to the top-level environment, are searched to locate the
variable. The value used is the value associated with the first instance of the
variable. If the variable is not found in any environment, then the value NULL is
used.

 Example
The following is a sample script that illustrates how variables are treated in macros:

// This is a complete sample script

macro add(a, b) -> (sum)

{

c = a + b; // c is created and given the value a+b

c = a + x; // x is found in the top level, and used in this expression

c = a + z; // z does not exist anywhere; NULL is used

sum = a + b; // sum is created local to the macro, separate from the

// version of sum in the top level

}

x = 7;

sum = 1ð;

total = add(4, 4); // total = 8, sum stays at 1ð

Assignment and Function Call Semantics
As stated earlier, all assignment statements and function calls initiated at the
top-level environment are executed. In a macro, the process is slightly different.
When a macro is expanded, its statements are first analyzed to determine whether
they need to be executed. The rule of thumb for determining if a statement will be
executed is that it must contribute, either directly or indirectly, to:

� One of the values passed into a module that has a side effect
� A value assigned to a top-level variable, using a macro’s formal output

parameters.

There are two kinds of “side effect” modules:

� Those that do not produce any Object outputs. Display and WriteImage are
examples of this kind of module because they modify things such as monitors
and files, which are outside of the language’s domain and control. This type of
module is represented in the graphical user interface as having no output tabs.

� Those that make use of internal executive features. These modules are
specially marked in their .mdf (module description) files as ones that can cause
side effects.

 Chapter 10. Data Explorer Scripting Language 209

Side effect modules are always executed. (For information on the SIDE_EFFECT
flag, see 10.1, “Module Description Files” on page 80 in IBM Visualization Data
Explorer Programmer’s Reference.)

 Execution Example
The macro sum3 in the following example computes both the sum of its first two
arguments and the sum of all three of its arguments. When the top-level
assignment statement on line 7 is executed, the statements in lines 3 and 4 are
both executed, resulting in the values 11 and 111 being assigned to the top-level
variables x and y respectively. When the top-level assignment statement on line 8
is executed, only the statement on line 3 is executed. Since the value in the output
variable e is not assigned to anything in the calling environment, the statement on
line 4 need not be executed.

macro sum3 (a, b, c) -> (d, e) // 1

{ // 2

d = a + b; // 3

e = d + c; // 4

} // 5

 // 6

x, y = sum3 (1, 1ð, 1ðð); // 7

x = sum3 (1, 1ð, 1ðð); // 8

10.9 Running .net files in script mode
When you create a visual program using the User Interface, the .net file saved is a
script, so you can run it in script mode. (User Interface-specific information, such as
placement of tools on the canvas, is saved as comments in the script.) If you have
a sequencer in your visual program, the User Interface adds a “play” command as
the last line of the .net file. Thus you can edit this line out and add your own
options if you want to do something other than play forward through the sequence
once (see “Sequencer” on page 206). If you do not have a sequencer in your
visual program, the User Interface adds a call to “main()”, the main macro which is
defined to be your top level visual program. If you do not want the program to
automatically execute when you read it in as a script, remove or comment out the
call to “main()”.

If your visual program uses macros, the user interface will add an “include” line so
that the macros will be included when the visual program is run as a script. You
can look at the top of the .net file to see which macros are referenced by the
program. Thus if you need to send a collection of visual programs and macros to
another person, this can help you to make sure you have sent all the necessary
tools.

210 IBM Visualization Data Explorer: User’s Guide

Appendix A. Using Data Explorer: Some Useful Hints

A.1 Using Data Explorer Effectively . 212
Common Problems . 212
What is the Difference Between Image and Display? 212
How do I get more information? . 213
Memory Use . 213

A.2 Visualization Techniques . 217
Animation . 217
Annotation . 218
Color Mapping . 219
Contours and Isosurfaces . 221
Mapping . 223
Normals and Shading . 224
Plots and Histograms . 227
Rubbersheet . 227
Transformations and Structuring . 228
Vector Fields . 229
Volume Rendering . 231

A.3 Design for Interactive Use . 232
Interactors and Control Panels . 232
Transmitters and Receivers . 234
Documentation . 235

A.4 Design for Video Output . 236
TV Line Resolution . 236
TV Color Resolution . 237
Animation and Frame Rates . 237

A.5 Presentation: Issues and Techniques . 238

 Useful Hints

 Copyright IBM Corp. 1991-1997 211

A.1 Using Data Explorer Effectively
Following are some hints for using Data Explorer more effectively, debugging visual
programs, and using memory efficiently.

 Common Problems

 Debugging
One of the most useful tools for debugging visual programs is the Print module.
For example, if you are getting an error from a module that a particular field is
inappropriate for processing, you can print out the object to see if it is what you
expect it to be. Print can be used to see the structure of and data values in any
object. The options parameter is used to set the level of detail printed: the default
“o” prints just the top level object: for example “Field with 4 (four) components.” If
options is set to “r,” more information about each component is printed, for
example, how many items in each component, and the data type. You can also
print out some or all of the values in the components.

The output of Print appears in the Message window.

 Stopping Execution
There are two ways to stop execution of a visual program:

� End Execution in the Execute menu stops execution after the currently
executing module has finished.

� Disconnect from Server in the Connection menu kills the Data Explorer
executive (not the user interface) immediately. You can restart, using Start
Server in the Connection menu.

In addition, modifying a visual program (for example by disconnecting an arc or
adding a new tool) will cause execution to stop after the currently executing
module.

How to orient yourself in the Image window
If you find yourself “lost” in the Image window; for example, you have a black
picture and don't know where your data object is, you can always “reset the
camera” by using the Reset Camera option in the View Control dialog box of the
Image window. This zooms out so that you can see all of your object, from a “front
and center” view.

It is also often helpful to use ShowBox to display the bounding box of your entire
data set. Collect this with the rest of your visualization, and then you will be able to
see how the part you are looking at relates to the entire data set.

What is the Difference Between Image and Display?
Image, Display, and Render all render an object (i.e. create an image).

Render, given an object and a camera, creates as output an image. This image
can be sent directly to Display for display to the screen, sent to WriteImage to be
written to a file, or collected with other images into a single window using Arrange.

Display, given an object and a camera, both renders the object (using the camera)
and displays it to the screen.

212 IBM Visualization Data Explorer: User’s Guide

Display, given only an image, simply displays it to the screen.

Image, given an object, renders it and displays it to the screen. The camera
information is provided via direct interactors (rotate, zoom, etc.) or through the
camera mode option in the View Control dialog box. Image has two outputs: the
object to be rendered (including any AutoAxes that may have been added via menu
choices) and the camera used.

You would use Render if you needed the image itself, for example, for the Arrange
or Filter modules, or if you wanted to use WriteImage. (For the Image tool, the
WriteImage function is available through the Save Image and Print Image
commands in the Image window, or through the hidden recordEnable,
recordFormat, and recordFile parameters to the Image tool).

You would use Display without a camera if your object is already an image, and
you simply want to display it. You do not need (or want) to render it. You would
also use Display without a camera to display a set of Arranged images.

You would use Display with a camera if you wanted to directly control the camera,
for example, for a computed fly-through path. You would also use Display if you
wanted to define your own direct interaction modes (see “SuperviseWindow” on
page 336 and “SuperviseState” on page 332 in IBM Visualization Data Explorer
User’s Reference), rather than using the predefined direct interaction modes of the
Image tool.

 Useful Hints

How do I get more information?
� In the Help Menu:

– Application Comment presents comments (if provided) on the current visual
program.

– Table of Contents presents the table of contents of the user
documentation. You can use hypertext links to go to a particular topic.

– Context-Sensitive Help presents a “?” cursor: just click on a tool icon or
other feature to learn more.

 � Samples:
– Sample Visual Programs: /usr/lpp/dx/samples/programs. See also the

subdirectories there, grouped by topic.
– Sample Scripts: /usr/lpp/dx/samples/scripts.

� Information available electronically:
– Data Explorer user group on the internet

(comp.graphics.apps.data-explorer)
– DX Home Page on world wide web (http://www.almaden.ibm.com/dx/).
– Data Explorer Repository at Cornell: anonymous ftp:

ftp.tc.cornell.edu. (look for directory pub/Data.Explorer).
– gopher: ftp.tc.cornell.edu. port 70.

 Memory Use

 Appendix A. Using Data Explorer: Some Useful Hints 213

Data Explorer Object Cache
Data Explorer uses an object cache to store intermediate results of modules.
Caching systems are intended to fill up and then reclaim memory by throwing
things out of the cache. The size of the cache defaults to a large percentage of the
physical memory on the machine. You can control the size of the cache with the
-memory command line option to the dx command. The minimum cache size
needed is on the order of the maximum amount of memory required for a program
execution.

The Data Explorer “executive” schedules module execution. It does detailed graph
analysis, implements distributed processing of the modules, and implements the
Switch and Route modules. It also provides optimization by caching the
intermediate outputs of modules. For example, if you run Import twice in a row with
the same inputs, Import will not actually run the second time, and instead the
executive will use the cached output from the previous execution. The Image and
Display tools also cache their images internally.

To implement the caching scheme, Data Explorer will allocate memory up to some
fixed size. This memory is referred to as the arena. When the arena fills up and
more memory is required, Data Explorer looks for objects to discard from the
cache. When it does this it may mean that subsequent executions will have to
execute larger portions of the program.

The arena is of fixed size for any one instance of Data Explorer. The size of this
arena is chosen by default based on the size of the physical memory in the system.

For some data sets, the default arena size will not be sufficient. In those cases,
one can use the -memory option to increase the size of the arena, with the limitation
that your can't increase the arena size to be larger than the amount of real plus
virtual memory (page or swap space) on your machine. Talk to your system
administrator if you think you need to increase the amount of swap space on your
system.

Reducing Memory Requirements
If, after using the -memory option as described above, you find you still lack
sufficient memory to perform your visualization, there are a number of strategies
that can be used to reduce the amount of memory that is required by your program.

Do Not Render Images: A common mistake is to render image data (i.e.
2-dimensional grids) using Render, Image, or Display with a camera input. This
results in Data Explorer interpreting the image as a very large number of quads, in
which case much memory and CPU is used.

Instead, one can AutoColor or Color the image and pass it directly to Display
(without a camera input), or for even more memory savings, convert the data to
unsigned bytes (see below) and AutoColor or Color the data with delayed colors
(see below).

Delayed Colors: If you are coloring your objects (using AutoColor,
AutoGrayScale, or Colormap/Color), you might want to use “delayed” colors.

To do this, convert the data component to unsigned bytes and set the “delayed”
parameter of the coloring module to 1. Using delayed colors means that rather

214 IBM Visualization Data Explorer: User’s Guide

than a 3-vector being used for each data point, a single scalar byte is used to index
into a color table with 256 entries.

If you are using ReadImage, you may want to set the DXDELAYEDCOLORS
environment variable. See “ReadImage” on page 250 in IBM Visualization Data
Explorer User’s Reference.

Converting Data Types: In many cases it may be acceptable to convert your
data components to smaller sized types using Compute. For example, you might
change your floating point data to bytes. This has the advantage that all
downstream modules will require less memory.

Working with Series Data: When working with series data, if you are importing
the entire series and then selecting members out of the series, it may be that your
program can be changed so that you only import one member at a time. Do this
using the start and end parameters to Import.

This reduces memory requirements by not having the whole series in memory at
once.

Glyphs: If you are using glyphs (AutoGlyph or Glyph), you may want to use less
“spiffy” glyphs. A less spiffy glyph is one that has fewer positions and connections
(facets), and therefore consumes less memory. To use less spiffy glyphs, use the
type parameter of either AutoGlyph or Glyph, and set it to “speedy” or to a small
fraction of 1.

Reducing Grid Resolution: If you can sacrifice resolution in your data set, you
may want to use the Reduce module (usually just after Import) to reduce the
number of points in your data set. Reduce filters the data set before reducing the
number of points. Remember that it is of little use to process 5000x5000 points if
your final image is only 1000x1000 pixels.

24-Bit Images: You can create 24-bit images (instead of the default 96-bit
images) by setting the environment variable DXPIXELTYPE to DXByte. See
“ReadImage” on page 250 and “Render” on page 264 in IBM Visualization Data
Explorer User’s Reference.

Cache Control: Executive: In general, it is not necessary to change how the
executive caches intermediate results. However, in a few cases, it may be
advantageous to do so. For example, if you are reading a live data feed into your
program, it is probably not necessary to cache the downstream outputs.

You can change how and if the executive caches intermediate output values by
opening the Configuration dialog box of a module and changing the option menu to
the right of each output. You can also choose Output Cacheability from the Edit
menu of the VPE, and set the cacheability of a group of modules, show the
cacheability of a group of modules, or ask Data Explorer to use a heuristic to
automatically optimize the caching for the current visual program.

In general, it is most efficient to cache only the results of the last module in a single
file line of modules; for example to cache the output of Isosurface, but not Import.
Note that if you do this, however, if you need to change the isosurface value, the
data file will need to be reimported, slowing execution.

 Useful Hints

 Appendix A. Using Data Explorer: Some Useful Hints 215

If you want to turn off caching altogether you can use the -cache off

command-line option to Data Explorer.

Cache Control: Display: Some modules use the caching system to cache their
own data. The Display and Image tools are such tools. When using software
rendering, they cache the images they display in the X windows. This is an
optimization that can be seen when using the Sequencer. When this tool starts
repeating itself (in loop or palindrome mode), the images are displayed much faster.
That is, Display (or Image) is pulling them out of the cache instead of rerendering
the input objects each time. You can observe this effect by running the example
program MovingCamera.net with software rendering.

Most of the time this caching behavior is desirable, but in some cases it is better
turned off. To do that, use the Options module to add a “cache” attribute with the
integer value of 0 (zero), as follows:

o = Options(o, "cache", ð);

 Display(o, camera);

The Image tool’s Configuration dialog box has an option menu that lets you control
its caching. This can be useful when one is running a batch job to generate an
animation in which none of the frames will be displayed a second time.

Note that the -cache off command line option mentioned above has no effect on
the internal caching that modules themselves perform.

Note: You can use the Data Explorer command line option -optimize memory,
which will automatically set the DXDELAYEDCOLORS and DXPIXELTYPE
environment variable to the options that consume the least memory. The
alternative is -optimize precision.

 System Tuning
Default Memory Size: Except where noted in the architecture-specific README
(in /usr/lpp/dx), by default Data Explorer will be allowed to grow to use all but 8
megabytes of the physical memory when there is less than 64 megabytes of
physical memory.

If there are more than 64 megabytes of physical memory, then Data Explorer will,
by default, be allowed to grow to 7/8 of the amount of physical memory.

Users may wish to alter this default amount of memory by using the -memory option
to the dx command, or the “Memory” field of the Connect to Server Options dialog
box.

Paging Space: Since it is possible for Data Explorer to use a large amount of
virtual memory, users should configure systems with paging space at least two or
three times the total physical memory in their system.

If you do not have enough paging space, the operating system may kill Data
Explorer (or other processes), sometimes without warning, depending on the
architecture. Your system administrator can increase your paging space.

Per Process Limits: Some systems may enforce per process limits on such
things as data segment size, stack size and so forth. These may need to be
adjusted to run Data Explorer with large amounts of memory to avoid paging. Your
system administrator can adjust your per-process limits.

216 IBM Visualization Data Explorer: User’s Guide

 A.2 Visualization Techniques
Now we have our data in a Field Object inside Data Explorer. What can we do
with it? This section discusses some common visualization techniques and the
Data Explorer modules associated with them:

 � “Animation”
� “Annotation” on page 218
� “Color Mapping” on page 219
� “Contours and Isosurfaces” on page 221
� “Mapping” on page 223
� “Normals and Shading” on page 224
� “Plots and Histograms” on page 227
� “Rubbersheet” on page 227
� “Transformations and Structuring” on page 228
� “Vector Fields” on page 229
� “Volume Rendering” on page 231.

 Useful Hints Animation
The Sequencer tool is the primary device used in Data Explorer to produce
animation or motion control. There are two basic types of animation: show a series
of steps one after another, or, cause an object to move or rotate or change scale in
order to study it from different points of view.

Since many data sets are measured at a series of different times, your data may
have a “time value” associated with each measurement set. There are two ways to
read in these time step data files in order to study the dynamic process you have
measured.

In one scheme, you can collect all your data files into a Series, a special Group of
Fields understood by Data Explorer. Each Series member can represent a data
collection event at a certain time. Series do not have to be based on time; you
may have a set of experimental measurements made at different voltages (e.g., a
voltage series). Each series member is assumed to have the same type (scalar,
vector, etc.) and the same dimensionality (2-D, 3-D, etc.), but the data and even
the grid size or number of connections and positions may be different for each
Series member. The Series Field is described in detail in “Series Groups” on
page 35. Series “values” do not have to be continuous but may represent useful
information like the actual voltage setting for that Series entry (0.04, 2.3, 13.4).
Series members are accessed by their ordinal position, starting at 0, regardless of
their “value.”

Another way to organize a collection of associated data files is to create individual
files for each time step (or voltage measurement, etc.). Give each file a filename
containing an ordinal number so you can access them easily with a computer
program (e.g., myfield.001.dx, myfield.002.dx, and so on). Each file will contain the
Field to be imported at each time step.

In either case (Series Field or separately numbered files), you can control when a
particular time step is visualized in a visual program using the Sequencer tool. This
tool emits a series of integers. You set the minimum, maximum, and increment, as
well as choosing to start at a specific number (so you can jump ahead in the series
if you like). The Sequencer can be connected to the Import module to specify
which Series member to read in from the specified input file at the next iteration.

 Appendix A. Using Data Explorer: Some Useful Hints 217

Alternately, you could Import the Series Group file with Import, then use the Select
module. Select takes an integer input (from Sequencer, for example) to choose the
appropriate series member.

If you choose to use separate files for separate data samples, you would likely
want to use the Sequencer as an input to a Format module. The Format module
could construct the filename with a format string like %s%ð3d%s along with three
inputs, “myfield.”, the output of the Sequencer, and “.dx”. Then, when the
Sequencer emits the integer “2”, the output string from Format becomes
“myfield.002.dx”. This can be fed into Import as the name of the .dx file to read.
The result is that you can use the Sequencer to specify either any specific file or a
whole series of files to import and image one after another.

Another common type of animation is to use the Sequencer to control object
motion. Usually, this requires that you run the output of Sequencer through at least
one Compute module. For instance, you can rotate an object around the Y-axis
one full revolution by employing the Rotate module. The smaller the angular
increment, the smoother the animation will appear, but there is a trade-off in
apparent motion rate if your graphics workstation is not very fast. So you may
have to adjust the incremental angular amount to your liking.

You will find the technique of wiring Interactors to Compute modules useful for
converting the output of Sequencer to arbitrary floating-point values. If you wanted
to vary the Scale of your object using the Scale module, it might be more
convenient to adjust the scale in increments of 0.01. With a little thought, you can
extend this idea so that the same (one and only) Sequencer integer series can be
converted into several different series of numbers that can simultaneously rotate,
scale, and read in different time steps of data. Just a caution, though: too much
changing at the same time will probably not help you visualize your data, but
instead will cause confusion. Is the object getting bigger because the data values
are increasing, or because you are changing the scale, or because you are moving
the object closer to you with Translate? When you start out, keep your animations
simple and they will be much more effective.

 Annotation
It is imperative that good visualizations contain sufficient annotation for a viewer to
derive appropriate information from the imagery. A colored height field or
streamline set with no supporting labeling can make perfectly beautiful, utterly
meaningless computer graphics.

Annotating a scene can be done in several ways using Data Explorer modules.
You can, for example, provide a ColorBar with numeric values automatically labeled
next to the related colors, show Text or Caption information to provide textual
descriptions of objects, or turn on AutoAxes to show neatly labeled and numbered
axes around the perimeter of your data space.

Using the Format module, it is possible to create “clocks” or other “meters.” Format
creates a formatted string of text suitable for Caption or Text modules to display.
Format takes a “template” and text strings and/or numbers as value inputs and
assembles an informative text string as output. For example, inputting the
minimum value of your data to the first value input (the second input tab) of a
Format module, you could create a Caption that reads:

Minimum temperature = ð.ð deg.

218 IBM Visualization Data Explorer: User’s Guide

To do this, the “template” inside the Format module would read:

Minimum temperature = %1.1f deg.

In this template, the “%1.1f” serves as a place holder for the first value (which must
be floating point) provided to Format; consequently, the minimum value argument is
substituted into the string when the visual program is executed. The “1.1” means
that the floating-point number should display at least one number to the left of the
decimal point but should round off to only one decimal place to the right of the
decimal. By tying the data Field to Statistics (Transformation category), you can
easily extract the minimum value of the data; use this as the second input to
Format. If you later input a different data set with a different minimum, Caption will
automatically change to reflect the new minimum value.

One trick for showing text together with numbers that are changing is to use a
“fixed width” font instead of a “variable” or “proportional” font. Variable text looks
better when making Captions that do not include changing values, but fixed width
text maintains the same width regardless of the numeric characters currently being
displayed. Try both ways and you will see that the variable text has an annoying
shrinking-expanding effect as your clock or time step meter changes value. To get
the fixed text clock to behave correctly, you must use a Format template like
“%03.2f” that allows for enough numbers to the left of the decimal point. In this
example, we have predetermined that we will never create a number greater than
999.99 (note that if we do go over 1000, the text will expand to show the whole
number, causing the Caption string to expand: the very thing we are trying to
avoid!). The “%03.2f” format makes floating-point numbers with 3 numerals before
the decimal, including left side zero padding, and 2 numerals after the decimal.

 Useful Hints

 Color Mapping
Data Explorer provides an automatically generated color map (AutoColor), an
automatically generated grayscale (AutoGrayScale), and a user-definable color map
(the Colormap module that attaches to the Color module). A color map represents
a relationship between a continuous range of floating point numeric data values and
a set of color values. Frequently, you will encounter color maps with continuous
(“spectral”) color tones like a rainbow, but there is no requirement that color maps
appear continuous. Each color map has associated with it a minimum and a
maximum scalar value. You can either specify the minimum and maximum or
connect the data Field to the Colormap module and have these values
automatically extracted.

We can describe “color” to a computer in a number of ways. One of the more
intuitive is the “hue-saturation-value” model used by Data Explorer's Colormap tool.
Hue is the color’s “name”, like blue, red, and so on. Hue is considered to form a
circle from red through yellow, green, cyan, blue, magenta, and back to red; think
of Hue as an “angle” around this color wheel (scaled from 0.0 to 1.0). Saturation is
the “richness” of a color. Decreasing the Saturation of a color from 1.0 to 0.0
makes the color progressively more pastel, so for example, bright red becomes
light red, then pink, finally turning white. You can think of decreasing the Saturation
as adding “white paint” to paint of a pure hue. At Saturation 0.0, any color
becomes white (assuming Value is held at 1.0). Similarly, Value is a measure of
the amount of “black paint” mixed with a color. As you decrease the color’s Value
from 1.0 to 0.0, you add more “black”, so bright red becomes progressively darker
red, and finally black. Any color becomes black at a Value of 0.0. All three of

 Appendix A. Using Data Explorer: Some Useful Hints 219

these parameters interact, so you can adjust Hue and decrease Saturation and
Value to get a “dark pastel blue.”

Another scheme for describing color is RGB (Red-Green-Blue). As in the HSV
model just described, you specify a color as a triplet (a 3-vector). Each component
can have a value from 0.0 to 1.0. If all three are 0.0, the resulting color is black; if
all three are 1.0, you get white. Given Red = 1.0, Green = 0.0, Blue = 0.0, the
color is fully saturated bright red. You can observe a graph of RGB lines at the far
left of the Colormap tool as you manipulate the colors using the
Hue-Saturation-Value (HSV) controls. You can specify an RGB vector in the Color
module in place of connecting a Colormap if you want the output object to have a
single color (or you can specify one of the X Window System color names). And
you can convert from RGB to HSV or back using the Convert module. See “Color”
on page 75 and “Colormap” on page 84 in IBM Visualization Data Explorer User’s
Reference for more details about these different specification schemes.

Let us assume that we have set the Colormap minimum and maximum to equal the
minimum and maximum of the temperature data we collected in the atmosphere
(this is done automatically if you connect the data Field to the input on Colormap).
Recall that we collected position-dependent data, one temperature value at each
grid position. For this example, assume the minimum temperature measured was 0
degrees Centigrade and the maximum 20. What color is 10? That depends
entirely on the color map used. If we have a standard spectral (rainbow) map with
blue at 0 and red at 20, then 10 would have a color halfway between blue and red.
On the default color map, this would be green. When we ask Data Explorer to
color-map our data, it examines each data value, performs a linear interpolation
between the minimum and maximum values to find the color associated with that
interpolated value in the color map and “colorizes” the object at all points containing
that data value with that color.

If we change the maximum value in the color map to 30, the measured data value
of 10 (taken from the same data set as above) will now map to a cyan color, part
way between blue and green. On the other hand, we could keep our same
extreme values but manipulate the color map’s color distribution in such a way that
any value has any color we like. You can learn the details about this capability in
6.3, “Using the Colormap Editor” on page 119.

The best way to learn about the power of color mapping is to take some sample
data, color-map it, then manipulate the settings in the Colormap Editor you have
connected to the Color module your data Field passes through.

Note: Choose Execute on Change from the Colormap Editor Execute menu and
you will see the data change colors as soon as you make a change in the
Colormap Editor.)

For instance, you can create sharp color discontinuities by placing two control
points close together vertically on the Hue control line, then dragging one
horizontally away from the other. This can be used to indicate a sharp edge
transition in your data. It is sometimes useful to place a special contrasting color in
the middle of an otherwise continuous color map. For example, to highlight the
value of 12 degrees C in our temperature data, we could insert a sharply defined
red notch or band into the middle of our smooth rainbow color map. This would
highlight that particular value or range for someone examining the scene. You can
automatically generate a number of control point patterns by choosing Generate
Waveforms... from the Edit menu in the Colormap window. To make a notch,

220 IBM Visualization Data Explorer: User’s Guide

choose one of the “S” shaped curves from the pop-up menu in the Generate
Waveforms dialog box. Set the number of Steps to 4 to make a single notch, or 3 to
make a single step. Click Apply to place control points on the currently chosen
curve (Hue, Saturation, Value, or Opacity). You can then drag the new control
points where you like.

If you use a red color notch in the middle of your data range, you probably will not
want to use red elsewhere in your color map or it will be difficult for a viewer to tell
the 12-degree specially highlighted red area from the 20-degree red maximum
values (assuming 20 is the maximum). In fact, it might be safer to use a white or
gray color to mark the special value of 12 degrees. Do this by creating a notch on
the Saturation or Value curves instead of on the Hue curve.

Similarly, you can change the opacity of objects. Opacity is the inverse of
transparency: that is, the more opaque the object, the less transparent. You can
set opacity to a value between 0.0 and 1.0. Opacities less than 1.0 allow you to
see through an object to reveal objects inside or behind the transparent object. For
all objects except volumes, an Opacity of 0.0 will make the object disappear
completely. Since Data Explorer uses an emissive volume rendering technique,
you must set the color of a volume to “black” (RGB of [0, 0, 0]), as well as setting
the Opacity to 0.0, to make the volume disappear. You will notice that when you
view slightly transparent objects through each other, the colors of each object
combine, making it very difficult to accurately assess the color of any one object.
Used sparingly, opacity is a very powerful tool for examining the insides of objects
or volumes and gauging the physical relationships between intersecting objects.

You can create a variable opacity on an object by manipulating the opacity curve in
Colormap. This can make parts of an object trail off to transparency, useful if some
data values are not of interest. Be aware that “hiding” data in this way may
mislead someone viewing your results. But in some data sets, there may be a
large number of “noisy” data values that you would like to exclude in order to see
the “signal” data values of interest. In that case, setting an Opacity notch to hide
the noisy values may be the best visualization technique.

When you lower opacity below 1.0, you will see two stripes, one white and one
black, or a checkerboard pattern of black and white behind the sample color strip in
the Colormap Editor. These are useful when you manipulate Opacity to check the
apparent color against both a light and dark background. As with the color tools,
you can turn on Execute On Change and interactively play with the Opacity of the
selected object until you get the effect you want.

 Useful Hints

Contours and Isosurfaces
Given a set of samples taken over a presumably continuous region, it is meaningful
to consider drawing smooth lines connecting together the locations on the grid
containing the same data values. You are probably familiar with topographic maps
that show contour lines connecting together the same values of elevation of the
Earth’s surface features, such as hills and valleys. These lines are called “contour
lines” or “isolines” (iso means “same” or “equal”). In most cases, the places on the
surface of the sample grid that have identical data values will not coincide with the
grid sample points. This is another case where the “connections” component is
required for Data Explorer to determine where on the grid the same value occurs
(say the value 5.2) in order to create lines connecting together all these locations.

 Appendix A. Using Data Explorer: Some Useful Hints 221

To return to our 3-dimensional data set taken from the atmosphere. Since we have
collected data throughout a 3-dimensional space, we can identify volumetric
elements defined by connecting adjacent grid sample points in three dimensions
using a “connections” component like cubes. It now becomes possible to draw
“isosurfaces” rather than “isolines.” An isosurface is that surface cutting through a
volume on which all data values are equal to a specified value. Depending on the
actual distribution of the data, isosurfaces may look more or less like flat sheets
(the isosurface of “sea level” in a data set of elevations would look like this); it
might enclose a portion of our space or appear as a whole set of small
disconnected surfaces or enclosed spaces.

To create an isosurface, we pick a value of interest. Suppose that according to our
knowledge of meteorology, we know that the dew point (at which water condenses
from vapor to liquid) is 12 degrees C in our sample. Although we measured
temperatures at only a fixed number of grid points, we are interested in seeing
where rain formation may begin throughout the atmosphere. We could show only
the sample points highlighted by themselves, but once again, we make a
reasonable assumption that we have taken discrete samples from a continuous
natural volume. In other words, rain formation will not simply occur at the limited
set of discrete points where we have sampled temperatures of 12 degrees C, but at
all the points in between that are also at 12 degrees. How do we find all those
in-between points? By interpolating through the volumetric elements between
adjacent sample points. And in fact, the Isosurface module will do this
automatically.

The resulting isosurface will represent all values of 12 degrees C throughout our
volume of sampled space. The actual image depends on the distribution of the
data, of course. If the outside of a rain cloud were at exactly 12 degrees C, we
would see a shape resembling a cloud in the sky. But if rain formed at an altitude
where the temperature was 12 degrees C, we would instead expect to see a flat
sheet. Or we may not know what to expect: that is one of the uses of visualization,
as well—for discovery, not just for verification.

Generally, the vertices that describe the mesh positions of an isosurface will not
coincide with the original grid points. It is important to realize that an Isosurface is
a new and valid Data Explorer Field with positions and connections and a data
component (in which all data values are identical). You can treat this Field just like
any data Field you have imported. Color mapping such a Field is not particularly
useful since all the data values are identical, so you will get the same color for
every point.

To draw contour lines on a 2-dimensional grid, you also use the Isosurface module.
Data Explorer figures out the dimensionality of the visualization by looking at the
input data. Thus, a biologist’s 2-D grid can be easily contour-mapped with the
same tool as a meteorologist’s 3-D volume, but the visual output will be
appropriately different for the different inputs. Similar to Isosurface’s contour lines
is the output of the Band module. This yields filled regions between contours;
these bands can be colored by a color map or AutoColor to yield the kind of image
frequently used to show temperature distributions on a weather map.

222 IBM Visualization Data Explorer: User’s Guide

 Mapping
There is a very useful module called Map in Data Explorer that permits you to
“map” one data set onto a Field defined by another data set. For example, in our
rain cloud data, we have measured temperature and cloud-water density throughout
a volume. We learned earlier how to make an isosurface of temperature equal to
12 degrees C. Now it may be instructive to observe the cloud-water density
associated with this temperature isosurface.

The operation we wish to perform is to use our temperature isosurface with its
arbitrary (data-defined) shape as a sampling surface to pick out the values of
cloudwater density as they occur throughout the volume. That is, conceptually, we
will dip the temperature isosurface into the cloudwater volume. Wherever the
isosurface comes in contact with the cloudwater volume, the values that stick to the
isosurface represent the values of cloudwater density that occur at that intersection.
But remember that the isosurface was created using temperature data. The
isosurface of temperature (the input Field to Map in this example) had only one
data value (12 degrees C) at every position, but the mapped isosurface (the output
of Map) will contain arbitrary patches of data corresponding to the distribution of
cloudwater density. If we AutoColor this output isosurface, we will see an arbitrary
geometric surface with a patchy color scheme. The surface is the location of all 12
degree temperatures, and the patchy color corresponds to the distribution of
different cloudwater densities sampled on that surface. (Of course, if cloudwater
density happened to have the same value at all points on the 12-degree
temperature surface, we would see only one color.)

Naturally, you can do the opposite! First, make an isosurface of cloudwater
density, say at the mean value of density. The mean value of a Field is taken as
the default value by the Isosurface module: this is convenient when you start
exploring a new data set and do not know what the extreme values are. Now map
the temperature data onto the cloudwater isosurface. Run the output through
AutoColor. The result will look very different. This time, you have “dipped” the
cloudwater isosurface into a “bucket” of temperature data. Once again, this serves
as a reminder that you must indicate to an observer exactly what kind of operation
you performed if your visualization is to bear any meaning.

You can also dip the cloudwater isosurface into the temperature colors. To do this,
first AutoColor the temperature data set. Then use Mark to “mark” the colors as
data (this temporarily renames the colors component to data, while saving the
original data component). Then use Map to map this marked Field into the
cloudwater isosurface colors component. (It is necessary to mark the colors as
data before mapping because Map always maps from the data component). An
example visual program that performs each of these mapping operations can be
found in /usr/lpp/dx/samples/programs/UsingMap.net.

Note that we changed the order of the modules slightly in the third example. In the
second case, we Mapped data values from the “map” Field (cloudwater density)
onto the “input” Field (the temperature isosurface), then AutoColored the resulting
Field. In the third case, we AutoColored the “map” Field (temperature), then
mapped color values onto the “input” Field (cloudwater density). This illustrates
some of the flexibility of both the Map module itself and Data Explorer in general.
In this case, the output image would be similar whether you colored by temperature
then mapped, or mapped temperature first, then colored by temperature. There will
be color differences if the range of values that mapped onto the isosurface is
different from the entire data range used to AutoColor the entire temperature Field.

 Useful Hints

 Appendix A. Using Data Explorer: Some Useful Hints 223

You could avoid this problem by substituting a Color and Colormap pair in place of
AutoColor, then connecting the original temperature Field to the input of the
Colormap. This would automatically lock the minimum and maximum to the entire
range of temperature, not just to the range of values that happened to fall on the
isosurface.

But there are other cases in which commutative ordering of modules will yield a
quite different visual output. For example, suppose we have a volumetric Field
containing both vector data and a scalar data set. We can generate a series of
Streamlines through the vector Field, Map the scalar data from the volume through
which the Streamlines pass onto these lines, then AutoColor the lines according to
the scalar data. To make the lines easier to see, we employ the Tube module to
create cylinders along the path of each streamline. The radius of the Tubes can be
adjusted until we get the look we like. By performing the operations in that order,
the original colors are carried from the lines out to the outside of the cylinders,
resulting in distinct circumferential bands of color on the Tube surfaces.

Now, change the order: create Streamlines, then Tube the lines. This yields
uncolored cylinders. At this point, we Map the scalar data values from the
volumetric Field in which the cylinders are embedded onto the surfaces of the
cylinders, then AutoColor. This time, we will have patches of color on the cylinders,
since it is highly unlikely that the volumetric data would lie in perfect rings around
the outside of the tubes.

Which of the above two representations is “correct”? Both are accurate. Which
you choose to show depends on the point you are trying to make. In the first case,
you are illustrating the values of data precisely as they occur along the Streamlines:
the Tubes are used to make these very thin lines more visible. In the second case,
you wish to sample the data volume at a specified radius away from a given
Streamline. By varying the radius of the Tubes, you can investigate phenomena
such as the rate of change of the data Field as you move further away from the
Streamline itself.

Normals and Shading
Another Field component used in Data Explorer is the “normals” component.
normals are unit vectors that tell the computer graphics program and the image
renderer which direction is “up” or “out.” Several tools, like Isosurface,
automatically create a normals component so you do not have to calculate these
numbers yourself.

There are two types of normals provided in Data Explorer, “connections normals”
and “positions normals”. Connection-based normals are vectors perpendicular to
each connection element on the surface. They are created by the Normals module
when you set the method input to “connections”. The resulting surface reveals the
underlying polygonal grid structure of your sample grid. Frequently, this is a
valuable way to show your data, as any observer can then see the grid resolution
directly. At the same time, this surface can be colored or color mapped either by
connection-dependent or position-dependent data.

The other type of normals are created by the Normals module when you enter
“positions” as the method (this is the default method, in fact). In this case, the
surface will be much smoother in appearance yielding a more aesthetically pleasing
surface at the expense of being able to directly perceive the grid resolution. It is
sometimes less confusing to use position normals in place of connection normals

224 IBM Visualization Data Explorer: User’s Guide

because the object is less “busy” looking. You must be the judge of what is the
appropriate way to observe your own data. You can also show your data first with
connection normals, to illustrate the sample resolution, then switch to position
normals in order to better show some other aspect of your data.

Normals are used by various modules in Data Explorer. One use of this
information is that it is required by the image renderer (the Image, Render, and
Display modules all incorporate the image renderer) to calculate the amount and
direction of light falling on an object’s surface (we will discuss this in more detail
below). Rubbersheet assumes that the input grid or line is flat (if there is no
“normals” component in the input Field) and projects the values in a perpendicular
direction. However, you may wish to create your own normals or modify an
existing “normals” component (using the Compute module, for example) and
Rubbersheet will then use the modified normals to control the direction of projection
of the surface or line. After performing the Rubbersheet projection, you may want
to insert another Normals module. This will take the projected object and generate
real surface normals before rendering, resulting in better-looking shading on you
projected surface. See “RubberSheet” on page 277 in IBM Visualization Data
Explorer User’s Reference for a full description.

Isosurface will also generate normals automatically; to do so, Isosurface either
calculates or reads the previously calculated Field gradient (depending on the
setting of the gradient input flag). Therefore, the normals generated by Isosurface
are not necessarily perpendicular to the connection elements generated by the
Isosurface module, but better indicate the actual Field direction than simple
perpendicular normals.

If you wish to understand Normals better, you can use the Glyph module to
visualize them. First use Mark to mark the “normals” component. This makes Data
Explorer treat the “normals” component as if it were the “data” component. Then,
Glyph the Field. Finally, Unmark the normals to restore the previous data
component to its proper place. By showing the normals as vector glyphs in
conjunction with a surface, you should be able to see how different modules, like
Rubbersheet and Isosurface, deal with these vectors.

Normals are also useful in helping you determine the “inside” and “outside” of an
object. In addition to a “colors” component, which holds the color-mapped
information for each data point in a Field, you can specify a “front colors” and a
“back colors” component. Which is front and which is back is determined by the
direction of the normal for that vertex (position normals) or polygon (connection
normals). By setting different colors for the inside and outside of a complicated
object, you may be able to understand its shape better. This technique can also be
helpful when you are trying to convert a connection list like a finite element mesh
into Data Explorer form. If you accidentally describe the “winding” (rhymes with
“binding”) of a polygonal face in the wrong order, the normal for that face will point
in the wrong direction. Setting “back colors” to red and “front colors” to white will
clearly indicate which faces are pointing the wrong way.

The Shade module employs the “normals” component; it will make a “normals”
component if it does not already exist. Shade allows you to set up the lighting of
your objects to make them more “realistic” in appearance. That is to say, when we
observe a 3-dimensional object, the way light falls on the object is an important cue
to our eyes that helps us understand the shape of the object. We expect the
surfaces of the object that are generally facing a light source to be brighter than

 Useful Hints

 Appendix A. Using Data Explorer: Some Useful Hints 225

those that face away. Data Explorer, like other computer graphics rendering
programs, takes the normal directions of the object surfaces into account when
calculating the angle between the object, the light(s) in the scene, and the viewer’s
eye point (the camera in the scene).

In the real world, different materials react to incident light differently. For example,
many metals scatter light causing the “specular” reflection to be more spread out
than it is on shiny plastic surfaces. The specular highlight is the highlight (many
types of cloth and other dull surfaces have no specular brightest spot on a shiny
surface. Think of how the sun sometimes bounces off the hood of your car at just
the right angle and makes a bright sharp reflection. By adjusting the “specular” and
“shininess” inputs to the Shade module, you can make your object appear more
metallic or more plastic. If you turn the specular value all the way to 0.0, you
eliminate the specular reflection). This can be important if you are trying to make
sense of color-mapped data, since the specular highlight will be a bright white area
on the surface of the object (assuming the incident light color is white). This white
spot or area could confuse a viewer who is trying to interpret the color mapping of
the data.

Two other inputs in the Shade module (diffuse and ambient) are also used by
Data Explorer when it lights an object. Diffuse light is light emanating from a direct
light source, like the default Light in any Data Explorer network, or from Light
modules you place in your network. Think of diffuse light as the light coming from
a light bulb and falling on an object surface, like a light in your office shining directly
on your desk. This property is called “diffuse” because it represents the way light
bounces off a surface, depending on the “roughness” of the surface. The rougher
the surface, the more the light rays are scattered (“diffused”). An extremely smooth
surface tends to bounce light more uniformly to the eye. Ambient light is light that
is indirect: for example, daylight coming through a window, bouncing off white walls
and then impinging on your desk. Data Explorer automatically places an
AmbientLight value in any scene, or you can override this value by placing your
own AmbientLight module in a network. Ambient light is best thought of as a sort
of “glow” emanating from a non-point source of light and therefore illuminating even
the parts of objects that face away from the point light sources in a scene. If you
remove the ambient light, the apparent “shadows” on an object lit only by a point
source of light are much harsher.

Like Normals, the Shade module can light an object in two fundamentally different
ways. If you enter “smooth” in the how input to Shade, the surface will appear
smoothly rounded (assuming it is not completely flat to start with). This is
equivalent to setting “positions” in a Normals module. Shade will, if necessary,
create position normals, then light the object accordingly. Any point on a
connection between positions will be lit by calculating an interpolated normal value
between the position normals. If you choose faceted in Shade, the effect is the
same as selecting “connections” in the Normals module. In this case, each
connection element has one normal direction over the entire face. As a result,
every point on a connection element reflects light exactly the same way. The
image that you see will thus show faceted polygons. Once again, while this may
make the object look less “realistic,” it does more accurately reflect the sampling
resolution of your data and may therefore be a more desirable image to show other
viewers.

226 IBM Visualization Data Explorer: User’s Guide

Plots and Histograms
Data Explorer provides a Plot module that will give you a simple 2-D graphics plot
of your data. This can be convenient for showing one parameter plotted
“traditionally” while you show a colored 3-D height Field illustrating the same or
other parameters, in the same scene.

Histogram regroups your data into a specified number of bins (it acts like a form of
filter on your data). The output of Histogram is a new Field with
connection-dependent data. The connections are the bars on the histogram (which
can be plotted). The height of each histogram bar is proportional to the number of
samples of original data that occur in the range covered by that bar. You can feed
the output of Histogram through AutoColor then Plot to get a colored plot of the
data distribution.

If the aspect ratio of the Plot is distorted, you can correct it in the Plot module.
This will stretch the Plot out in either the X or the Y direction until you achieve the
look you want. Visual designers recommend an aspect ratio of approximately 4
units wide to 3 units high; since this is also the aspect ratio of television, your
image will be ready both for video and for print.

Be aware that “binning” your data with Histogram can sometimes create rather
arbitrary distributions. It is important to make this clear to the viewer of your
visualization. For example, by carefully selecting bin size, you may turn a unimodal
distribution into a bimodal one. Which distribution is correct for the phenomenon
under study must be determined by the underlying science, not by the arbitrary
picture you create.

On the other hand, if you wish to actually redistribute your data rather than just
show a histogram of its distribution, you can use the Equalize module. The output
of this module is essentially the same scalar Field you fed into it, but the data
values have been changed to fit the specified distribution. By default, the data
values are changed to approximate a uniform distribution, but you can create your
own custom distribution, like a normal Gaussian curve. Equalize is useful to reduce
extreme values back to a range similar to the majority of data values. You may
also wish to experiment with other data “compression” and “expansion” techniques
by connecting your data Field to Compute and applying a function like “ln(a)” or
“a^2”, where “a” is the input Field.

 Useful Hints

 Rubbersheet
Another technique used to visualize data collected on a 2-dimensional grid is
sometimes called a “height map.” In Data Explorer, the Rubbersheet module will
generate this for you. Conceptually, a height map is drawn by elevating the 2-D
grid into the third dimension. Call it the Z dimension, with our original grid lying in
the X-Y plane. The height or Z-value given to each vertex of the original grid is
proportional to the specified scalar data value at that vertex. If the data were
vector data, you could elevate the grid by the magnitude of the vector, since
magnitude is a scalar value. The result usually resembles something akin to a
relief map of the surface of the Earth with hills and valleys.

However, this brings up an important point that will occur elsewhere in Data
Explorer (and visualization in general). Remember that the original data were
collected on the X-Y plane (for example, our grass-counting botanist’s data). It is
one thing to indicate the different distributions of grass species by showing a 3-D

 Appendix A. Using Data Explorer: Some Useful Hints 227

plot of the numbers using a height map. But it is not correct to say, then, that the
data values so shown were collected from these 3-dimensional positions: that
would imply the botanist counted grass species growing in mid-air! This might be
true in the Amazon, but not in Kansas.

That is, we may have counted 2 species at the grid point [x=0, y=0]. If we
Rubbersheet using the species count as the Z deflection value, our 3-D height map
will now have a point at [x=0,y=0, z=2] (if the Rubbersheet “scale” is 1.0 and the
minimum count in our data set is 0). The data was not collected at that point but
rather at [x=0,y=0, (z=0)]. For our convenience, Data Explorer maintains the
original data values as if they were attached to the original grid. It is your
responsibility to remember and, if necessary, make it clear to other viewers that the
representation of the data in 3-D is not a “realistic” image of the original 2-D
sampling space. Rather, Rubbersheet is used to visualize the “ups and downs” in
the data Field as actual differences in height. This is a very powerful visualization
technique because of our familiarity with actual heights in everyday experience.
One simple way to show viewers the difference is to make two copies of the Field
by taking two wires from the output tab of the Import module you use to import the
data Field. Connect one wire to a Color module with a Colormap attached, but
leave the Field 2-dimensional. Arrange the 2-D colored grid such that the viewer is
looking straight down on it. Connect the second wire from Import to Rubbersheet
and then use a second Color module, but run wires from the same Colormap as
you used to color the first copy. The second copy, a 3-D colored “height Field”,
can then be rotated into a “perspective” view. The result will be a Field both
colorized according to the data values and also elevated into the third dimension
according the same data values. This redundancy is often more instructive than
either visualization technique used alone.

Transformations and Structuring
Rotate, Scale, Translate, and Transform are all special types of operations that
change the location, orientation, or size of objects in your scene. These operations
can be performed anywhere in a visual program. You can create “hierarchical”
motion by attaching Rotates and Translates to individual objects, then Collect these
objects together and attach another Rotate and Translate to the Group (output of
Collect). In this fashion, you can individually rotate members of the group
independently of each other, or you can rotate the entire group as one.

By default, many modules operate on the “data” component. We have been
treating “data” as a special kind of numeric Array, separate from “positions” and
“connections”. We mentioned earlier that you can have several different “data”
components, but each must have a unique name; for example, your input data file
can contain “positions”, “connections”, “temperature” (data), and “wind” (data). For
this example, assume that “wind” is a 3-D vector.

Using the Structuring category tools Mark and Unmark, you can convert any Field
component into the “data” component. When you Mark “wind” for example, the old
“data” component (if any) is moved into a safe place called “saved data” and the
“wind” values are copied into the “data” component. Since “wind” is a 3-D vector,
the new (current) data component becomes a 3-D vector also. The Compute
module is used to make changes in the data component of a Field. So by
multiplying the first (x) component of our 3-D “data” we are, in effect, scaling in X.
For example, the Compute expression in this case would be “[a.x * 2.0, a.y, a.z]” to
double the size of each x component of each “data” point while leaving the y and z

228 IBM Visualization Data Explorer: User’s Guide

components the same. Any module connected to the output of Compute will see
the scaled “wind” values as the “data” component of the Field. However, the old
unscaled “wind” values are still kept in memory, also. By connecting other modules
to the originally imported “wind” values, you still have access to those original
values, at the same time. To operate on the “temperature” data, first use Unmark
to return the “data” to the “wind” component. The result will be to place the scaled
“wind” values into the “wind” component for all modules connected to the output of
Unmark. Unmark also copies back all values from “saved data” into the “data”
component. Then, you can Mark “temperature” as “data” and perform operations
on it, if you like.

Since “positions” are also 2-D or 3-D vectors, you can Mark “positions”, perform
operations on the grid itself, then Unmark “positions” to perform operations on the
“data”. With a little knowledge of the correct matrix operations, it is possible to
simulate the effects of rotations, translations, and scalings using this Mark
technique. You can warp flat grids into cylinders or polar coordinate systems or
create more complex objects like cones. In fact, there are already many macros
available in the Data Explorer Repository that handle these types of operations
using this technique, which you may wish to download and use yourself. (For the
Data Explorer Repository, see “Other sources of information” on page xxiv.)

 Useful Hints

 Vector Fields
Vector-valued data sets occur very frequently in visualization. Data Explorer offers
three ways to visualize vector Fields: vector glyphs, streamlines, and streaklines.
For this example, assume that we acquired data on wind velocity and direction in
the atmosphere.

Recall that a “glyph” is a visual object; a Field of glyphs is made by copying a
generic object, positioning each copy appropriately, and scaling or coloring each
copy according to the data associated with that sample point. Vector glyphs
resemble arrows or rockets and are generated for you by the Glyph or AutoGlyph
modules. A vector Field, like any Field, must have a positions component to
identify where the vector-valued data was sampled (even if the data is
connection-dependent, it still requires positions). For Glyph realizations, a
“connections” component is not required, but it may exist if the Field contained it for
other purposes. Of course, a data component containing a vector quantity is
needed. Each vector glyph will point in the direction of the vector given by the
datum at that point, with the base of the vector fixed at the vertex position (sample
point) for position-dependent data. The base of the vector is located at the center
of the connection element for connection-dependent data. The length of each
vector glyph is scaled based on the vector “magnitude”, relative to all the other
vectors in the data Field. Glyph and AutoGlyph offer a number of modifications you
can make to achieve the appearance you desire. The effect of glyphing a vector
Field is to create a “porcupine” plot with lots of arrows sticking out in various
directions. This can become hard to interpret if there are many vector data points
or, if one area of your data has very large values, the vectors may intersect or
occlude each other. You can use the Reduce module (in the Import and Export
category) to downsample the original data Field and thereby decrease the number
of vectors in the image. Picking a reasonable reduction factor will permit the viewer
to see the overall vector Field direction(s) while reducing the visual clutter.

You can also use the Sample module to extract a subset of points of the data Field.
For example, you can select a subset of points lying on an isosurface; these data

 Appendix A. Using Data Explorer: Some Useful Hints 229

points can then be fed to Glyph. The effect in this case is to show the vector Field
direction and magnitude sampled at the surface of constant value. This is another
technique to reduce the number of vectors glyphed at the same time and may
make it easier to perceive the structure of the vector Field.

Another technique for visualizing a vector Field relies on the concept that there
exists a potential flow direction through the Field. Imagine releasing some very
light styrofoam balls into our wind Field; each ball has a streamer attached to it.
(Gravity and friction are ignored by the visualization tool; of course, you may have
accounted for these forces in the simulation that modeled the vector Field, if these
forces are relevant to your science.) We release the balls at one instant on one
side of our Field and after they have passed through the Field, we take a snapshot
of the streamers. This type of image is essentially what you get with the
Streamline module. Streamline is used to visualize a flow Field at an instant in
time; it assumes that you have a particular measure of a vector Field and wish to
study the “shape” of that static Field.

Streamline produces a set of lines that show the flight path of each “ball and
streamer.” You can indicate the starting positions of these paths in a number of
ways: essentially, any kind of object with positions can be the designated start point
or points for Streamline. For example, you can use the Sample module to extract
an arbitrary subset of positions from an isosurface, then treat this subset of
positions as valid starting points for Streamline. You would see a set of
streamlines that began on an isosurface and then traversed your vector Field. If
you want to visualize the streamers’ associated “twist,” use the Ribbon module and
use the curl and flag parameters of Streamline to force computation of the vorticity
field. Streamlines can also start from a Grid, a list of positions, or a Probe. The
Probe is a handy way to interactively investigate a vector Field; Probe tools are
selected from the Special category. They are manipulated in the Image window;
select View Control... from the Image window’s Options menu, then choose
Cursors from the Mode pop-up menu. Any Probes that you have placed in your
visual program will be listed in another pop-up menu, so you can pick the one you
wish to interactively manipulate. By dragging the probe through the vector Field,
the Streamline starting point will follow the mouse pointer (again use Execute on
Change to see this happen interactively).

Streakline is used to study a dynamic vector Field. Streakline is equivalent to
taking a series of snapshots as our styrofoam balls and streamers (or just the balls
without streamers if you like) fly through the vector Field, but with the additional fact
that each time we take a snapshot, we import the next time step of our Field. That
is, at each moment, we provide new data for vector direction and intensity at each
sample point. As a result, you would expect the direction and speed of the balls
and streamers to change as their flight is affected by the changing Field. This
technique is often referred to as “particle advection.”

Note that both Streamline and Streakline perform interpolation, so both modules
require that your input vector Field has positions, data, and a “connections”
component.

230 IBM Visualization Data Explorer: User’s Guide

 Volume Rendering
Another way to examine data collected throughout a volume of space is called
volume rendering. Imagine a glass bowl full of lemon gelatin. Holding it up to a
light, you can see through the gelatin because it is somewhat translucent. Now
imagine that you have added strawberries to the bowl of gelatin before it set up.
You can see the strawberries embedded in the gelatin. What is really happening,
visually? Light shines through the mass of gelatin “accumulating” color. If you look
through the top corner, it will appear somewhat less yellow than if you look through
the thickest part. If the light strikes a strawberry as it passes through the gelatin,
your eyes will detect an orange object with a distinct outline, which of course
enables us to find the location of the strawberries in the volume of gelatin. The
strawberry appears orange because its red color is partly occluded by the yellow
gelatin: nevertheless, our brains convert the strawberry color back to red because it
is a familiar object. If someone has added a fruit unfamiliar to you, you will have a
hard time identifying the true color of the fruit, since our brains are not good at
performing subtractive color calculations.

Volume rendering a data space yields an image something like our bowl of gelatin.
By default, a volume rendering appears somewhat transparent. As light passes
through from behind the volume toward your eye, it is absorbed more in areas of
densely concentrated values. These areas will appear to be more “opaque.” If you
color-map your volume according to the data component, you will see indistinct
colored areas in their relation to each other. For more detail on the “dense emitter”
model used by Data Explorer, see “Opacities Component” on page 23.

If we are looking for those areas of rain formation within a rain cloud data volume,
we do not have a built-in conception of the “correct” color for such an area. The
colors assigned will come from the color map we construct. If we map the 12
degree C area to red, as in the example above, the red-colored rain-forming areas
seen through a yellow cloud will, in fact, be perceived as orange areas. We can
temporarily hide the yellow cloud (by changing its opacity to 0.0 and its color to
black) and entrain ourselves to see the red regions by themselves.

This is a fine point of perception, but it is important to be aware of. Perception of
natural objects is greatly modified by psychological memories and judgements
about their “correctness” in size, color, mass, and relationship to each other. Once
we move into the abstract world of visualization, we have no firm psychological
constructs on which to base our perceptions. While this may imply that we are
working with a “clean slate”—no preconceptions, and an unbiased scientific
viewpoint—just the opposite happens: we seek to impose interpretation on the
scene and may ascribe invalid attributes to objects as we try to derive “meaning”
from the scene. On one hand, this is precisely why we imaged the volume in the
first place! We want to derive patterns or shape and then figure out why they exist.
On the other hand, we can be fooled by our own eyes if we are not very careful to
comprehend and explain to others exactly the assumptions we make as we convert
our sample numbers into colored images.

By the way, you won’t find a specific module named VolumeRendering. As it
happens, any volumetric Field can be directly rendered by the Image module or the
Render or Display modules. So if you simply Import your volumetric data, run it
through AutoColor, and attach it to Image, you will get a colored volume rendering
of your data space.

 Useful Hints

 Appendix A. Using Data Explorer: Some Useful Hints 231

A.3 Design for Interactive Use
Data Explorer is first and foremost designed for interactive exploration using data
as the raw material for creating, modifying, and understanding imagery. As such,
the system is designed to permit operation at several different levels of expertise:
“exploring”, “authoring”, and “programming.” You can engage in exploring by
opening previously created visual programs (e.g., the visual programs provided with
Data Explorer) and changing values of the Interactors found in Control Panels,
changing values in the Image window controls, or by manipulating the Sequencer (if
one is provided). You author a visual program when you place and interconnect
additional modules on the VPE or reorganize connections between modules already
present, or when you create a new visual program from scratch. At the advanced
level, you can learn how to write and add your own custom modules to Data
Explorer. This involves writing in a traditional programming language like C, taking
advantage of a rich function library provided, compiling your new module, and
running your customized version of Data Explorer. While it is nice to know you can
do this, do not worry if you are not a programmer, because you may never find a
need to write your own module considering how powerful the “stock” Data Explorer
tool set is.

The next section addresses those who want to create new visual programs, So
here are a few tips on design for interactive use.

Interactors and Control Panels
Interactors are special two-part modules. To incorporate an interactor into your
visual program, you select the preferred type of interactor from the Interactor
category, place it on the VPE canvas just like any other module, and connect it to
the appropriate input tab or tabs on other modules. The interactor module that
appears on the canvas is called a “stand-in.” To use the interactor interactively, you
also place an instance of the interactor in a Control Panel window. The interactor
in the control panel represents the actual manipulator used by the user exploring
the data. When a value is set by a user, it becomes the new output of the
interactor stand-in and is thereby fed to the modules connected to the stand-in’s
output. Interactors have different appearances depending on its type; numeric
(integer or scalar) interactors can be made to look like dials or sliders, while string
interactors give you a place to type in a string. List interactors let you keep a list of
items: there are lists of strings, vectors, values, integers, and scalars.

It is good “programming” practice to set interactor minima, maxima, and increments
to reasonable values. For example, a Scale module will accept a value of 0.0, but
the effect will be to make the scaled object disappear! That is usually not
desirable; set the minimum permitted scale value to be a positive value greater
than 0.0 if you do not want to confuse users of your visual program.

Some interactors can be used in a different mode than interactive: these are called
data-driven interactors. Scalar, Integer, and Vector interactors, (and their
respective List types) all have input tabs of their own. By default, all the numeric
interactors have arbitrary ranges preset to −1,000,000 to +1,000,000. Clearly,
these will rarely be the appropriate ranges for your data. As part of good
interactive visual program design, you, the visual program author, would like to
restrict these ranges to the “correct” values for the input data sets. But if you are
building a visual program for use by others, you won’t know in advance the ranges
of data sets the user will import. If you build your visual program such that the data

232 IBM Visualization Data Explorer: User’s Guide

Field (the output of Import, for example) connects to the input tab on one of these
interactors, the correct maximum and minimum values will be automatically set the
first time the visual program is executed, and they will be updated appropriately as
the input data set changes. Thereafter, the user cannot accidentally exceed the
range of values by turning a dial or sliding a slider too far in one direction or the
other.

Data-driven interactors can be directly driven by Compute functions that might in
turn be connected to a Sequencer or other data Fields or data components in a
Field. As just a simple example, a Sequencer could emit a series of integers from
0 to 360; a Compute can turn the integers into floating-point angles in the range
from 0.0 to 1.0 then make this new number the first component of a 3-vector
(“[a/360.0, 1.0, 1.0]”); then Convert can change this HSV vector into RGB. Connect
the output of Convert to a Vector Interactor and feed the interactor output to Color.
The result is that the Sequencer will make the color of an object attached to this
Color module pass through the entire spectrum of hues; simultaneously, you can
watch the RGB values change on the Vector interactor in the Control Panel.

You can have as many Control Panels associated with a visual program as you
like. Furthermore, a handy feature is that the same “stand-in” (the Interactor
module that appears in the visual program) can have multiple interactor instances
associated with it. This means you can have both simple Control Panels and
elaborate Control Panels with commonly needed interactors appearing in both.
When you do set things up like this, you will notice that the multiple instances of
the interactors will always maintain the same value: as you change the value in
one Control Panel(s), the associated interactor(s) in the other Control Panel will
stay in perfect agreement.

Control Panels can be named and accessed by name. This allows you to set up
hierarchies or even rings of Control Panels. You might choose to make a simple
panel with only the most commonly used interactors, then create additional panels
with less-used interactors. The main panel can then be set up to access the
subpanels by name, using the Control Panel’s Panels menu. Select Open Control
Panel by Name to see the list of other Control Panels accessible by the current
panel.

It is very important to create sensible labels for the interactors in your Control
Panels. Data Explorer will automatically assign a name to a new interactor that
reflects the name of the module and input to which you have attached the interactor
stand-in in the visual program. However, this name tends to be too generic,
especially if you have several interactors connected to several similar modules. For
example, you connect a Scalar Interactor to the “value” input of an Isosurface
module. The interactor label in your control panel will acquire the title Isosurface
value. But if you also place another Scalar connected to a different Isosurface, you
will end up with two interactors with identical names. So it is incumbent upon you,
the visual program author, to change the names of your interactors to reflect their
function in your visual program. See 7.1, “Using Control Panels and Interactors” on
page 128 and “Using Interactors” on page 142 for the instructions on using Control
Panels and Interactors.

A very handy interactor is the Selector. This interactor lets you construct a pop-up
menu containing one or more string items each associated with a value, either a
scalar (including integer scalar), vector or a string. Selector has two outputs, the
value and the string you have entered. This allows you to present a menu that

 Useful Hints

 Appendix A. Using Data Explorer: Some Useful Hints 233

describes clearly what choices the user has, and when the user picks an item,
Selector outputs both the value (through its left-hand output tab) and the string
choice (through the right-hand output tab). The right-hand output can be attached
to modules that accept string input. Remember Format? You can use this
technique to change a caption depending on the user’s current Selector choice.

If you use integers as the “values” in your Selector, the left-hand output will be the
currently selected integer. You can direct this numeric output of Selector to any
module that takes an integer; a common use is to connect the integer output of
Selector to a Switch module.

The Switch module (in the Structuring category) uses a number to pick which of
several inputs to pass to its output. Suppose you have connected an Isosurface to
the first “input” (the second tab) of Switch and a ShowConnections to the second
“input” (third tab). You have also constructed a Selector menu to offer the three
choices: 0 = Both off; 1 = Show Isosurface; and 2 = Show Connections. The
left-hand output of Selector is connected to the first tab (the “selector”) of Switch.
Now when the user chooses item 1 on the menu in the Selector interactor (located
on a control panel, of course), the number 1 is emitted and received by Switch.
Switch then lets the isosurface pass through. One more trick: you may want to
allow both the Isosurface and the ShowConnections images to appear at the same
time. Use a Collect module just before the Switch. Attach the Isosurface output
both to Switch input 1, and to Collect; similarly, attach the ShowConnections output
to Switch input 2 and to the Collect. Now add a fourth choice to the Selector
menu: 3 = Show both. Attach the output of Collect to “input” 3 of Switch, and you
have provided this new capability to the user. By the way, the value “0” will always
turn off all output from the Switch; you do not need to provide a “0” valued choice if
that is not appropriate; in other words, if you always want Switch to pass at least
one item.

The default settings for Selector are 0 = off, 1 = on. You may find this handy as
you begin to develop more complicated visual programs containing a number of
objects in the Image window. As you develop each “subnet” (that is, a branch of
the visual program that yields a particular visual object), attach it to a Switch and
add an on-off Selector. Change the label of the Selector interactor in the Control
Panel to identify the object it controls. Run the output of each Switch to a Collect
(add inputs to Collect as needed), then to Image. This way, you have a whole
panel of Switches, allowing you to turn off and on each object in the scene. This
will decrease the amount of time you wait for all objects to be rendered if you know
that certain ones are OK but wish to test new ones in the scene. This technique is
easier than connecting and breaking wires, too.

Transmitters and Receivers
In the Special category, there are two modules, Transmitter and Receiver, that
should be used in larger visual programs. Each Transmitter can “broadcast” to any
number of identically named Receivers. The name you choose for the Transmitter
is analogous to a radio station’s broadcast frequency. Receivers with the identical
name are like radios tuned to that channel. Like radios, more than one Receiver
can receive from a single Transmitter; more than one Transmitter can broadcast,
each on a different frequency, requiring differently named (“tuned”) Receivers. This
means you reduce the clutter of wires looping all over the screen in the VPE. But
the real advantage of Transmitters and Receivers is that you, the visual program
author, can provide meaningful names that then appear on the modules in the

234 IBM Visualization Data Explorer: User’s Guide

visual program. This is a handy way to provide some visual documentation of the
way the visual program is wired.

Although you can add Transmitters and Receivers to your net at any time, and do
not have to add them in pairs, you will find it is easier to add one or more
Receivers to a net right after you place and name the corresponding Transmitter
because Data Explorer automatically gives Receivers the same name as the most
recently placed Transmitter. However, if you decide to add a Receiver later, just be
sure to double-click the Receiver module and set its name to the name of the
Transmitter you wish it to receive from. Changing the name of any Transmitter will
automatically change the names of all associated Receivers, but changing the
name of a Receiver affects only that specific module.

A good way to use Transmitters is to broadcast “global variables”, to use the
terminology of traditional programming. For example, you are allowed only one
Sequencer per visual program, but, as discussed earlier, the output of Sequencer
may be used by many “subnets” to perform various functions. You may find it most
convenient to place the Sequencer connected to a Transmitter you name
“sequencer” near the top of your visual program (the lowercase “s” helps remind
you of the function of this Transmitter, but you may use any name you like). Then,
wherever in the net that you need to receive the current value of the Sequencer,
attach a Receiver named “sequencer.”

Another global that you may want available is the path name of your current work
directory. Attach a String Interactor to a Transmitter. Then pick up this “channel”
with Receivers throughout the visual program, for instance, as an input to a Format
module (the Format template must include a “%s” as a place-holder for a string
input). You will find this especially convenient when you give your visual program
to a colleague who will naturally place the visual program and data files in a
differently named subdirectory on your colleague’s workstation. By simply changing
the name in the Interactor to identify the name of the work directory on the new
machine, the visual program will be back in business. If you had “hard-coded” the
name of the path into several modules on your visual program, the new user would
have to hunt down all these references and do a lot of extra typing.

 Useful Hints

 Documentation
When you author a visual program or create a macro (a special kind of visual
program, discussed in “Creating Macros” on page 149), you should describe its
function using the Comment capability (found on the Edit menu in the VPE). This
Comment will be viewable by other users (or yourself) when they run your visual
program and choose the Help menu item Application Comment.

Another brief kind of documentation is available in each module. Double-click a
module, and its default name is shown in the “Notation” box at the top of the
module description dialog box. You can add to or change this notation. This is
particularly helpful in Compute modules to describe the meaning of the expression,
for example, “square root of pressure per cubic inch.” And any time you do
something “tricky” with a module, enter a note to yourself in the Notation box for
later reference.

Compute also offers a useful way to document the terms of an expression. Each
input to Compute can be given a meaningful name (the default names are simply a
and b). If you like, you can change the input letter names to words, like “pressure”
and “scale”, then use an expression like sqrt(pressure / scale) \ ð.5. You may

 Appendix A. Using Data Explorer: Some Useful Hints 235

add more inputs to Compute by simply pressing Ctrl+A when you have selected
the Compute module.

You can also add annotation text directly to the canvas using the Add Annotation
option of the Edit menu of the VPE (see “Adding Annotation to a Visual Program”
on page 115). And you can segment your visual program with pages (see
“Creating pages in the VPE” on page 115).

A.4 Design for Video Output
Video production is only one useful output from a Data Explorer visual program.
Videotape has the advantage of portability: you can send a video to almost anyone
these days because of the proliferation of consumer VCRs. But video has the
great disadvantage that you can no longer make interactive changes in the images:
you cannot “explore” any more once you have committed your images to videotape.

Unfortunately, high-definition digital television is not widely available yet. It is very
important to be aware of the technical limitations of standard analog television,
especially as it differs from workstation monitors.

The two biggest problems encountered in moving images created on a
high-resolution workstation to a consumer television (monitor or VCR) are the loss
of resolution and the inability of consumer TV to accurately render color. (These
remarks are basically true for both the American NTSC TV system and the
European PAL system. This is not meant to be a technical description of either
system.)

TV Line Resolution
Resolution losses are most evident if you use single-width lines. Workstations have
both a higher number of vertical and horizontal lines on the screen, and a much
higher “refresh” rate than consumer TV. However, on TV, the alternating lines (odd
numbered, even numbered) are “refreshed” or painted on the monitor at slightly
different times. As long as the scene contains objects that span more than one of
these lines, our eye-brain system is fooled into believing that the entire object is
always present, due to the phenomenon of “persistence of vision.” But when you
use single-line width horizontal lines, the lines will visibly flash, clearly showing that
they are being drawn only half of the time.

Related to this problem is the condition in which you rotate a grid of single-width
lines slightly away from horizontal. This will generate an optical effect called a
“moire pattern”, in which curved lines appear where none are actually present, and,
this frequently causes colors to appear that are not in the original signal. Both of
these effects can be very distracting.

Finally, single-width vertical lines will not have the same color! Because of the way
consumer TV color phosphors are aligned, a vertical line at one location may be
blue, but if you move it slightly it will become red. A grid with single-width vertical
lines will appear to change color as you translate the grid in a horizontal direction.

So what is the solution to all these problems? Do not use single-width lines, ever.
Data Explorer's Tube module is the easiest way to fix most of these problems.
Tube generates cylinders around any kind of field with line connections. If you
have created a mesh of lines with ShowConnections, for example, you can run this

236 IBM Visualization Data Explorer: User’s Guide

visual object through Tube to “fatten” up the lines. Tube permits you to choose a
diameter that looks right. As long as you make the tubed lines bigger than one TV
line width, you will have solved the problem.

Be aware that single-width line text or captions will become virtually illegible on TV.
To get better-looking results using the “stroke” fonts (originally designed for
plotters), you can use Tube. Another technique is to use a multiple-line font, such
as the “roman_d” font supplied with Data Explorer. The best solution is to use an
“area” font that is made up of characters containing polygonal faces rather than
single lines. Data Explorer provides a font called “area”, or “pitman”, which uses
polygonal faces.

Another tip about text is that due to the much lower resolution of TV, you must be
careful to keep text large! Ideally, use a size that permits only about 30 to 40
characters to fit across the width of the screen. Fine detailed text annotations may
look good on the workstation, but will become blurry little globs on TV, defeating
the whole purpose of annotating your video for your viewers. Try making some text
in different sizes, then dub to VHS videotape. Can you still read the text? If so,
the size is probably sufficient for general use. If it is too mushy to read, increase
the size. For best legibility use white or yellow colored text.

 Useful Hints

TV Color Resolution
Standard TV is simply not capable of correctly rendering fully saturated colors, like
red (in particular) or blue. Large areas of fully saturated colors will pulse and
“bleed”; that is, they will smear to the right (due to the direction the TV raster scan
is moving). This smears any sharp edges on your objects and will severely
degrade the quality of your visualization. The color problem can best be dealt with
by never using fully saturated colors. Instead, when building your color maps,
lower the entire Saturation curve to about 0.8. Although this will look much more
pastel than you might prefer, once you have converted the images to TV, these
colors will brighten up again. What looks kind of pink on the RGB workstation
monitor will usually be much redder on TV. Of course, if you are producing images
for another medium, like a color printer, you can set the color saturations
appropriately (fully saturated may be correct in that case: the tips in this section are
to help you make better video recordings).

Animation and Frame Rates
In making animation for TV, you must be aware of “frame rate.” Just like all the
other references to sampling in the discussion above, TV “samples” time at 30
frames per second (25 in PAL). That means that at most you can have 30
time-step changes per second of video (unless you choose to skip some time steps
in your data). Generally, you may want to show many fewer changes than that or
the phenomenon may go by too quickly for the viewer to comprehend. On the
other hand, when you rotate an object you want to make as many small changes
as you can afford. The result will be smooth animation rather than jerky
cartoon-like movement. One rule of thumb is to rotate no faster than 3 degrees per
frame. That means that your object would rotate 90 degrees in one second, or 360
degrees in 4 seconds. Like any rule of thumb, this can be adjusted depending on
the case at hand. For example, it is often useful to record the rotation at more than
one speed. The human visual system will detect different levels of detail in an
object depending on its motion rate. This can be used to your advantage, to get
double-duty out of your visualization. Record and play it at one rate, and viewers
will see one aspect of your data; play it faster or slower, and different details will be

 Appendix A. Using Data Explorer: Some Useful Hints 237

noticed. And often, it is good practice to let an animation “loop” a few times,
allowing the viewer to observe the entire process from beginning to end.

The Sequencer also can generate “palindromic” motion in which the object swings
back and forth rather than jumping from the end of a series back to the beginning.
Be sure that you use this feature in a meaningful way: time steps shown in reverse
order imply time running backward. Annotation is definitely required in this case!

A.5 Presentation: Issues and Techniques
Visualization is used to represent natural phenomena that are inherently visual
themselves, but probably more often, it is used to “visualize” non-visual
phenomena. The process of making something visual means making choices on
the part of the program author or designer. Clearly, without a sound scientific basis
for these choices, this can become a purely artistic venture. While computer
graphics can be used to make beautiful artwork, that is presumably not the point of
using visualization to help study, analyze, or understand data. This does not mean
that you should forego good design in making your visualization scene
understandable. Remember and use the “rules” of design mentioned above,
including proper, legible annotation, reasonable choices for colors, and so on.
These things are determined partly by the medium you are working in and partly by
the rules of good layout and design.

But what color is a magnetic field? What color is hot? What color is high? How
fast should molecules vibrate? How quickly should a metallic surface move as it
changes phase? These decisions must be made by the program author. Probably
the three most critical choices are color, scale, and speed.

In visualization, color is used precisely because it is not realistic. That is, to
emphasize an area of interest, red is commonly used. Or, a strong contrast color
can be used against a field of fairly neutral colors. However, there are some
cultural color choices that you may find inappropriate to violate. For historical and
to some degree natural reasons, we tend to make color gamuts that indicate red as
the “highest” and blue the “lowest.” Particularly with temperature, we can associate
blue with “cool” or water/ice color, and red with “hot” or flame/sun color. To some
degree, this gamut is related to the color of heated metal, but of course, the metal
color does not pass through green at the midway point, and the color scale does
not end at white like white-hot metal, so this too is only a loose analogy. But try
inverting a color map of temperature to make red cool and blue hot and you will
probably find you have to perform mental gymnastics to interpret it “correctly.” If
you are mapping altitude, however, red is not necessarily best associated with the
“high” point: after all, the highest altitudes are snow-covered and lower altitude
deserts are frequently “red-hot”! Actually, color-mapping altitude is almost purely
an artistic endeavor, but at least it has a long history and literature in cartography.
Consulting the “traditional” textbooks for a field may indicate how users in that
discipline “prefer” things to be mapped. It is generally unwise to start a new
schema for your visualization if you wish it to be immediately accessible to other
viewers familiar with the discipline. But relating new ways of visualizing data to the
old methods may be a good way to provide new insights for everyone involved.

Remember that to use interpolation, the basis of your assumptions is that the
phenomenological space studied is continuous and linear. If you have reason to
believe the sampling was not done over a domain that can be linearly interpolated,
you should certainly not be using linear interpolated images to understand the data.

238 IBM Visualization Data Explorer: User’s Guide

You may need to collect more data on a finer grid to resolve such problems. Since
Data Explorer supports irregular grids, this is not a problem for the software, as
long as you provide the correct data sampling. Also, be aware that trying to read
too much detail out of an image is an error. You cannot accurately assess detail at
a resolution equal to or less than your sampling rate (the Nyquist law states that
you cannot derive valid signal from noisy information at less than twice your sample
rate). For example, occasionally, you will see peculiar color artifacts that arise
when data and therefore interpolated colors change rapidly at the scale of the
sampling mesh. In those cases, the best bet is to “zoom out” to see only the big
picture: do not try to read between the lines!

Related to sampling rate in space is sampling in time. Be sure you have collected
enough time step detail to ensure you have not completely missed some important
transitional state that might have occurred in the middle of an animated sequence.
It is acceptable to skip through the entire range of time steps during the
development of your animation, but be sure to fill in the gaps before the final
presentation is analyzed.

As in traditional statistical plotting, a computer can all too easily permit the author to
scale objects or graphs into wildly distorted aspects. In charting, there are some
simple rules of thumb: it is often suggested that the aspect ratio (height/width) be
about 0.75 to 1.00 for a 2-dimensional chart. This may require rescaling one axis,
and naturally, both axes and their scales must be shown. It is also bad form to
start an axis at one point then create a break part way along, causing a visual
foreshortening. And it is also inappropriate to start an axis at a point other than the
origin if the intent of the chart is to represent absolute amounts of quantities being
compared side by side. All of these rules of thumb are employed to make “good”
charts; nevertheless, these rules are too often violated even in the mainstream
media.

Unfortunately, these traditional rules of scale do not help us much when we create
3-dimensional objects of arbitrary shape. So it becomes incumbent upon you to
make sensible decisions in depicting objects never before seen by any viewer. It
will be very easy to exaggerate a 3-D height field by changing the scale factor in
Rubbersheet. You can make the one high point in the data leap as high as Mt.
Everest. If that point is in fact a special value in your data, this may be an
appropriate thing to do. If not, you may wish to choose a scale better suited to
depicting the entire surface. On the other hand, if there are peaks, you must avoid
“crushing” the entire surface to lessen the high points. Doing so could lead to
potential misinterpretation of your results.

For many researchers, Data Explorer will be the first program they have used that
permits them to create and view animation or motion playback of their data. This
new temporal dimension is often a source of problems until the author gets the
hang of things. Here are a few tips as you develop your own “moving pictures.”

First, remember that your viewers have never seen this phenomenon before. Give
them a chance to absorb it: looping the entire sequence is usually helpful. You do
not want to bore the viewer to death, but visualization is not a TV commercial:
cutting to a new scene every two seconds is not a good editing technique for
communicating difficult visual information. As we discussed in the section on
Animation, showing the same sequence at more than one speed helps a viewer
notice different information in the very same scene.

 Useful Hints

 Appendix A. Using Data Explorer: Some Useful Hints 239

Visualization allows users (fortunately) to wildly distort time scales. One video may
show the movement of tectonic plates, another the gyrations of atoms in a gas.
One scale is millions of years, the other billionths of seconds, but both are brought
into the “video” scale of one frame every thirtieth of a second. Clearly, you must
use some kind of clock annotation, especially if you plan to change playback rates,
and even more importantly, if you plan to show different data sets using the same
type of animation. The user must be given a proper sense of how two animations
compare in their duration if sense is to be made of these animated sequences.

However, humans are not particularly good at visual comparison from memory. We
are good at pattern recognition and comparison, but we have inadequate temporal
rate memories; we do not remember detail in relation to time because we do not
have good time-keeping reference systems in our brain. That implies that you must
either choose to show comparisons based on precisely the same time duration and
playback rate (thus factoring out the time dimension), or, much better, show two
motion sequences at the same time in the same picture. One way to accomplish
this is to render two sets of images, then use the Arrange module to construct an
animation showing the two sequences side by side. This technique is important if
the two phenomena vary in a scientifically critical way during the process; for
example, if one phase change event is virtually complete after 40% of the entire
time step series and another phase change after 60%, this may represent one of
the important findings of your research. But if you show the viewer first one
sequence, then the other, very few people will be able to make a solid visual
comparison from their memory. It is much more visually impressive to show the
two phase change simulations side by side, starting at the same time, and
proceeding for the same number of time steps.

Animation must also proceed quickly enough for the mind’s eye to perceive it as
animation. Imagine taking each time step of your simulation, making a 35mm slide,
and loading up a slide carousel with ninety slides. A viewer who is shown each
slide for 5 seconds is unlikely to perceive the “motion.” Put on videotape, the same
sequence of images takes only 3 seconds. This may be too fast: the entire event
may flash by too fast for the viewer to see any change. You may need to
double-record each image (i.e., slowing things down by one-half) making the video
take 6 seconds. Another way (more computationally expensive) is to generate
twice as many raw data files and twice as many images. This will yield smoother
animation, but may be too costly for your resources. Of course, some events can
be shown in 3 seconds: maybe everything stays the same for 1.5 seconds, then
“pops” into a new configuration. Slowing this down too much might hide the
importance of the sudden transition to a new state. Again, you, the user familiar
with the field and with the phenomenon become a judge and a designer. You have
to make wise decisions based on a desire to accurately and honestly depict the
behavior under study with the purpose of illuminating other viewers, not impressing
them with spectacular computer graphics displays.

240 IBM Visualization Data Explorer: User’s Guide

Appendix B. Importing Data: File Formats

B.1 General Array Importer: Keyword Information from Data Files 242
B.2 Data Explorer Native Files . 244

Overview of the Native File Format . 244
Examples . 246
Syntax of the Native File Format . 268
Objects . 269
Group Objects . 270
Series Objects . 271
Multigrid Objects . 271
Composite Field Objects . 271
Field Objects . 272
Array Objects . 272
Constant Array Objects . 273
gridpositions Keyword . 274
Regular Array Objects . 274
Product Array Objects . 275
gridconnections Keyword . 275
Path Array Objects . 276
Mesh Array Objects . 276
Xform Objects . 277
String Objects . 277
Light Objects . 277
Camera Objects . 278
Clipped Objects . 278
Screen Objects . 278
Data Mode Clause . 278
Default Clause . 279
End Clause . 279

B.3 CDF Files . 279
B.4 netCDF Files . 281

Regular Grids . 281
B.5 netCDF Files: Complex Fields . 282

Irregular Arrays . 282
Series Data . 284
Examples . 286

B.6 HDF Files . 288

 File Formats

 Copyright IBM Corp. 1991-1997 241

Importing your data into Data Explorer will be the first step in creating a
visualization of that data. In order to take this step you should have some
understanding of the Data Explorer data model and a working knowledge of a Field.
An informal description of a Field is provided in Chapter 2, “Introduction to
Visualization” on page 7. A formal description is given in Chapter 3,
“Understanding the Data Model” on page 15.

A number of methods for importing data are available for use with Data Explorer:
the General Array Importer, Data Explorer native file format, netCDF, CDF, and
HDF.

B.1 General Array Importer: Keyword Information from Data Files
In addition to the syntaxes for the grid, points, and positions keywords described in
IBM Visualization Data Explorer QuickStart Guide, it is also possible to derive
information for these keywords directly from the data file. This allows you to write
“filters” for specific applications that output their data in a set format which includes
the grid size within the file.

The syntax for the grid keyword is (in addition to the syntax given in 5.3, “Header
File Syntax: Keyword Statements” on page 85 in IBM Visualization Data Explorer
QuickStart Guide):

 bytes n bytes n
grid = [format],[type]{lines n , [skip, width] [skip, width],.. {lines n, ...
 marker string marker string

where:

format is the format in which the grid values will be found, and must be
one of the following: binary, ieee, text, or ascii. The first two
parameters are synonymous, as are the second two.

type is the type of the values, and should be one of the following:

 byte int short
unsigned byte signed int signed short
signed byte unsigned int unsigned short

Note that in each of the three groupings shown here, the first and
second (reading down) are equivalent to each other.

bytes, lines, and marker
specify where to begin reading the grid values.

skip, and width
are optional and should be used when two pieces of information
are on the same line with other information separating them (see
Example 2). If necessary, different portions of the grid
specification can be read separately by repeating the bytes, lines,
or marker specification (see Example 3).

242 IBM Visualization Data Explorer: User’s Guide

 Example 1
Suppose that the data file contains the following first line:

dimensions 1ðð 3ðð

You can specify that this information is to be derived from the data file by the
following statement:

grid = lines ð, 11, 3, 1, 3

This specifies that 0 lines are to be skipped. Then 11 characters are skipped, and
the first grid dimension is read from 3 characters. Then 1 character is skipped, and
the second grid dimension is read from 3 characters.

You could also have used the statement

grid = bytes 11

which simply specifies that the grid information will be found after skipping 11 bytes
in the file.

 Example 2
Suppose the that data file contains the following line (not at the top of the file)

xdim = 5 ydim = 2ð

You could use the statement

grid = marker "xdim =", ð, 2, 8, 2

This specifies that one should start reading after “xdim =,” read the first dimension
from 2 characters, skip 8 characters, then read the second dimension from 2
characters.

 File Formats

 Example 3
suppose that the data file contains the following lines

xsize = 2ð

ysize = 3ð

You could use the statements

grid = marker "xsize =" X marker "ysize ="

or

grid = marker "xsize =",ð,3 X lines 1,8,2

The first specifies that the first dimension should be read following the marker
“xsize =,” and the second dimension should be read following the marker “ysize =.”
The second statement specifies that the first dimension should be read from 3
characters, after skipping 0 characters following “xsize =,” and that the second
dimension should be read from 2 characters after skipping 1 line and 8 characters.

The syntax for the points keyword is (in addition to the syntax given in 5.3,
“Header File Syntax: Keyword Statements” on page 85 in IBM Visualization Data
Explorer QuickStart Guide):

 Appendix B. Importing Data: File Formats 243

 bytes n
points = [format],[type]{ lines n , [skip, width]
 marker string

where:

format is the format in which the grid values will be found, and must be one of the
following: binary, ieee, text, or ascii. The first two parameters are
synonymous, as are the second two.

For type and the other parameters, see the preceding description of grid.

The syntax for the positions keyword is (in addition to the syntax given in 5.3,
“Header File Syntax: Keyword Statements” on page 85 in IBM Visualization Data
Explorer QuickStart Guide):

 bytes n
positions =[format],[type]{ lines n , [skip, width] | ?, ...
 marker string

(This syntax may be used only if you are specifying regular positions: origin and
delta pairs for each dimension. As described in IBM Visualization Data Explorer
QuickStart Guide, the origins and deltas are specified as origin1, delta1, origin2,
delta2, etc.)

format is the format in which the grid values will be found, and must be one of the
following: binary, ieee, text, or ascii. The first two parameters are
synonymous, as are the second two.

For type and the other parameters, see the description of grid above. A
question mark (?) signifies that the default should be used (origin=0 or
delta=1) for a particular origin or delta value. This would be used if only the
origins or only the deltas are to be found in the file.

B.2 Data Explorer Native Files
The Data Explorer native file format encapsulates the Data Explorer data model on
disk (or on standard output as the result of an external conversion program). This
file format is comprehensive and flexible in that it can represent any of the Objects
created in Data Explorer. Thus, any Object can be exported at any point. A data
file in this format can be imported into a Data Explorer session by specifying “dx”
as the value of the format parameter for the Import module. For more information,
see “Import” on page 165 in IBM Visualization Data Explorer User’s Reference.

Overview of the Native File Format
A Data Explorer file consists of a header section followed by an optional data
section. The header section consists of a textual description of a collection of
Objects. The data section contains the Array Object data, either as text or in
binary, and is referred to by the header section. A header section can refer to
Objects and data either in the current file or in other files.

Figure 83 on page 245 shows data imbedded in its header. Another file cannot
refer to data in this file because there is no specified data section. However,
header sections in this file can refer to data sections in other files. This method is
sometimes more convenient when creating data files with simple programs.

244 IBM Visualization Data Explorer: User’s Guide

Figure 84 on page 245 shows a header section referring to a data section in
another file. The header refers to the data using the data file name and an offset
location (in bytes from the beginning of the data section) in the file.

Figure 85 on page 246 shows a header section and data section in the same file.
The header refers to the data section using a byte offset, relative to the start of the
data section.

Figure 83. Data Imbedded in a Header Section

 File Formats

Figure 84. Header Referring to Data in Another File

 Appendix B. Importing Data: File Formats 245

Figure 85. Header and Data in the Same File

These configurations can be used in conjunction with each other. For example, a
file can contain both a header and data and can refer to data both in the same file
and in another file. A file can also have only a header and refer to data in either a
data-only file or in a file that contains both a header and data. This flexibility allows
you to construct a header that points to data in existing files, and lets you view and
edit the header information (if necessary), using standard tools.

The following examples illustrate some of the ways you can import data using the
Data Explorer native file format. You may wish to refer to the full specification of
the syntax (see “Syntax of the Native File Format” on page 268).

 Examples
The basic way to create a data file is to first define the Arrays, or components,
contained in a Field and to then describe how to collect the components together.
To define a higher level structure, such as a series, first define the components,
then the Fields, and then how to collect the Fields to make a series. The examples
in this section illustrate the process.

In the first six examples, the data Objects can be viewed by the script shown here.
Other scripts are shown with the later examples.

data = Import("filename.dx", format = "dx");

connections = ShowConnections(data);

connections = AutoColor(connections);

tubes = Tube(connections, ð.ð8);

camera = AutoCamera(tubes, "off diagonal");

image = Render(tubes, camera);

Display(image);

Note: For Figure 86 on page 248 and Figure 87 on page 249, the argument “off
front” is used instead of “off diagonal.”

246 IBM Visualization Data Explorer: User’s Guide

Simply substitute the file name of the data file for filename in the Import statement.
For information about how to use the Data Explorer script language, see
Chapter 10, “Data Explorer Scripting Language” on page 187.

Example 1. A Regular Grid
The following example illustrates the basic Objects of the data model, and shows
how to imbed data as text in the header section. The Objects and data describe a
regular grid. This file is found in /usr/lpp/dx/samples/data/regular.dx.
Figure 86 on page 248 shows the resulting structure. The axes diagram in the
lower right corner of the figure indicates the orientation of the axes. This
orientation applies to all subsequent examples as well.

Note that the positions are considered to increment in the order “last index varies
fastest” when matching data to positions. For example, for this simple 4 x 2 x 3
grid, the order of the positions is [x0y0z0], [x0y0z1], [x0y0z2], [x0y1z0], and so on. This
is because the deltas are specified in the order .x, y, z, so z is the last index. If the
data was stored in the order [x0y0z0], [x1y0z0] ..., then the order of the delta
clauses would be reversed, and the counts would be specified as 3 2 4.

When using the gridconnections keyword, it is not necessary to specify the
“element type” or “ref” attribute, as these will automatically be set for you.

This example describes a regular grid

object 1 is the regular positions.

The grid is 4 in x by 2 in y by 3 in z. The origin is

at [ð ð ð], and the deltas are 1 in the first and third

dimensions, and 2 in the second dimension

object 1 class gridpositions counts 4 2 3

origin ð ð ð

delta 1 ð ð

delta ð 2 ð

delta ð ð 1

object 2 is the regular connections

object 2 class gridconnections counts 4 2 3

attribute "element type" string "cubes"

attribute "ref" string "positions"

object 3 is the data, which is in a one-to-one correspondence with

the positions ("dep" on positions).

The data are matched to the positions in the order

"last index varies fastest", i.e. (xð, yð, zð), (xð, yð, z1),

(xð, yð, z2), (xð, y1, zð), etc.

object 3 class array type float rank ð items 24 data follows

 1 3.4 5 2

 3.4 5.1 ð.3 4.5

 1 2.3 4.1 2.1

 6 8 9.1 2.3

 4.5 5 3.ð 4.3

 1.2 1.2 3.ð 3.2

attribute "dep" string "positions"

 File Formats

 Appendix B. Importing Data: File Formats 247

A field is created with three components: "positions", "connections",

and "data"

object "regular positions regular connections" class field

component "positions" value 1

component "connections" value 2

component "data" value 3

end

Figure 86. Regular Grid Example. The argument “off front” has been substituted for “off
diagonal” in the script used to generate this figure (see “Examples” on page 246).

Example 2. A Regular Skewed Grid
This example is similar to the previous one. However, the “positions” component is
changed slightly so that the Objects and data describe a regular skewed grid. This
file is found in /usr/lpp/dx/samples/data/regularskewed.dx. Figure 87 on
page 249 shows the resulting structure.

This example describes a regular grid, where the axes are

non-orthogonal

object 1 is the regular positions, where the deltas is non-orthogonal

object 1 class gridpositions counts 4 2 3

origin ð ð ð

delta 1 ð.2 ð

delta ð 2 ð

delta ð ð 1

object 2 is the regular connections

object 2 class gridconnections counts 4 2 3

248 IBM Visualization Data Explorer: User’s Guide

object 3 is the data, which is in a one-to-one correspondence with the

positions ("dep" on positions)

object 3 class array type float rank ð items 24 data follows

 1 3.4 5 2

 3.4 5.1 ð.3 4.5

 1 2.3 4.1 2.1

 6 8 9.1 2.3

 4.5 5 3.ð 4.3

 1.2 1.2 3.ð 3.2

attribute "dep" string "positions"

the field contains three components: "positions", "connections", and

"data"

object "regular positions regular connections" class field

component "positions" value 1

component "connections" value 2

component "data" value 3

end

Figure 87. Regular Skewed Grid Example. The argument “off front” has been substituted
for “off diagonal” in the script used to generate this figure (see “Examples” on page 246).

 File Formats

Example 3. A Warped Regular Grid

 Appendix B. Importing Data: File Formats 249

Figure 88. Warped Regular Grid Example

The example file (in /usr/lpp/dx/samples/data/deformedregular.dx) defines a
warped regular grid and shows how to imbed data as text in a header section. The
values of the “positions” component are irregular and must be enumerated.
Figure 88 shows the resulting structure.

The irregular, 3 dimensional positions

object 1 class array type float rank 1 shape 3 items 24 data follows

 ð ð ð

 ð ð 1

 ð ð 2

 ð 2 ð

 ð 2 1

 ð 2 2

 1 ð.841471 ð

 1 ð.841471 1

 1 ð.841471 2

 1 2.841471 ð

 1 2.841471 1

 1 2.841471 2

 2 ð.9ð92974 ð

 2 ð.9ð92974 1

 2 ð.9ð92974 2

 2 2.9ð9297 ð

 2 2.9ð9297 1

 2 2.9ð9297 2

 3 ð.14112 ð

 3 ð.14112 1

 3 ð.14112 2

 3 2.14112 ð

 3 2.14112 1

 3 2.14112 2

250 IBM Visualization Data Explorer: User’s Guide

The regular connections

object 2 class gridconnections counts 4 2 3

The data, in a one-to-one correspondence with the positions

object 3 class array type float rank ð items 24 data follows

 1 3.4 5

 2 3.4 5.1

 ð.3 4.5 1

 2.3 4.1 2.1

 6 8 9.1

 2.3 4.5 5

 3 4.3 1.2

 1.2 3 3.2

attribute "dep" string "positions"

The field, with three components: "positions", "connections", and

"data". The field is given the name "irreg positions regular connections".

object "irreg positions regular connections" class field

component "positions" value 1

component "connections" value 2

component "data" value 3

end

The positions are joined in the order “last index varies fastest,” with the connections
specified as 4 x 2 × 3: the first 3 positions are joined in a line, as are those in each
set of 3 following. Then the first 6 positions are joined as a set of 2 quadrilaterals,
as are the next 6 and so on (see Figure 88 on page 250).

 File Formats

Example 4. An Irregular Grid
This example file (in /usr/lpp/dx/samples/data/irregular.dx) defines an irregular
grid and shows how to imbed data as text in a header section. The values of the
“positions” and “connections” components are irregular and must be enumerated.
See Figure 89 on page 252.

 Appendix B. Importing Data: File Formats 251

Figure 89. Irregular Grid Example

The irregular positions, which are 24 3-dimensional points.

object 1 class array type float rank 1 shape 3 items 24 data follows

 ð ð ð

 ð ð 1

 ð ð 2

 ð 2 ð

 ð 2 1

 ð 2 2

 1 ð.841471 ð

 1 ð.841471 1

 1 ð.841471 2

 1 2.841471 ð

 1 2.841471 1

 1 2.841471 2

 2 ð.9ð92974 ð

 2 ð.9ð92974 1

 2 ð.9ð92974 2

 2 2.9ð9297 ð

 2 2.9ð9297 1

 2 2.9ð9297 2

 3 ð.14112 ð

 3 ð.14112 1

 3 ð.14112 2

 3 2.14112 ð

 3 2.14112 1

 3 2.14112 2

252 IBM Visualization Data Explorer: User’s Guide

The irregular connections, which are 3ð tetrahedra

object 2 class array type int rank 1 shape 4 items 3ð data follows

 1ð 3 4 1

 3 1ð 9 6

 1ð 1 7 6

 6 1 3 1ð

 6 1 ð 3

 1ð 1 4 5

 5 1 8 1ð

 8 5 2 1

 1ð 8 7 1

 5 8 11 1ð

 15 6 9 1ð

 1ð 6 13 15

 13 1ð 7 6

 15 13 12 6

 1ð 13 16 15

 17 1ð 11 8

 1ð 17 16 13

 17 8 14 13

 13 8 1ð 17

 13 8 7 1ð

 22 15 16 13

 15 22 21 18

 22 13 19 18

 18 13 15 22

 18 13 12 15

 22 13 16 17

 17 13 2ð 22

 2ð 17 14 13

 22 2ð 19 13

 17 2ð 23 22

attribute "element type" string "tetrahedra"

attribute "ref" string "positions"

The data, which is in a one-to-one correspondence with the positions

object 3 class array type float rank ð items 24 data follows

 1 3.4 5 2 3.4

 5.1 ð.3 4.5 1 2.3

 4.1 2.1 6 8 9.1

 2.3 4.5 5 3 4.3

 1.2 1.2 3 3.2

attribute "dep" string "positions"

the field, with three components: "positions", "connections", and

"data"

object "irregular positions irregular connections" class field

component "positions" value 1

component "connections" value 2

component "data" value 3

end

 File Formats

 Appendix B. Importing Data: File Formats 253

Example 5. Header and Data in Separate Files
The following example uses a header file that contains no data. Instead, it refers to
another file, irregirreg2.bin, that contains the data in binary format. This
example contains the same information as “Example 4. An Irregular Grid” on
page 251, but the data is stored in a file separate from the header. If you use this
sample header file in a script, the results are the same as in Figure 89 on
page 252. This file can be found in /usr/lpp/dx/samples/data/irregirreg2.dx.

object 1 class array type float rank 1 shape 3 items 24 msb binary

data file irregirreg2.bin,ð

attribute "dep" string "positions"

object 2 class array type int rank 1 shape 4 items 3ð msb binary

data file irregirreg2.bin,288

attribute "element type" string "tetrahedra"

attribute "ref" string "positions"

object 3 class array type float rank ð items 24 msb binary

data file irregirreg2.bin,768

attribute "dep" string "positions"

object "irreg positions irreg connections binary file" class field

component "positions" value 1

component "connections" value 2

component "data" value 3

end

Often, you can use this method to point to existing data files. To do this, your
header file must:

� Describe the coordinate system of the data.
� Indicate how many data values there are in the data file.
� Indicate the type of data values (float, byte, scalar, vector, and so on).

For example, suppose you have an existing data file written in the IEEE floating
point format. It has the following characteristics:

� It is on a regular grid, 100 x 100 x 15, and the delta in the z direction is 2,
while the deltas in the x and y directions are 1.

� The origin of the grid is at [50 100 10].

� The first three bytes of the file are the number of elements in the x, y, and z
directions.

� The data values are listed in an order such that z varies fastest.

Given all these conditions, the following Data Explorer header file imports the data
(substituting the data file name for data_file_name):

object 1 class gridpositions counts 1ðð 1ðð 15

origin 5ð 1ðð 1ð

delta 1 ð ð

delta ð 1 ð

delta ð ð 2

object 2 class gridconnections counts 1ðð 1ðð 15

attribute "element type" string "cubes"

attribute "ref" string "positions"

254 IBM Visualization Data Explorer: User’s Guide

It skips the first three bytes before reading the data values

object 3 class array type float rank ð items 15ðððð

ieee data file data_file_name,3

object "field" class field

component "positions" value 1

component "connections" value 2

component "data" value 3

end

Example 6. Product Arrays
The following examples show how to use Product Arrays to define positions that
are composed of products of arrays. Such positions may be regular in one or more
dimensions and irregular in one or more dimensions. The resulting product array is
found as a product of all possible combinations of the terms comprising the Array.

The first data file defines data that has irregular positions in the xy plane but
regular spacing in the z dimension. This file can be found in
/usr/lpp/dx/samples/data/product1.dx. Figure 90 on page 256 shows the
resulting image.

define a set of irregular points in the xy plane

object 1 class array type float rank 1 shape 3 items 8 data follows

 ð.ð ð.ð ð.ð

 ð.ð 1.1 ð.ð

 1.ð ð.2 ð.ð

 1.1 1.3 ð.ð

 2.2 ð.2 ð.ð

 2.5 1.1 ð.ð

 3.5 ð.1 ð.ð

 3.4 1.ð ð.ð

define a set of regular points in the z direction

object 2 class regulararray count 3

origin ð.ð ð.ð ð.ð

delta ð.ð ð.ð 1.ð

create a product array of the irregular points in the xy plane and

the regular points in the z direction

object 3 class product array

 term 1

 term 2

create regular cube connections

object 4 class gridconnections counts 4 2 3

the data component

object 5 class array type float rank ð items 24 data follows

 1.ð 2.1 2.ð 1.ð 4.5 6.7 8.1 2.ð

 -ð.9 -ð.8 1.ð 1.2 1.3 ð.1 ð.3 3.ð

 1.2 3.2 4.1 ð.9 2.ð 1.ð -ð.9 2.ð

object "field" class field

 component "positions" 3

 component "connections" 4

 component "data" 5

end

 File Formats

 Appendix B. Importing Data: File Formats 255

Figure 90. Product Array Example with Irregular Points in the XY Plane

The next data file defines a regular grid that is regular in the xy plane but has
irregular positions in the z direction. This file can be found in
/usr/lpp/dx/samples/data/product2.dx. Figure 91 on page 257 shows the
resulting image.

define a set of regular points in the xy plane

object 1 class gridpositions 4 2 1

define a set of irregular points in the z direction

object 2 class array type float rank 1 shape 3 items 3 data follows

 ð.ð ð.ð ð.ð

 ð.ð ð.ð 1.ð

 ð.ð ð.ð 3.ð

create a product array of the regular points in the xy plane and

the irregular points in the z direction

object 3 class product array

 term 1

 term 2

create regular cube connections

object 4 class gridconnections counts 4 2 3

the data component

object 5 class array type float rank ð items 24 data follows

 1.ð 2.1 2.ð 1.ð 4.5 6.7 8.1 2.ð

 -ð.9 -ð.8 1.ð 1.2 1.3 ð.1 ð.3 3.ð

 1.2 3.2 4.1 ð.9 2.ð 1.ð -ð.9 2.ð

256 IBM Visualization Data Explorer: User’s Guide

object "field" class field

 component "positions" 3

 component "connections" 4

 component "data" 5

end

Figure 91. Product Array Example with Irregular Points in the Z Direction

 File Formats

Example 7. Series
The following file defines the data for a series. It defines three data Array Objects,
and then three Field Objects that are associated with the data. The grid definitions
are in a separate file (pos_conn.data). This first file can be found in
/usr/lpp/samples/data/regseries.dx.

This example describes a data series with three member fields

Object 1 is the data associated with the first frame in the

series. The data is "dep" positions, or in a one-to-one

correspondence with positions.

object 1 class array type float rank 1 shape 3 items 18 data follows

 1.ð ð.1 ð.ð

 1.4 ð.2 ð.ð

 1.ð ð.ð ð.ð

 2.2 ð.1 ð.2

 1.ð ð.ð ð.ð

 2.ð ð.ð ð.1

 ð.9 ð.1 ð.ð

 1.1 -ð.4 ð.ð

 1.ð ð.1 ð.ð

 1.2 ð.1 ð.1

 ð.3 ð.ð ð.ð

 Appendix B. Importing Data: File Formats 257

 1.ð ð.1 ð.1

 1.1 -ð.4 ð.2

 1.1 ð.2 ð.ð

 1.1 ð.1 ð.ð

 1.2 ð.1 ð.1

 1.1 ð.ð ð.ð

 ð.9 ð.ð ð.1

attribute "dep" string "positions"

Object 2 is the data associated with the second frame in the series.

object 2 class array type float rank 1 shape 3 items 18 data follows

 ð.ð 1.1 ð.ð

 ð.1 2.2 ð.ð

 ð.ð 1.ð ð.ð

 ð.2 1.1 -ð.2

 ð.ð ð.8 ð.ð

 ð.ð 1.9 ð.4

 ð.1 1.1 ð.ð

 ð.1 1.2 ð.ð

 ð.ð 1.1 ð.ð

 ð.2 2.1 ð.1

 ð.1 1.ð ð.ð

 ð.ð ð.8 ð.1

 ð.1 ð.9 -ð.2

 ð.1 1.2 ð.ð

 ð.1 1.1 ð.ð

 ð.2 1.1 -ð.4

 ð.1 ð.9 ð.ð

 ð.2 ð.9 ð.1

attribute "dep" string "positions"

Object 3 is the data associated with the third frame in the series.

object 3 class array type float rank 1 shape 3 items 18 data follows

 ð.ð ð.1 1.ð

 ð.1 ð.2 1.ð

 ð.ð ð.ð 2.ð

 -ð.2 ð.1 2.2

 ð.ð ð.1 ð.9

 ð.ð ð.2 ð.8

 -ð.4 ð.1 ð.9

 ð.1 ð.2 1.9

 ð.ð ð.1 ð.7

 ð.2 ð.1 1.1

 -ð.1 ð.ð 2.ð

 ð.ð ð.3 1.1

 ð.1 ð.1 1.2

 -ð.5 ð.2 1.ð

 ð.1 ð.1 2.ð

 ð.2 ð.1 1.4

 ð.1 -ð.3 ð.9

 ð.2 ð.3 1.1

attribute "dep" string "positions"

258 IBM Visualization Data Explorer: User’s Guide

Object 4 is the first field in the series. The positions and

connections are defined by objects 1 and 2 in a separate file,

"pos_conn.data", and the data is given by object 1 in this file.

object 4 class field

component "positions" value file "pos_conn.data",1

component "connections" value file "pos_conn.data",2

component "data" value 1

Object 5 is the second field in the series. The positions and

connections are defined by objects 1 and 2 in a separate file,

"pos_conn.data" (and are in fact the same positions and connections

as those of the first field), and the data is given by object 2 in this file.

object 5 class field

component "positions" value file "pos_conn.data",1

component "connections" value file "pos_conn.data",2

component "data" value 2

Object 6 is the third field in the series. The positions and

connections are defined by objects 1 and 2 in a separate file,

"pos_conn.data" (and are in fact the same positions and connections

as those of the first field), and the data is given by object 3 in

this file.

object 6 class field

component "positions" value file "pos_conn.data",1

component "connections" value file "pos_conn.data",2

component "data" value 3

Here we create the series object with three members.

The members are objects 4, 5, and 6, which we defined above.

Each has a position tag associated with it (for example a time tag).

object "series" class series

member ð value 4 position 1.3

member 1 value 5 position 2.5

member 2 value 6 position 4.5

end

The following file defines the grid for this time series. This file can be found in
/usr/lpp/samples/data/pos_conn.data.

object 1 class gridpositions counts 3 2 3

origin ð ð ð

delta 1 ð ð

delta ð 2 ð

delta ð ð 1

object 2 class gridconnections counts 3 2 3

attribute "element type" string "cubes"

attribute "ref" string "positions"

end

 File Formats

 Appendix B. Importing Data: File Formats 259

Example 8. Two-dimensional Grid, Cell-centered Data
This example describes a regular 2-dimensional grid. In this example, unlike other
examples presented here, the data are dependent on (in a one-to-one
correspondence with) the “connections” rather than the “positions” component.
Data Explorer interprets this as implying that the data value within each connection
element is the constant given by the corresponding data value. For example, if you
used AutoColor and rendered this Field, you would see blocks of constant color.

You can use the following script to render this Object:

data = Import("/usr/lpp/samples/data/datadepconnections.dx", format="dx");

colored = AutoColor(data);

camera = AutoCamera(colored);

 Display(colored, camera);

The data file is located in /usr/lpp/samples/data/datadepconnections.dx.

object 1 is the regular positions. The grid is 4x4. The origin is

at [ð ð], and the deltas are 1 in the first dimension, and

2 in the second dimension

object 1 class gridpositions counts 4 4

origin ð ð

delta 1 ð

delta ð 2

object 2 is the regular connections, quads, connecting the positions

object 2 class gridconnections counts 4 4

object 3 is the data, which are in a one-to-one correspondence with

the connections ("dep" on connections)

object 3 class array type float rank ð items 9 data follows

 1 3.4 5 2

 3.2 5.5 ð.3 4.5

 4.ð

attribute "dep" string "connections"

A field is created with three components: "positions", "connections",

and "data"

object "regular positions regular connections" class field

component "positions" value 1

component "connections" value 2

component "data" value 3

end

Example 9. Faces, Loops, and Edges
Faces loops, and edges are used to define polygons. For example, you may wish
to define regions of a map with polygons. A positions component identifies the
vertices of the polygons, an edges component identifies how to connect positions, a
loops component identifies the beginning of each loop by referring to the first edge
of the loop, and a faces component identifies which loops make up a face. (A face
may have more than one loop if the face has one or more holes in it.)

For more information about faces, loops, and edges, see “Faces, Loops, and Edges
Components” on page 24. Note that some modules do not accept this kind of
data. However, the Refine module can be used to convert faces, loops, and edges

260 IBM Visualization Data Explorer: User’s Guide

data to triangles. See “Refine” on page 258 in IBM Visualization Data Explorer
User’s Reference.

The following example describes a simple 2-dimensional data set consisting of five
polygons. None of the polygons has holes. To view the data, you can use the
following script:

g = Import("FacesLoopsEdges.dx");

c = AutoCamera(g);

colored = AutoColor(g);

Display(colored, c);

The data file is given below, and the resulting connections are illustrated in
Figure 92 on page 263. The data file can be found in
/usr/lpp/dx/samples/data/FacesLoopsEdges.dx.

#

Example of faces, loops and edges components.

This example has no holes.

#

#

Positions array. These are a list of all the vertices of the object;

no particular order is required here.

#

object "position list" class array type float rank 1 shape 2 items 11

data follows

 ð.133985 ð.812452 # point number ð

 ð.375ð19 ð.896258 # point number 1

 ð.532733 ð.76484 # point number 2

 ð.5238ð6 ð.4ð4777 # point number 3

 ð.3ðð626 ð.3274ð7 # point number 4

 ð.145888 ð.5ð8927 # point number 5

 ð.68152 ð.851137 # point number 6

 ð.815428 ð.758889 # point number 7

 ð.94636 ð.592248 # point number 8

 ð.729132 ð.416679 # point number 9

 ð.5357ð9 ð.19ð524 # point number 1ð

#

Edges array. This is a list of connected points, by point number.

All the edges associated with a particular face need to be listed

together. If points 1ð, 3 and 7 make a triangle, the list is

"1ð 3 7" and the 1ð is not repeated. Note that below, for

readability, the connected points for each loop are

shown together. However line breaks are not significant

to the importer, and all of the following numbers could have

been on the same line, or one to a line, with the same result.

object "edge list" class array type int rank ð items 21 data follows

 1 2 6 # edge point index ð

 ð 5 4 3 2 1 # edge point index 3

 2 3 9 8 7 6 # edge point index 9

 3 1ð 9 # edge point index 15

 3 4 1ð # edge point index 18

attribute "ref" string "positions"

 File Formats

 Appendix B. Importing Data: File Formats 261

Loops array. This is a list of connected edges, by edge number.

Each number is the edge index of where the next loop starts.

object "loop list" class array type int rank ð items 5 data follows

ð # loop index ð

 3 # 1

 9 # 2

 15 # 3

 18 # 4

attribute "ref" string "edges"

#

Faces array. This is list of which loops make faces. If there are

no holes in the faces, this is list of all loops. If two or more

loops actually describe the outside edges and inside hole edges of

a face, then this list contains the starting loop numbers of the

list of loops making up a face.

#

object "face list" class array type int rank ð items 5 data follows

 ð

 1

 2

 3

 4

attribute "ref" string "loops"

data array. Dependent on faces.

#

object "data" class array type float rank ð items 5 data follows

 ð 2.5 1.2 ð.4 1.8

attribute "dep" string "faces"

#

Field definition to put the arrays together.

#

object "map" class field

 component "positions" "position list"

 component "edges" "edge list"

 component "loops" "loop list"

 component "faces" "face list"

 component "data" "data"

end

262 IBM Visualization Data Explorer: User’s Guide

Figure 92. Example of Faces, Loops, and Edges

 File Formats Example 10. Faces, Loops, and Edges with a Hole

Figure 93. Example of Faces, Loops, and Edges with a Hole

The following data file is identical to the previous data file except that the third
polygon has a square hole in it. The resulting connections are illustrated in
Figure 93.

 Appendix B. Importing Data: File Formats 263

#

Example of faces, loops and edges components. The third face has a

square hole in it.

#

#

Positions array. These are a list of all the vertices of the object;

no particular order is required here.

#

object "position list" class array type float rank 1 shape 2 items 15

data follows

 ð.133985 ð.812452 # point number ð

 ð.375ð19 ð.896258 # point number 1

 ð.532733 ð.76484 # point number 2

 ð.5238ð6 ð.4ð4777 # point number 3

 ð.3ðð626 ð.3274ð7 # point number 4

 ð.145888 ð.5ð8927 # point number 5

 ð.68152 ð.851137 # point number 6

 ð.815428 ð.758889 # point number 7

 ð.94636 ð.592248 # point number 8

 ð.729132 ð.416679 # point number 9

 ð.5357ð9 ð.19ð524 # point number 1ð

 ð.6ððððð ð.7ððððð # point number 11

 ð.7ððððð ð.7ððððð # point number 12

 ð.7ððððð ð.6ððððð # point number 13

 ð.6ððððð ð.6ððððð # point number 14

#

Edges array. This is a list of connected points, by point number. All

the edges associated with a particular face need to be listed together.

If points 1ð, 3 and 7 make a triangle, the list is "1ð 3 7" and the 1ð

is not repeated. Following a polygon, the front of the polygon is

determined by the right-hand rule.

object "edge list" class array type int rank ð items 25 data follows

 1 2 6 # edge point index ð

 ð 5 4 3 2 1 # edge point index 3

 2 3 9 8 7 6 # edge point index 9

 11 12 13 14 # edge point index 15 (hole in third face)

 3 1ð 9 # edge point index 19

 3 4 1ð # edge point index 22

attribute "ref" string "positions"

#

Loops array. This is a list of connected edges, by edge number. Each

number is the edge index of where the next loop starts.

object "loop list" class array type int rank ð items 6 data follows

 ð # loop index ð

 3 # 1

 9 # 2

 15 # 3

 19 # 4

 22 # 5

attribute "ref" string "edges"

264 IBM Visualization Data Explorer: User’s Guide

#

Faces array. This is list of which loops make faces. If there are

no holes in the faces, this is list of all loops. If two or more

loops actually describe the outside edges and inside hole edges of

a face, then this list contains the starting loop numbers of the

list of loops making up a face.

#

object "face list" class array type int rank ð items 5 data follows

 ð

 1

 2

 4

 5

attribute "ref" string "loops"

#

data array. Dependent on faces.

#

object "data" class array type float rank ð items 5 data follows

 ð 2.5 1.2 ð.4 1.8

attribute "dep" string "faces"

#

#

Field definition to put the arrays together.

#

object "map with hole" class field

 component "positions" "position list"

 component "edges" "edge list"

 component "loops" "loop list"

 component "faces" "face list"

 component "data" "data"

end

 File Formats

Example 11. Three-dimensional Faces, Loops, and Edges
The following data file describes a faces, loops, and edges Object that exists in
3-dimensional space.

// To view the solid:

g = Import("solid.dx");

a = AutoCamera(g, [ð.2 ð.1 1.ð]);

Display(g, a);

// To look at just the connections:

s = ShowConnections(g);

Display(s, a);

Use the first part of the script to view the solid, and the second part to view only
the connections. The data file is given below, and the resulting connections are
shown in Figure 94 on page 266. This data file can be found in
/usr/lpp/samples/data/solid.dx.

Example of faces, loops and edges components.

#

Positions array. These are a list of all the vertices of the object;

no particular order is required here.

object "position list" class array type float rank 1 shape 3 items 12

data follows

 Appendix B. Importing Data: File Formats 265

 5.ð ð.ð 1.ð # point number ð

 5.ð ð.ð 5.ð # 1

 3.ð 5.ð 5.ð # 2

 4.5 ð.ð 1.5 # 3

 4.5 ð.ð 4.5 # 4

 3.ð 4.ð 5.ð # 5

 4.ð ð.5 5.ð # 6

 1.5 ð.ð 1.5 # 7

 1.5 ð.ð 4.5 # 8

 2.ð ð.5 5.ð # 9

 1.ð ð.ð 5.ð # 1ð

 1.ð ð.ð 1.ð # 11

Edges array. This is a list of connected points, by point number. All

the edges associated with a particular face need to be listed together.

If points 1ð, 3 and 7 make a triangle, the list is "1ð 3 7" and the 1ð

is not repeated. If there is a hole in the triangle, the edges that

describe the hole must be listed right before or right after.

object "edge list" class array type int rank ð items 23 data follows

 1 ð 2 # edge point index ð

 1ð 1 2 # 3

 9 6 5 # 6

 1ð 1 ð 11 # 9

 8 4 3 7 # 13

 11 1ð 2 # 17

 ð 11 2 # 2ð

attribute "ref" string "positions"

Loops array. This is a list of connected edges, by edge number. Each

number is the edge index of where the next loop starts.

object "loop list" class array type int rank ð items 7 data follows

Figure 94. Example of a Surface Using Faces, Edges, and Loops

266 IBM Visualization Data Explorer: User’s Guide

 ð # loop index ð

 3 # 1

 6 # 2

 9 # 3

 13 # 4

 17 # 5

 2ð # 6

attribute "ref" string "edges"

Faces array. This is list of which loops make faces. If there are

no holes in the faces, this is list of all loops. If two or more

loops actually describe the outside edges and inside hole edges of

a face, then this list contains the starting loop numbers of the

list of loops making up a face.

object "face list" class array type int rank ð items 5 data follows

 ð

 1

 3

 5

 6

attribute "ref" string "loops"

Colors array. To get flat shaded surfaces, there should be one color

per face, and one normal per face. These are Red,Green,Blue values

between ð (no color) and 1 (fully saturated).

object "color list" class array type float rank 1 shape 3 items 5 data follows

 ð.6 ð.3 ð.6

 ð.8 ð.8 ð.1

 ð.9 ð.4 ð.9

 ð.4 ð.8 ð.7

 ð.8 ð.8 ð.8

attribute "dep" string "faces"

Normals array.

object "normal list" class array type float rank 1 shape 3 items 5

data follows

 ð.93 ð.37 ð.ð

 ð.ð ð.ð 1.ð

 ð.ð -1.ð ð.ð

-ð.93 ð.37 ð.ð

 ð.ð -ð.63 -ð.78

attribute "dep" string "faces"

Field definition to put the arrays together.

object "solid" class field

 component "positions" "position list"

 component "edges" "edge list"

 component "loops" "loop list"

 component "faces" "face list"

 component "colors" "color list"

 component "normals" "normal list"

end

 File Formats

 Appendix B. Importing Data: File Formats 267

Example 12. Image Files
This Data Explorer header file reads an image (cylinder.rgb). The image is 350 x
300 and consists of RGB colors (3-vectors). You can read this image in, and
display it, using the visual program /usr/lpp/dx/samples/programs/ReadImage.net.
This file can be found in /usr/lpp/dx/samples/data/image.dx.

Note: It is easier to import a file in the RGB format by using the ReadImage
module. This example illustrates the different aspects of header files.

First describe the positions. The image is written such that

x varies fastest, and the first pixel in the file is the one that is

to be displayed at the top left.

Because x varies fastest, the last delta specifies a vector in

the x direction. Because the first pixel is at the top left,

the delta in the y direction is -1.

object 1 class gridpositions 3ðð 35ð

origin ð ð

delta ð -1

delta 1 ð

Next describe the connections

The image is 35ð pixels in x and 3ðð pixels in y. Since

x is the last delta specified, the connections are specified as

3ðð x 35ð

object 2 class gridconnections 3ðð 35ð

attribute "ref" string "positions"

attribute "element type" string "quads"

Next indicate that the data can be found in the file "cylinder.rgb",

starting at byte ð. There are three bytes (red, green, and blue)

for each pixel.

object 3 class array type byte rank 1 shape 3 ieee msb items 1ð5ððð

data file cylinder.rgb,ð

attribute "dep" string "positions"

We read the colors in as the "data" component. This allows us

to immediately begin operating on them (for example, to convert the

bytes to floating point colors)

object "image" class field

component "positions" 1

component "connections" 2

component "data" 3

Syntax of the Native File Format
A data file in the Data Explorer native format can contain a header section, a data
section, or both. The header section defines a set of Objects, the data for which
are contained in the data section or imbedded in the header. Each type of object
that can be defined is described in the following subsections.

 Header Section
The header section of a Data Explorer file consists of a sequence of Object
definitions. Each Object definition consists of a sequence of clauses, beginning
with an object clause. The clauses defining an Object can be in any order, except
that the type and size information for an Array must be specified before the data if
the data are imbedded in the header. A clause consists of a sequence of words
separated by one or more blank spaces or new lines. Line breaks are not
significant (except after the follows keyword, when data must follow on the next
line). Multiple clauses can occur on one line, and a single clause can be split

268 IBM Visualization Data Explorer: User’s Guide

across lines. The following sections describe each of the types of Objects that can
be defined. In these descriptions, the monospace font specifies literals; italics,
non-literals; square brackets [], optional items; and a vertical list, alternatives.

In the header section (and text data sections), # is the comment character. All text
from # to the end of the line is ignored.

 Data Section
The data section is used for Array data when either an offset in the current file or in
a separate file is specified in the Array Object definition. All other Objects,
including Array Objects whose definitions use the 'data follows' specification, are
self-contained; their definitions include all necessary information. These Objects do
not use a data section.

The Data Explorer file format is flexible enough to describe many existing data
formats without having to reformat the data. It allows you to specify byte order,
which index varies fastest, whether the data type is floating point or byte, and
whether the file format is binary or ASCII.

For data that is not in a format accepted by the Data Explorer native file format,
you can either reformat the data so it is acceptable, or import the data using a
general importer specification (see 5.1, “General Array Importer” on page 63 in IBM
Visualization Data Explorer QuickStart Guide).

The data section consists of a set of data items specified as text or binary by the
data clauses in the various Array Object definitions. Text and binary can be mixed
in the same data section, because the data clauses specify portions of the data
section by byte offsets. Binary representations can be in most-significant-byte-first
(msb) or least-significant-byte-first (lsb) format, as specified by the relevant data
or 'data mode' clause. Binary floating-point numbers currently must be in IEEE
format.

If a Data Explorer file does not begin with a valid header (at least an end clause), it
is assumed not to have a header section.

 File Formats

 Objects
Every Object has a class and an identifying numeric or string name whose scope is
the file containing the Object. The definition of an Object is introduced by an
object clause that specifies the Object number or name and its class. The class
keyword is optional (as are many of the keywords in the following list).

 Appendix B. Importing Data: File Formats 269

 object number [class] group
 “name” series

 multigrid
 compositefield
 field
 array
 constantarray
 gridpositions
 regulararray
 productarray
 gridconnections
 patharray
 mesharray
 xform
 string
 light
 camera
 clipped
 screen

The numeric or string name of an Object is used to refer to that Object in the
definitions of other Objects. In general such references can take one of several
forms:

 number
 “name”
 file file
 file file,number
 file file,“name”

An Object that has a string name can be imported with the Import module by
specifying that string as the variable parameter of Import.

All Objects can have any number of named attributes specified by attribute
clauses. The value of an attribute is an Object. The value can be specified as a
string or list of strings by using the string keyword (in which case a String Object
is created to hold the string), as a number by using the number keyword (in which
case an Array Object is created to hold the number), or as an Object reference.

attribute "attribute-name" [value] string "string" ...
 number number

 number
 “name”

 file file
 file file,number
 file file,“name”

 Group Objects
A Group Object has any number of named or numbered members specified by
member clauses. The value of the member is specified as an Object name or
number in the current file or as an Object name or number in another file. Member
numbers must be sequential, starting at 0, with no gaps in the numbering.

270 IBM Visualization Data Explorer: User’s Guide

object number [class] group
 “name”
member "member-name" [value] number

 number “name”
 file file
 file file,number
 file file,“name”

 Series Objects
A Series Object is a subclass of Group Object, in which each member has in
addition to its ordinal index a floating-point series position. The series position can
be, for example, the time stamp for each member in a time series. A Series Object
has any number of numbered members. The value of the member is specified as
an Object name or number within the current file or as an Object name or number
in another file. Member numbers must be sequential, starting at 0, with no gaps in
the numbering.

object number [class] series
 "name"
member number [position] number [value] number

 “name”
 file file
 file file,number
 file file,“name”

 File Formats Multigrid Objects
A Multigrid Object is a subclass of Group Object, in which each member is
constrained to have the same data and connections type. This is used for
representing a Field as a collection of primitive Fields. Fields may be spatially
disjoint or they may overlap. A Multigrid Object has any number of named or
numbered members specified by member clauses. The value of the member is
specified as an Object name or number within the current file or as an Object name
or number in another file. Member numbers must be sequential, starting at 0, with
no gaps in the numbering.

object number [class] multigrid
 “name”
member "member-name" [value] number

 number “name”
 file file
 file file,number
 file file,“name”

Composite Field Objects
A Composite Field Object is a subclass of Group Object, in which each member is
constrained to have the same data and connections type. In addition, Fields must
be spatially disjoint and abutting, with boundary positions replicated exactly. A
Composite Field Object has any number of named or numbered members specified
by member clauses. The value of the member is specified as an Object name or
number in the current file or as an Object name or number in another file. Member
numbers must be sequential, starting at 0, with no gaps in the numbering.

 Appendix B. Importing Data: File Formats 271

object number [class] compositefield
 “name”
member "member-name" [value] number

 number “name”
 file file
 file file,number
 file file,“name”

 Field Objects
A Field Object has any number of named components specified by component
clauses. The value of the component is specified as an object name or number in
the current file or as an Object name or number in another file.

object number [class] field
 “name”
component "component-name" [value] number

 “name”
 file file
 file file,number
 file file,“name”

 Array Objects
An Array Object specifies the type (default float), category (default real), rank
(default 0), shape, and number of items. The types are defined as follows:

 signed byte
 unsigned byte

signed 2-byte integer
unsigned 2-byte integer
signed 4-byte integer
unsigned 4-byte integer
signed 8-byte integer
4 byte floating point
8 byte floating point

 character string

Note: Lists are simply Arrays. Thus a list of integers is an Array of type “int”; a list
of strings, an Array of type “string.”

The categories are:

 real—A number
complex—Two numbers representing the real and imaginary components.

The data is specified by an offset in bytes in the data section of the current file, an
offset within the data section of another Data Explorer file, or by the keyword
follows, indicating that the data begins immediately following the newline after the
follows keyword. The offset is specified in bytes for both binary and text files.

Optional keywords before the data keyword specify the format and byte order of the
data. The mode keyword before a data-location specification sets the default data
encoding for all subsequent data clauses to be the most recently defined data
encoding. The default data encoding is text (or ascii on all currently supported
systems). The ieee keyword specifies the ANSI/IEEE standard 754 data format.

If binary (or ieee on all currently supported systems) is specified, the default byte
order depends on the platform on which Data Explorer is running. On the DEC

272 IBM Visualization Data Explorer: User’s Guide

Alpha, the default byte order is lsb (least significant byte first). On all other
platforms, the default byte order is msb (most significant byte first). The 'data
mode' clause can be used outside an Array Object definition; see “Data Mode
Clause” on page 278 for more information.

object number [class] array
 “name”
[type [unsigned] byte]

 signed byte
 unsigned short
 [signed] short
 unsigned int
 [signed] int

 hyper
 float
 double
 string

 [category real]

 complex
 [rank number]

[shape number ...]
 items number
 [msb] [text] data [mode] offset
 lsb ieee file file,offset
 binary follows
 ascii

If byte, short, or int are not prefixed with either signed or unsigned, by default,
bytes are unsigned, shorts are signed and ints are signed. For compatibility with
earlier versions, char is accepted as a synonym for byte.

Note: For string-type data, the Array rank should be 1 and the Array shape should
be the length of the longest string plus 1.

 File Formats

Constant Array Objects
A Constant Array defines an Array whose elements all have the same value.

object number [class] constantarray
 “name”
[type [unsigned] byte]

 signed byte
 unsigned short
 [signed] short
 unsigned int
 [signed] int

 hyper
 float
 double
 string
 [category real]

 complex
 [rank number]

[shape number ...]
 items number
 [msb] [text] data [mode] offset
 lsb ieee file file,offset
 binary follows

 Appendix B. Importing Data: File Formats 273

 ascii

If byte, short, or int are not prefixed with either signed or unsigned, by default,
bytes are unsigned, shorts are signed and ints are signed. For compatibility with
earlier versions, char is accepted as a synonym for byte.

Note: For string type data, the Array rank should be 1 and the Array shape should
be the length of the string plus 1.

The only difference between the specification of a Constant Array and the
specification of an Array is that for a Constant Array only one value is listed in the
data section.

 gridpositions Keyword
The gridpositions keyword is used to represent an n-dimensional grid of
geometrically regular points in a compact form. It is a kind of Array Object and can
be used in any context where an Array Object would be used. It is typically used
as a regular positions component. The shape of the grid (number of points in each
dimension) is specified by a list of n numbers following the optional counts keyword
in the object clause. The number n of items in this list determines the
dimensionality of the grid. The last item in this list corresponds to the fastest
varying dimension.

A grid has an origin, which can be specified by an origin clause (which lists the n
coordinates of the origin). If the origin clause is not present, the origin defaults
to 0. The origin clause can be followed by n delta clauses, listing the deltas for
each dimension. Each delta clause has n elements. The last delta clause
corresponds to the fastest varying dimension. “Example 1. A Regular Grid” on
page 247 shows how to use the delta clause to specify a grid in which z varies
fastest. If the delta clauses are not specified, the deltas default to unit vectors in
each dimension, with the last dimension varying fastest.

object number [class] gridpositions [counts]number...
 “name”

origin number ...
 delta number ...
[delta number ...]

 .

 :

The gridpositions keyword does not actually correspond to a primitive Object type
in the system, but instead is a convenient way of representing an important special
case of the more general product (Product Array Object) of n 1-dimensional
Regular Arrays (Regular Array Objects). For most purposes the gridpositions
keyword is sufficient and more convenient. The more primitive Regular and
Product Arrays are described next.

Regular Array Objects
A Regular Array Object is a compact encoding of a linear sequence of equally
spaced points in n-space. It is often combined in a Product Array with other
Regular Array Objects to obtain a grid of equally-spaced points in n-space; in such
a case, it is generally more convenient to use the gridpositions keyword
described earlier.

274 IBM Visualization Data Explorer: User’s Guide

A Regular Array Object is a linear sequence of points in n-space starting at some
origin, specified by the origin clause, and separated by some constant delta,
specified by the delta clause. The delta clause has the same number of elements
as origin. The dimensionality of the space that the linear sequence is embedded
in is determined by the number of coordinates specified in the origin clause.
Regular Array Objects are always of rank 1.

object number [class] regulararray [items] number
 “name”
[type unsigned byte]

 signed byte
 unsigned short
 signed short
 unsigned int
 signed int

 hyper
 float
 double
 string
 origin number ...
delta number ... File Formats

Product Array Objects
A Product Array is a compact encoding of a generalized notion of a regular grid. It
is frequently used to describe a rectilinear grid as a product of Regular Arrays; in
such a case, it is generally more convenient to use the gridpositions keyword
described earlier.

A Product Array is the set of all possible sums of the points of the terms forming
the product. For example, the product of a set of Arrays, each of which is a
Regular Array as described above, is a lattice of points with basis vectors equal to
the deltas of the Regular Arrays and origin equal to the sum of the origins of the
terms. A product of a Regular Array with an irregular Array is a “semi-regular” grid
whose unit cells are prisms. A Product Array is specified by a list of term clauses
naming the Arrays that form the product. The last term varies fastest in the
resulting list of positions.

object number [class] productarray
 “name”
 term number
 “name”
 file file
 file file,number
 file file,“name”

 gridconnections Keyword
The gridconnections keyword is used to represent the n-dimensional cuboidal
connections of a regular grid in a compact form. It is a kind of Array Object and
can be used as the “connections” component of a Field. The shape of the grid
(number of points in each dimension) are specified by a list of n numbers following
the optional counts keyword in the object clause. The last number corresponds to
the fastest varying component of the positions. The number n of items in this list
determines the dimensionality of the grid. The last item in this list corresponds to
the fastest varying dimension.

 Appendix B. Importing Data: File Formats 275

If this grid is part of a Composite Field Object, then meshoffsets must be specified
to define where this grid is positioned relative to the entire Composite Field. The
meshoffsets (one number for each dimension, and specified in the same order as
counts) are the accumulated count of connections between the origin of the whole
grid and the origin of this grid.

object number [class] gridconnections
 “name”
 [counts] number...

[meshoffsets number...]

The gridconnections keyword does not actually correspond to a primitive Object
type in the system, but instead is a convenient way of representing an important
special case of the more general mesh (Mesh Array Object) of n 1-dimensional
paths (path Array Objects). For most purposes the gridconnections keyword is
sufficient and more convenient. The more primitive Mesh and Path Arrays are
described next.

Path Array Objects
A Path Array Object encodes linear regularity of connections. It is often combined
in a Mesh Array with other Path Arrays to obtain a grid of connections; in such a
case, it is generally more convenient to use the gridconnections keyword
described earlier.

A Path Array is a set of n-1 line segments joining n points, where the ith line
segment joins points i and i+1. The number of points n is specified by the number
following the optional count keyword.

object number [class] patharray [count] number
 “name”

Mesh Array Objects
A Mesh Array is a compact encoding of a generalized notion of a regular grid of
connections. It is frequently used to describe a rectangular grid of connections as
a product of Path Arrays; in such a case, it is generally more convenient to use the
gridconnections keyword described earlier.

A Mesh Array encodes multidimensional regularity of connections. It is a product of
connection Arrays. The product is a set of interpolation elements where the
product has one interpolation element for each pair of interpolation elements in the
two multiplicands, and the number of sample points in each interpolation element is
the product of the number of sample points in each of the multiplicands’
interpolation elements. A Mesh Array is specified by a list of term clauses naming
the Arrays that form the product. The last term varies fastest in the resulting list of
connections.

object number [class] mesharray
 “name”
 term number
 “name”

 file file
 file file,number
 file file,“name”

276 IBM Visualization Data Explorer: User’s Guide

 Xform Objects
An xform Object specifies another Object transformed for example by a rotation,
scaling, or translation. The Object to be transformed is specified by an of clause,
and the transform itself is specified by a 3×3 matrix specified by a times clause and
a 3-vector specified by a plus clause.

object number [class] xform [of] number
 “name” “name”

 file file
 file file,number
 file file,“name”

[times] a b c d e f g h i
[plus] j k l

This Object represents the Object specified in the of clause, where each point
[x y z] in the Object has been transformed to the new point [x′ y′ z′] according to

x′ y′ z′ =

x y z [a

d
g

b
e
h

c
f
i] +

j k l

 File Formats

 String Objects
A String Object encapsulates a text string as an Object. For example, the values of
Object attributes are frequently string Objects. However, String Objects as such
generally do not appear in Data Explorer files because a string-valued Object
attribute can be specified by using the string keyword as described in “Objects” on
page 269.

object number [class] string "string" ...
 "name"

 Light Objects
A Light Object is used to place a light in a scene for the renderer. Lights can be
either local or distant. Local lights have a position and a color. Distant lights are at
infinity, and have a direction and a color. It is often not necessary to specify a light
in a scene because the renderer has a default built-in light that is sufficient for most
purposes. For ambient lights, only color can be specified, not direction or
position. For distant lights, the direction can be absolute, or it can be relative
to the current location of the camera, as specified in a 'from camera' clause.

object number [class] light [type] distant
 “name” local

 ambient
direction number number number [from camera]

 position number number number
color number number number

 “color”
 position number number number

Note: In the current release of the Data Explorer, local lights are not supported.

 Appendix B. Importing Data: File Formats 277

 Camera Objects
A Camera Object specifies a camera for rendering. Camera Objects are not
generally found in Data Explorer files, but rather are generated as part of the
execution of a script or network. The definition of a Camera Object is included
here for completeness.

object number [class]
camera [[type] orthographic]

 “name”
from number number number
to number number number

 width number
 resolution number
 aspect number
up number number number

 angle number
color number number number

 color name

 Clipped Objects
A Clipped Object represents one Object (specified by the of keyword) clipped by
another Object (specified by the by keyword). Generally, Clipped Objects are not
specified in input data files, but rather are generated as a result of using the
ClipPlane or ClipBox module.

object number [class] clipped by number of number
 “name” “name” “name”
 file file file file
 file file,number file file,number
 file file,"name" file file,“name”

 Screen Objects
Screen Objects represent an Object transformed so as always to face the camera.
See Chapter 15, “Rendering” on page 149 in the IBM Visualization Data Explorer
Programmer’s Reference for more information, specifically 15.5, “Screen Class” on
page 154.

object number [class] screen [world] [behind] [of] number
“name” viewport inside “name”

 pixel infront file file
 stationary file file,number

 file file,“name”

Data Mode Clause
You can specify a default data section format using the 'data mode' clause. This
clause can be used as part of an Array Object definition, or as a stand-alone clause
in the header section. msb (most significant byte first) and lsb (least significant
byte first) specify the byte order; text and 'binary' specify the data format. (On
all current platforms, ieee is a synonym for binary, and ascii for text.)

data mode [msb] [text]
 lsb ieee
 binary
 ascii

278 IBM Visualization Data Explorer: User’s Guide

 Default Clause
You can specify the default Object to be imported using the default clause. When
a Data Explorer data file contains more than one Object (which is the usual case),
the Import module (see “Import” on page 165 in IBM Visualization Data Explorer
User’s Reference) decides which Object to import based on the value of the
variable parameter (Object name or names) of the Import module, and the
default clause (if specified). If variable is specified to Import, then those Objects
specified are imported. If variable is not specified, but a default Object is specified
with the default clause, then the default Object is imported. If variable is not
specified, and no Object has been defined as the default, then the last Object in the
file is imported.

default number
 "name"

 End Clause
The end of the header section is indicated by an end clause. The data section
begins with the byte immediately following the first newline after the end clause.

 end File Formats

 B.3 CDF Files
CDF is a data abstraction for self-describing multidimensional Arrays. It represents
a simpler data model than that of Data Explorer, one similar to that of the Array
Object. Data are accessed in CDF through an applications programming interface,
available as C and FORTRAN libraries from the National Space Science Data
Center, NASA/Goddard Space Flight Center, Greenbelt, MD. Data in CDF may be
stored in a number of physical formats (e.g., native or portable binary, single or
multiple files, row or column majority), but the interface is the same. Hence, data in
a CDF written in a format “foreign” to the workstation on which Data Explorer is
running are converted automatically during the Import process.

Data Explorer provides support for importing Fields stored as CDF r-variables. To
import data from a CDF, specify the CDF name as the name parameter in the Import
Configuration dialog box (not the file name, since the CDF may be in multiple-file
format). If the CDF has more than one variable, which is typical, Data Explorer
categorizes each variable as positions, series, or data as appropriate. Variables
that vary in one dimension only and are not record-variant are considered positions,
and become the positions component in a Field Object. In many cases, these
variables may have the CDF variable mnemonics of LATITUDE and LONGITUD,
which are mapped to the first (x) and second (y) components of the positions
vector, if they exist. This mapping permits direct use of these data with
cartographic and other tools for the earth and space sciences that are publicly
available for use with Data Explorer. Otherwise, the first n variables categorized as
positions (where n is the dimensionality of the CDF dimensions) are used to form
the positions component. Any additional such variables are treated as data
variables. If there are no positions-type variables, the positions component will be
a regular grid with origin of 0 and increments of 1 in each axis, where the number
of axes corresponds to the dimensionality of the imported CDF r-variable.

If there are records in the CDF, each record is imported as a series member. In
many cases there is a variable with the mnemonic EPOCH, which corresponds to a
time stamp for each record in the CDF. If so, the double representing msec since

 Appendix B. Importing Data: File Formats 279

0 AD in each value of EPOCH is stored as the series position attribute. If not, the
first variable that is record-variant and nondimensional-variant is considered the
series variable. This variable is imported as the series position attribute. If there is
no time variable, the series position starts at 1 and increments by 1 per series
member, so that there is one member for each record in the CDF. The series
position attribute, containing the time stamp, may be accessed with the Attribute
module.

You can specify the name or names of the data variable in the variable parameter
of the Import tool and the corresponding variable(s) will be imported. In the same
way, you can use start, end, and delta to import a subset of CDF records.

Variable and global attributes present in the CDF are imported as Object attributes.
These attributes may be accessed through the Attribute and Inquire modules (e.g.,
to build metadata-driven applications).

Variables that vary in all dimensions and are record-variant are considered data
variables. Any variable that is not a position or time variable is also considered a
data variable, allowing every variable to be imported. If you want the positions to
be a variable other than the one chosen by Data Explorer, you can use Replace or
Rename to switch the components (e.g., two or more sets of positions information
are stored for different coordinate systems). Each data variable becomes a data
component in a Field Object. Hence, there is one Field for each data variable in
the Group imported. Since Data Explorer can handle data more flexibly than CDF,
some assumptions are imposed upon certain classes of data that may be imported:

� Since data stored in CDF are not distinguished as cell-centered or node-based,
all data components are treated as the latter, (i.e., data dep positions). The
Post module may be used to transform a Field to cell-centered (i.e., data dep
connections).

� Since CDF does not “natively” support Fields other than rank=0, all data
variables are treated as scalars. The Compute module can be used to
construct the appropriate vector representation from multiple scalar Fields.

� The connections component depends on the dimensionality of the data variable
such that 0 = none, 1 = lines, 2 = quads, 3 = cubes, and so on.

� Each positions variable is considered a term of a Product Array to form the
positions component.

� All variables of 0 dimension are imported as the data component of a Field with
no positions and no connections. If the LATITUDE and/or LONGITUD
variables exist, the other variables are considered data components of Fields
with positions and no connections, where the positions are those latitude and
longitude variables. You can construct an appropriate Field with positions and
connections from the variables that are imported through modules like
Construct, Regrid, and Connect.

� All variables of 1 dimension are imported as the data component of a Field of
lines, where the positions would typically be a scalar (i.e., the one independent
variable). If the LATITUDE and LONGITUD variables exist, then the positions
are a 2-vector constructed from the latitude and longitude Arrays, but still a line.

One-dimensional variables in CDF may be of one of three distinct classes,
which are NOT distinguished in the way they are stored in a CDF file: 1) true
1-dimensional or line data; 2) indexed point data; or 3) indexed mesh data.
You must know which class the variable belongs to in order to ensure that Data
Explorer processes the data in an appropriate fashion. The first class is
handled correctly. For the second and third class, the connections component

280 IBM Visualization Data Explorer: User’s Guide

of any imported Field(s) may be meaningless. You can use the Remove
module to eliminate it and treat the Field as scattered or point data (i.e., use
Regrid or Connect to create a more appropriate mesh).

Treating such data as a collection of points is consistent with the original
design philosophy of CDF and CDF applications. The third case actually
represents an irregular mesh, which Data Explorer can support directly.
Unfortunately, the connectivity information (i.e., the mesh structure) is typically
not stored in the CDF, so Import cannot directly reconstruct the original mesh.
Hence, the data must be treated as point data unless you have information,
external to the CDF, that can be used to recreate the original mesh structure.

 B.4 netCDF Files
Data Explorer supports the importation of data in netCDF format, a data abstraction
for self-describing multidimensional Arrays. It represents a simpler data model than
that of Data Explorer, one similar to that of the Array Object. Data are accessed in
netCDF through an application programming interface (available in C and
FORTRAN libraries from the Unidata Program Center—in Boulder, Colorado).

Scalar data on a regular grid can be imported from a standard netCDF file. To
import vector data, data on irregular grids, or time series data, additional attributes
must be added to the netCDF file. These attributes allow you to specify the data,
positions, and connections components of your data set. See B.5, “netCDF Files:
Complex Fields” on page 282 for more information about these attributes.

 File Formats

 Regular Grids
To import scalar data on a regular grid, specify the netCDF file name as the name
parameter. By default, all netCDF variables are imported and collected into a
Group. To import one or more particular variables, specify their names as the
variable parameter. The format parameter must be “netCDF.”

Data Explorer automatically constructs positions and connections for each variable,
with an origin of 0.0 and spacings of 1.0 along each dimension.

For data that is logically a vector Field, but whose values are stored in three
separate netCDF variables, each component of the vector can be imported
separately; the Compute module can then be used to create a single vector Field.

For data that is logically a vector Field, but whose values are stored as an n+1
dimensional regular grid, use the Slice and Compute modules to separate the
components of the vector, and then recombine them into a single vector Field.

Example of a Regular Grid
The following file describes a 3 × 3 × 3 regular grid at origin 0, 0, 0 with deltas of
1.0 along each axis.

netCDF volume {

dimensions:

 nx = 3;

 ny = 3;

 nz = 3;

 Appendix B. Importing Data: File Formats 281

variables:

 float field_data(nx, ny, nz);

data:

 field_data =

 ð, ð, ð

 ð, ð, ð

 ð, 5, ð

 ð, ð, 5

 ð, ð, ð

 ð, ð, ð

 5, ð, ð

 ð, ð, ð

 ð, ð, ð;

}

netCDF on completely regular grids can be imported directly by Data Explorer
without modifying the netCDF file. See B.4, “netCDF Files” on page 281 for more
information.

B.5 netCDF Files: Complex Fields
For data with more complex structure, conventions have been established for
netCDF variable attributes, as described in the format below. The notation used
corresponds to that of the netCDL “language.”

 Irregular Arrays
This section describes how to specify netCDF variables for components with
irregular values.

 Data
To indicate that a netCDF variable contains values corresponding to the data
component, it must have the following attribute:

variable1:field = "fieldname";

Variable1 is the name of the netCDF variable containing data values to be
imported. fieldname is the name of the Data Explorer field by which the user refers
to the data (for example, “temperature,” “pressure,” “wind”). If more than one
variable is tagged with the same field name, each variable is read into a field, and
the fields are collected into a group.

The data are read in as an array of values, one number per grid point. If the data
are actually a vector or a matrix at each grid point, use one of the following
modifiers:

� variable1:field = "fieldname, vector";
 � variable1:field = "fieldname, matrix";

The non-scalar data are stored in additional dimensions for the variable. For a
static three-dimensional 3-vector, the three components are stored in a fourth
dimension of size 3.

282 IBM Visualization Data Explorer: User’s Guide

If the data have both regular connections and regular positions, no other attributes
are required. A regular grid is assumed, with the origin at 0.0, and a spacing of 1.0
along each axis. The number of axes will be determined from the number of
dimensions in the data array.

 Positions
If the locations of the data values in variable1 do not form a regular lattice (with
origins at 0.0 and spacings of 1.0), the name of a netCDF variable that contains the
position information must be specified as an attribute for variable1.

There are five different types of position specifications: none, completely regular,
completely irregular, and two types of partially regular.

Completely irregular is assumed if the following attribute is specified:

variable1:positions = "variable2";

where variable2 is an array of vectors, one for each grid point, defining its location.
The dimensionality of the data space is determined by the number of items in a
vector.

Regular positions can be specified with just the origin and spacing between grid
points along each axis in compact form. The following attribute is used:

variable1:positions = "variable2, compact";

where variable2 is the name of a n×2 array containing origin, delta pairs for the
spacing and location of positions along each axis. The number of positions along
each axis is determined from the shape of variable1.

Positions that can be specified as the product of arrays containing the location of
points along each axis can be input in product form. Use the following attribute:

variable1:positions = "variable2a, product;
 variable2b, product;

 .

 .

 .

 variable2x, product";

where the variable2's are each the name of an array containing a list of positions
along that axis. The number of items in each array must match the length of the
corresponding axis in the original variable1 data array.

If any of the axes in an partially regular product array are actually regular, they can
be specified in compact form:

variable1:positions = "variable2a, product, compact;
 variable2b, product;

 .

 .

 .

 variable2x, product";

where variable2a is the name of an origin, delta array, and the rest are position lists
as before.

 File Formats

 Appendix B. Importing Data: File Formats 283

 Connections
If the connections between positions is a regular lattice, no additional attributes are
necessary. For 1-D data, connections of “lines” is assumed. 2-D data implies
“quads,” 3-D data implies “cubes” and for higher dimensions, “hypercubes” is
assumed.

If the connections are irregular, use one of the following attributes:

� variable1:connections = "variable3, tetrahedra";
 � variable1:connections = "variable3, triangles";
 � variable1:connections = "variable3, cubes";
 � variable1:connections = "variable3, quads";

where variable3 is the name of an array containing a vector of point numbers,
defining each connection element item. The length of this vector depends on the
choice of connections. If the shape is not explicitly specified, tetrahedra are
assumed.

 Additional Components
If additional component information is present in the file, the following attributes are
valid:

variable1:component = "variable4, componentname, scalar;
variable5, componentname, vector;
variable6, componentname, matrix";

and

variable4:attributes = "ref, componentname;
 dep, componentname";

 Series Data
There are three ways to specify the import of datasets that should be treated as
series. They are:

 � Single variable
 � Separate variables
 � Separate files

 Single Variable
When all data values are defined as a single netCDF variable, and the unlimited
dimension of the variable is to be interpreted as the series dimension, then use one
of the following forms of the field attribute:

� variable1:field = "fieldname, scalar, series";
 � variable1:field = "fieldname, vector, series";
 � variable1:field = "fieldname, matrix, series";

All other specifications are the same as for simple fields.

The position and connection information is assumed to be constant for all members
of the series. If the positions or connections change for each step of the series,
then the variables used for those arrays must also have an unlimited dimension
that corresponds one-for-one with the data array.

An example using this method is provided in “Partially Regular Grids and Time
Series” on page 286.

284 IBM Visualization Data Explorer: User’s Guide

 Separate Variables
When there are separate netCDF variables defined for each step in the series, but
all variables are in the same file, use the following global attribute tags:

:seriesxxx = "fieldname;
 variable1a;
 variable1b;
 .

 .

 .

 variable1x";

or

:seriesxxx = "fieldname;
 variable1a, float_value;
 variable1b, float_value;
 .

 variable1x, float_value";

where the global tag must have the first 6 characters series. Global tags must be
unique, so additional characters can be added to distinguish them.

Each variable1x is the name array containing the data for that step. In the first
format, the spacing of the steps is assumed to be 1.0. In the second format, the
float_value is the value of each step. All other specifications are the same as for
simple fields.

 File Formats

 Separate Files
When there are netCDF variables in separate files that make up the steps of a
series, use the following global attribute tags:

:seriesxxx = "fieldname, files;
 filename1;
 filename2;
 .

 .

 .

 filenameN";

or

:seriesxxx = "fieldname, files;
 filename1, float_value;
 filename2, float_value;
 .

 .

 .

 filenameN, float_value";

where the global tag must have the first 6 characters series. Global tags must be
unique, so additional characters can be added to distinguish them.

Each filenameN is the name of the netCDF file that contains the data variables for
that step. In the first format, the spacing of the steps is 1.0. In the second format,
the float_value is the value of each step. All other specifications are the same as
for simple fields.

This format can be used to create short term series within a file, and then have a
series of these smaller series.

 Appendix B. Importing Data: File Formats 285

 Examples
This section shows examples of netCDF files in the netCDL description language.
See the documentation supplied by UCAR for more information on netCDL and the
ncgen and ncdump utilities.

Compact Specifications of Regular Dimensions
This example describes a single two-dimensional scalar field on a
latitude-longitude, regular, rectangular grid. The example data are temperature on
a one-degree grid with global coverage. Because Data Explorer array objects can
be specified compactly, you can use this method to specify a netCDF with regular
dimensions. For each dimension, you need to specify its value at the origin and its
spacing along the dimension.

In this example, two variable attributes are defined for the netCDF variables.
field specifies the rank of the parameter, and positions specifies where the
information containing the locations of the data is space is located.

dimensions:

lon = 36ð;

lat = 18ð;

naxes = 2;

ndeltas = 2;

variables:

float locations(naxes, ndeltas);

float temperature(lat, lon);

temperature:field = "temperature, scalar";

temperature:positions = "locations, regular";

data:

locations = 89.5, -1., // compact specification, origin and

-179, 1.; // spacing for lat and lon

temperature = ... // Data for temperature

Partially Regular Grids and Time Series
This example describes an ocean circulation model that consists of a time series of
four three-dimensional scalars (temp, sali, wata, and conv) and one
three-dimensional 3-vector (vel). netCDF typically requires seven variables, all
scalars (the vector counting as three scalars). The coordinate system for the
velocity vectors corresponds to that of the grid (that is, +u implies north, +v implies
east, and +w implies down).

These grids are partially regular in that the time, tlat, and tlon portions (three
out of the four dimensions) are all regularly spaced. time is to be mapped to
members of a series group. The fourth dimension, tlvl, is irregularly spaced. The
compact notation can be used for the regular notation, while the all values along
the irregular dimension must be specified; a product is formed from the dimensions.

Here is the specification in netCDL notation:

286 IBM Visualization Data Explorer: User’s Guide

dimensions:

time = UNLIMITED;

tlat = 3ð;

tlon = 5ð;

tlvl = 3ð;

vsize = 3; // At each grid cell for variable vel, there are

// three floats for the u, v, and w components of the

// vector field.

naxes = 3;

ndeltas = 2;

variables:

float lat_axis(ndeltas, naxes);

float lon_axis(ndeltas, naxes);

float level_axis(tlvl, naxes);

float temp(time, tlat, tlon, tlvl);

temp:field = "temperature, scalar, series";

temp:positions = "lat_axis, product, compact; lon_axis,

product, compact; level_axis, product";

float sali(time, tlat, tlon, tlvl);

sali:field = "salinity, scalar, series";

sali:positions = "lat_axis, product, compact; lon_axis,

product, compact; level_axis, product";

float wata(time, tlat, tlon, tlvl);

wata:field = "water parage, scalar, series";

wata:positions = "lat_axis, product, compact; lon_axis,

product, compact; level_axis, product";

float conv(time, tlat, tlon, tlvl);

conv:field = "covective index, scalar, series";

conv:positions = "lat_axis, product, compact; lon_axis,

product, compact; level_axis, product";

float vel(time, tlat, tlon, tlvl, vsize);

vel:field = "velocity, vector, series";

vel:positions = "lat_axis, product, compact; lon_axis,

product, compact; level_axis, product";

data:

lat_axis = -14.667, ð., ð.,

ð.333, ð., ð.;

lon_axis = ð.ð, -99.8, ð.ð,

ð.ð, ð.5, ð.ð;

level_axis = ð.ð, ð.ð, 17.5,

ð.ð, ð.ð, 53.425,

 .

 :

ð.ð, ð.ð, 5374.98;

temp = ... ;

sali = ... ;

wata = ... ;

conv = ... ;

vel = ... ;

 File Formats

 Appendix B. Importing Data: File Formats 287

 Irregular Surface
This example is the netCDL description of a netCDF for an irregular surface, that of
the classic teapot. It has precomputed normals, which are imported as the
“normals” component, in addition to positions and connections.

netcdf teapot8 { // name of datafile is "teapot8.ncdf"

// name of field is "surface"

dimensions:

pointnums = 2268;

trinums = 3584;

axes = 3;

sides = 3;

variables:

float locations(pointnums, axes);

float normalvect(pointnums, axes);

long tris(trinums, sides);

 float surfacedata(pointnums);

// global attributes:

:source = "Classic Teapot, data from Turner Whitted";

// specific attributes:

surfacedata:field = "surface";

surfacedata:connections = "tris, triangles";

surfacedata:positions = "locations";

surfacedata:component = "normalvect, normals, vector";

normalvect:attributes = "dep, positions";

// This is the start of a large data section

data:
...

}

 B.6 HDF Files
HDF is a multiobject file structure that is designed to facilitate the transfer of data
between machines. HDF was created at the National Center for Supercomputing
Applications (NCSA).

Data Explorer provides support for importing HDF files that contain a Scientific
DataSet (SDS). A Scientific DataSet is an HDF set that stores rectangular gridded
Arrays of data, together with the information about the data.

Note: Scientific Data Sets should be created using the DFSD API and not the SD
API.

To import HDF files, specify the filename as the name parameter. By default, all the
datasets will be imported and collected into a Group. To import a particular dataset
specify a number corresponding to that dataset as the variable parameter (0
corresponds to the first dataset). The format parameter must be “hdf”.

288 IBM Visualization Data Explorer: User’s Guide

If dimension scales are specified, Data Explorer uses these to construct positions;
otherwise positions have an origin of 0.0 and deltas of 1.0 along each dimension.
Data Explorer automatically constructs regular connections for either case.

 File Formats

 Appendix B. Importing Data: File Formats 289

290 IBM Visualization Data Explorer: User’s Guide

Appendix C. Environment Variables and Command Line
Options

C.1 Environment Variables . 292
Path Variables . 292
Other Environment Variables . 292

C.2 Command Line Options . 295

 Variables/Options

 Copyright IBM Corp. 1991-1997 291

 C.1 Environment Variables
The environment variables described in this section can be set in your login profile
to customize Data Explorer. Note also that these variables can be overridden on
the command line (see C.2, “Command Line Options” on page 295).

 Path Variables
Path variables specify a directory or directories to be searched for files. Directories
are searched in the order of their appearance in the variable, reading from left to
right, with successive path names separated by a colon (:). Thus when a file
appears in more than one directory, Data Explorer will choose the first copy it finds
(i.e., in the leftmost directory containing a copy).

DXDATA specifies directories to be searched for importable data files. If the data
to be imported is in your current directory or one of the specified directories, you do
not need to enter the complete path name in the Configuration dialog box for the
Import tool: given just the file name, the Import module will search all of these
directories.

DXINCLUDE specifies directories to be searched for include scripts. Data Explorer
uses include scripts in script mode. It is not necessary to specify this variable in
Edit mode.: See “File Inclusion” on page 207 for more information.

DXMACROS specifies directories to be searched for macros when Data Explorer
starts up. If DXMACROS is not specified, you will have to load macros individually
(see 7.2, “Creating and Using Macros” on page 149).

DXMODULES specifies the directories to be searched for outboard modules.

Setting a Path Variable: Examples
Note the colon (:) separating successive path names.

� To set DXMACROS for both the Bourne (sh) and the Korn (ksh) shells:

DXMACROS=/usr/mydirectory/projectAmacros:/usr/mydirectory/projectBmacros

export DXMACROS

� To set DXDATA for the Korn shell (ksh) only:

export DXDATA=/usr/mydirectory/mydata:/usr/group/groupdata

� To set DXDATA for the C shell (csh):

setenv DXDATA /usr/mydirectory/mydata:/usr/group/groupdata

Other Environment Variables
DX8BITCMAP sets the level at which the change to using a private color map is
made. The allowed values are -1 and the range from 0 (zero) to 1 (one) and
represent the Euclidean distance in RGB color space, normalized to 1 (one) for the
maximum allowed discrepancy. The default value is 0.1. If this variable is set to 1,
a private color map will never be used; conversely, if it is set to -1, a private color
map will always be used. (See Display in IBM Visualization Data Explorer User’s
Reference.)

DXARGS specifies the default set of arguments for Data Explorer start-up. An
option specified on the command line will override the corresponding setting in the
variable.

292 IBM Visualization Data Explorer: User’s Guide

DXAXESMAXWIDTH sets the number of digits in axes tick labels at which a switch
to scientific notation is made. The default is 7.

DXNO_BACKING_STORE if set to anything, disables framebuffer readbacks.
Setting this environment variable will improve performance of interaction with
hardware rendered images, especially for machines for which readback is slow.
However, some of the interactions in the image window (such as zoom) will result
in a black image while interaction is taking place. If you are not planning on using
the Image tool, then it is strongly recommended that this environment variable be
set. The default is that framebuffer readbacks are enabled.

DXCOLORS specifies a file name containing string and RGB value pairs as an
alternate for /usr/lpp/dx/lib/colors.txt. The string name can be used by any Data
Explorer tool where a color can be specified by name (for example, Color). The
RGB value specifies the specific numeric value for the color.

DXDELAYEDCOLORS enables ReadImage to create delayed color images if the
image is a tiff format image saved in a byte-with-colormap format or a GIF format.
This feature is enabled if this variable is set to any value. Delayed colors use less
memory.

DXEXEC specifies an executive to be run at start-up. You should set this variable
only for a customized version of Data Explorer.

DXFLING If DXFLING is set to 1, then for hardware-rendered images, in rotation
mode and execute-on-change mode, if you drag the mouse across the image, and
release the mouse button outside the image, the object in the image will begin to
rotate, and will continue to rotate until you click inside the image. The direction and
speed of the mouse motion before release will affect the rotation direction and
rotation speed of the object in the window.

DXGAMMA sets the gamma correction for software-rendered images displayed to
the screen by a Display or Image tool. On many display devices a given change in
the digital brightness of the image is not reflected in a corresponding change in
screen brightness. A gamma correction is a nonlinear adjustment of the pixel
values to compensate for this difference and produce a more accurate
representation on the screen. By default (except for 8-bit windows on the sgi
architecture), the correction factor (exponent) is 2 (two), on the assumption that the
display is not otherwise gamma corrected. The DXGAMMA variable allows you to
override this default. In particular, if the display device is already gamma corrected,
set the variable to 1 (one). (See Display in IBM Visualization Data Explorer User’s
Reference, and README_sgi in /usr/lpp/dx.)

DXGAMMA_8BIT, DXGAMMA_12BIT, and DXGAMMA_24BIT set the gamma
correction for software-rendered images displayed to the screen in 8-, 12-, or 24-bit
windows by a Display or Image tool. This variable overrides the value set by
DXGAMMA.

DXHOST specifies the machine name of the server on which the executive is to be
run. The default is “localhost”. (See 9.3, “Connecting to the Server” on page 183
for information on how to connect to the server.) To determine the host name,
enter the command:

uname -n

 Variables/Options

 Appendix C. Environment Variables and Command Line Options 293

DXHWGAMMA sets the gamma correction for hardware-rendered images displayed
to the screen by a Display or Image tool. On many display devices a given change
in the digital brightness of the image is not reflected in a corresponding change in
screen brightness. A gamma correction is a non-linear adjustment of the pixel
values to compensate for this difference and produce a more accurate
representation on the screen. By default, the correction factor is 2, on the
assumption that the display is not otherwise gamma corrected. The DXHWGAMMA
variable allows you to override this default. In particular, if the display device is
already gamma corrected, set the variable to 1.

DXHWMOD if both GL and OpenGL are supported, you can override the default
library (which is platform-specific; please see the appropriate README file for your
architecture in /usr/lpp/dx) by using this environment variable. It should be set to
either DXhwdd.o (for GL) or DXhwddOGL.o (for OpenGL).

DXMDF specifies the name of the .mdf file that contains custom-added modules for
customized versions of Data Explorer.

DXMEMORY sets the amount of memory (in megabytes) that can be used by the
executive.

DX_NESTED_LOOPS for faces, loops, and edges data, if set, allows loops other
than the enclosing loop for a face to be listed first. However, there is a consequent
decrease in performance if this environment variable is set.

DXPIXELTYPE sets the image type to either 24-bit color images or
floating-point-based 96-bit images (the default). This affects the behavior of Render
and ReadImage. This variable can be set to either DXByte (24 bits) or DXFloat (96
bits). Setting this variable to DXByte will result in images taking up less memory.

DXPROCESSORS sets the number of processors for Data Explorer SMP.

DXROOT specifies the top-level directory for all the files and directories needed by
Data Explorer. The default is /usr/lpp/dx.

DXSHMEM specifies whether or not shared memory should be used. The amount
of memory allocated by Data Explorer for its data and object management can be
set at runtime with the -memory command line option. At startup, Data Explorer
either allocates a shared memory segment or expands the existing data segment to
create this space.: SMP (multiprocessor) systems are required to use shared
memory so each processor can share a common data space. SGI systems also
use shared memory for space. IBM systems use shared memory if the size to be
allocated is larger than 256 MB. In all other cases Data Explorer extends the
existing data segment using the brk() system call.

Each architecture (SGI, IBM, HP, ...) has a different way of configuring the
maximum user data segment size, and a different way of setting the limit on the
maximum size of a single shared memory segment. Consult your system
administrator or system documentation if you have problems getting Data Explorer
to use the amount of memory which should be available to you.

If you have problems using a large data segment, you can force Data Explorer to
use shared memory by setting the DXSHMEM environment variable to any value other
than -1. This will override the defaults and use shared memory for space.

294 IBM Visualization Data Explorer: User’s Guide

Alternatively, you can force Data Explorer to extend the data segment (if allowed
for the architecture) by setting DXSHMEM to -1.

Note: Regardless of the setting of DXSHMEM, the aviion and sun4 architectures
always use the data segment.

DXSHMEMSEGMAX Some architectures have a default configuration which limits
the size of shared memory segments (see the architecture specific README file in
/usr/lpp/dx), and the system configuration must be changed as root to increase
the maximum allowed size of a shared memory segment. If the maximum is not
reset or if it is already set to a different limit, then you can use DXSHMEMSEGMAX to tell
Data Explorer what the current limit is in megabytes (e.g. 128 == 128 MB). Data
Explorer will allocate multiple shared memory segments if necessary to get the total
amount of space, but it must be able to allocate them at contiguous virtual memory
addresses.

DXTRIALKEY can be used in place of the expiration file ($DXROOT /expiration) for
a trial license. The value of the variable is the string specifying the trial key. It
takes precedence over $DXROOT/expiration and DXTRIALKEYFILE.

DXTRIALKEYFILE specifies the name of the expiration file for a trial license. It
takes precedence over $DXROOT/expiration.

DX_USER_INTERACTOR_FILE Specifies a file containing user interactors for use
by the SuperviseState and SuperviseWindow modules (see “SuperviseState” on
page 332 and “SuperviseWindow” on page 336 in IBM Visualization Data Explorer
User’s Reference).

 Variables/Options

C.2 Command Line Options
Table 5 lists the command line options available with Data Explorer. Those most
commonly used are identified by a bullet (Á). Table 6 on page 297 lists command
line options of particular interest to developers.

Command line options always override corresponding environment variables. As
such, they offer a quick way to temporarily override environment settings. If
parameters conflict, the last one entered takes precedence.

Table 5 (Page 1 of 3). Data Explorer Command Line Options

 Option syntax Function

-8bitcmap
[private|shared|0–1]

Set color-map error threshold (default: 0.1).
private = -1; stored = 1.

Á -builder Start the Data Explorer Module Builder (instead of
Data Explorer).

-cache [on|off] Enable executive cache (default: on).

-colors filename Override DXCOLORS environment variable.

-connect host:port Start a distributed executive only (no user interface).

Á -data pathlist. Override DXDATA environment variable.

-directory dirname Change directory (cd) to dirname before starting the
executive.

-display hostname:0 Set the X-display destination.

 Appendix C. Environment Variables and Command Line Options 295

Table 5 (Page 2 of 3). Data Explorer Command Line Options

 Option syntax Function

-dxroot dirname Set the Data Explorer root directory (default:
/usr/lpp/dx).

-echo Echo the command lines without executing them.

-edit Start the user interface in edit mode (default).

-exec filename Use the specified executive.

-execonly Start the executive only (no user interface) in remote
mode.

-execute Execute the visual program automatically at start-up.

-execute_on_change Go into Execute On Change mode at start-up.

-full Start the full Data Prompter. (See also -file and
-prompter.)

-file filename Start the Data Prompter with header file filename.
(See also -full and -prompter.)

-help Print the abbreviated help message.

-highlight [on|off] Enable node execution highlighting: (default: on).

Á -host hostname Start the executive on machine. hostname.

Á -hwrender [gl | opengl] if both GL and OpenGL are supported, set the type
of hardware-rendering used.

Á -image Start the user interface in image mode.

-include pathlist Override DXINCLUDE environment variable.

-license [runtime|
develop|timed]

Request that the user interface use only the
indicated functional type

-local Start the executive on the current machine (default).

-log [on|off] Enable executive and user interface logging (default:
off).

Á -macros pathlist Set list of directories to be searched for macros.

-mdf filename Use .mdf file filename in addition to the default mdf
file.

Á -memory #Mbytes Set the amount of memory the executive uses.

Á -menubar Start the user interface in menubar mode.

-metric Set the graphical user interface to use metric units
whenever possible.

-modules pathlist Set list of directories to be searched for outboard
modules.

Á -morehelp Print complete Help, including information about
other options.

Á -optimize
[memory|precision]

Set the environment variables DXPIXELTYPE and
DXDELAYEDCOLORS to optimize memory or
precision. (The default is precision.)

-outboarddebug Enable user to start outboard modules manually.

Á -program filename Start the user interface with visual program filename.

Á -prompter Start the Data Explorer Data Prompter (but not Data
Explorer).

296 IBM Visualization Data Explorer: User’s Guide

Table 5 (Page 3 of 3). Data Explorer Command Line Options

 Option syntax Function

-readahead [on|off] Enable executive readahead: (default: on).

Á -script Run the executive only (i.e., in script mode).

Á -script filename Run the executive only (i.e., in script mode) with
script filename.

-suppress Do not open any control panels at start-up (in image
or menubar mode only).

-timed Start Data Explorer using a timed license.

-timing [on|off] Enable module timing (default: off).

-trace [on|off] Enable executive trace (default: off).

-trialkey Automatically determines the information needed to
generate a trial key.

Á -tutor Start the Data Explorer tutorial.

Á -uionly Start the user interface only (no executive).

-verbose Echo command lines before executing them.

-version Show version numbers of dxexec and dxui.

Table 6 (Page 1 of 2). Command Line Options for Developers. For more detailed
descriptions of functions, see Appendix D, “User Interface Configuration” on page 299.

Option syntax Function

 Variables/Options

-encode -key <16-digit hex
number> <file>

Encode a .net file. The Visual Program Editor will not
display an encoded .net file, and such a file cannot
be saved. (However, .cfg configuration files can be
saved.)

-key <16-digit hex number>
<file>

Decodes an encoded .net file.

-limitImageOptions Remove options from Image window's Options menu.

-noAnchorAtStartup Start Data Explorer, but do not put up any windows
by default

-noCMapOpenMap Remove Open... option from Colormap Editor's File
menu.

-noCMapSaveMap Remove Save As... option from Colormap Editor's
File menu.

-noCMapSetNameOption Remove Set Colormap Name... option from Colormap
Editor's Options menu.

-noConnectionMenus Remove Connection menu from all Windows
(intended for use with DXLink applications).

-noConfirmedQuit Turn off the “Are you sure you want to quit Data
Explorer?” message.

-noDXHelp Remove three options from the Help menu of the
control panel and the Image window.

-noEditorAccess Remove options from the Edit menu of the control
panel and the Open Visual Program Editor option
from the Image window's Windows menu.

 Appendix C. Environment Variables and Command Line Options 297

Table 6 (Page 2 of 2). Command Line Options for Developers. For more detailed
descriptions of functions, see Appendix D, “User Interface Configuration” on page 299.

Option syntax Function

-noEditorOnError Turn off default behavior of popping up a VPE when
an error occurs. Instead, a dialog box will ask
whether a VPE should be opened.

-noExecuteMenus Remove Execute menu from all Windows (intended
for use with DXLink applications).

-noExitOptions Changes“quit” to“Close” (intended for use with DXLink
applications).

-noImageLoad Remove both Load options from the Image window's
File menu.

-noImageMenus Remove menus from all Image and Display windows.

-noImagePrinting Remove the Print Image... option from the Image
Window's File menu.

-noImageRWNetFile Remove Open, Save, and Save As... options from the
Image Window's File menu.

-noImageSaving Remove Save Image... option from the Image
Window's File menu.

-noInteractorAttributes Remove Set Attributes... option from the Image
Window's File menu.

-noInteractorEdits Remove four set options from the control panel's Edit
menu.

-noInteractorMovement Restricts the ability to move interactor instances
within a control panel.

-noMessageInfoOption Remove the Information Messages toggle button from
the Message window’s Options menu.

-noMessageWarningOption Remove the Warning Messages toggle button from
the Message window's Options menu.

-noOpenAllPanels Remove Open All Panels... option from the Panels
menu of the control panel and from the Windows
menu of the Image Window.

-noPanelAccess Remove the Panels menu from the control panel and
panel options from the Windows menu of the Image
Window.

-noPanelEdit Remove the Edit menu from the control panel.

-noPanelOptions Remove the Option menu from the control panel.

-noPGroupAssignment Remove the Execution Group Assignment... option
from the Image window's Connection menu.

-noRWConfig Remove the Open... and Save As... options from the
control panel's File menu.

-noScriptCommand Remove the Execute Script Command... option from
the Message Window's Options menu.

-restrictionLevel Combines options to facilitate building applications for
Data Explorer

298 IBM Visualization Data Explorer: User’s Guide

Appendix D. User Interface Configuration

Data Explorer provides its own set of resources for customizing the user interface
in addition to the standard X-window and Motif resources. These resources (see
table) can be specified in the .Xdefaults resource file, and a majority can be
invoked as command line switches or options. For example:

DX\noImagePrinting: true

DX\restrictionLevel: maximum

are valid resource-file entries. The corresponding command line format is:

dx -image -noImagePrinting -restrictionLevel maximum

The command line switch for a Boolean resource (e.g., -noImagePrinting) toggles
the default value.

Table 7 (Page 1 of 2). Resource Configuration Table

Resource Name Command Line Option (if
available)

Type Default

DX*errorEnabled N/A Boolean true

DX*errorOpensMessage N/A Boolean true

DX*infoEnabled N/A Boolean true

DX*infoOpensMessage N/A Boolean true

DX*limitImageOptions -limitImageOptions Boolean false

DX*metric -metric Boolean false

DX*noConfirmedQuit -noConfirmedQuit Boolean false

DX*noCMapOpenMap -noCMapOpenMap Boolean false

DX*noCMapSaveMap -noCMapSaveMap Boolean false

DX*noCMapSetNameOption -noCMapSetNameOption Boolean false

DX*noDXHelp -noDXHelp Boolean false

DX*noEditorAccess -noEditorAccess Boolean false

 UI Configuration

DX*noEditorOnError -noEditorOnError Boolean false

DX*noImageLoad -noImageLoad Boolean false

DX*noImageMenus -noImageMenus Boolean false

DX*noImagePrinting -noImagePrinting Boolean false

DX*noImageRWNetFile -noImageRWNetFile Boolean false

DX*noImageSaving -noImageSaving Boolean false

DX*noInteractorAttribute -noInteractorAttribute Boolean false

DX*noInteractorEdits -noInteractorEdits Boolean false

DX*noInteractorMovement -noInteractorMovement Boolean false

DX*noMessageInfoOption -noMessageInfoOption Boolean false

DX*noMessageWarningOption -noMessageWarningOption Boolean false

DX*noOpenAllPanels -noOpenAllPanels Boolean false

DX*noPGroupAssignment -noPGroupAssignment Boolean false

DX*noPanelAccess -noPanelAccess Boolean false

DX*noPanelEdit -noPanelEdit Boolean false

DX*noPanelRWConfig -noPanelRWConfig Boolean false

DX*noScriptCommand -noScriptCommand Boolean false

 Copyright IBM Corp. 1991-1997 299

DX\errorEnabled

Specifies the default value of the Error Messages toggle button in the
Message window’s Option menu.

DX\errorOpensMessage

Specifies whether or not the Message window pops up when an error
message is printed in the Message window.

DX\infoEnabled

Specifies the default value of the Information Messages toggle button in
the Message window’s Option menu.

DX\infoOpensMessage

Specifies whether or not the Message window pops up when an
informational message is printed in the Message window.

DX\limitImageOptions

Removes the Image Depth, Throttle, Change Image Name..., and Panel
Access... menu commands from the Image window’s Options menu.

DX\metric

Specifies that Data Explorer use the metric system (centimeters) when
set to “true”. The default is the English system (inches). The Print
Image and Save Image dialog boxes option menus are affected
accordingly.

Table 7 (Page 2 of 2). Resource Configuration Table

Resource Name Command Line Option (if
available)

Type Default

DX*printImageCommand N/A String “lpr”

DX*printImageFormat N/A String “PSCOLOR”

DX*printImagePageSize N/A String NULL

DX*printImageResolution N/A int 0

DX*printImageSize N/A String NULL

DX*restrictionLevel -restrictionlevel String NULL

DX*saveImageFormat N/A String “PSCOLOR”

DX*saveImagePageSize N/A String NULL

DX*saveImageResolution N/A int 0

DX*saveImageSize N/A String NULL

DX*vpeCanvas.lineThickness N/A int 1

DX*warningEnabled N/A Boolean true

DX*warningOpensMessage N/A Boolean true

300 IBM Visualization Data Explorer: User’s Guide

DX\noConfirmedQuit

Turns off the “Are you sure you want to quit Data Explorer?” message.

DX\noCMapOpenMap

Removes the Open... menu command from the Colormap Editor’s File
menu.

DX\noCMapSaveMap

Removes the Save As... menu command from the Colormap Editor’s
File menu.

DX\noCMapSetNameOption

Removes the Set Colormap Name... menu command from the Colormap
Editor’s Options menu.

DX\noDXHelp

Removes the On Context, On Manual and On Help menu commands
from the Help menu of both the Control Panel and the Image window.

DX\noEditorAccess

Removes (1) the Delete, Show Selected Interactor, Add Selected
Interactor, Show Selected Tool, and Comment... menu commands
from the Control Panel’s Edit menu; (2) the Open Visual Program
Editor menu commands from the Image window’s Windows menu.

DX\noEditorOnError
Turns off default behavior of popping up the VPE when an error occurs.
Instead, a question dialog box is popped up, with the name of the visual
program, which lets the user choose whether or not to open the VPE on
the .net file.

DX\noImageLoad
Removes the Load Macro... and Load Module Definition(s)... menu
commands from the Image window’s File menu.

DX\noImageMenus

Removes the bar from all Image and Display windows.

DX\noImagePrinting

Removes the Print Image... menu command from the Image window’s
File menu.

DX\noImageRWNetFile

 UI Configuration

 Appendix D. User Interface Configuration 301

Removes the Open, Save, and Save As... menu commands from the
Image window’s File menu.

DX\noImageSaving

Removes the Save Image... menu command from the Image window’s
File menu.

DX\noInteractorAttribute

Removes the Set Attributes... menu command from the Control
Panel’s Edit menu.

DX\noInteractorEdits

Removes the Set Style, Set Layout, Set Dimensionality, and Set
Interactor Label... menu commands from the Control Panel’s Edit
menu.

DX\noInteractorMovement

Restricts the ability to move interactor instances within a Control Panel.

DX\noMessageInfoOption

Removes the Information Messages toggle button from the Message
window’s Options menu.

DX\noMessageWarningOption

Removes the Warning Messages toggle button from the Message
window’s Options menu.

DX\noOpenAllPanels

Removes the Open All Panels... menu command from the Panels
menu of the Control Panel and the Windows menu of the Image window.

DX\noPGroupAssignment

Removes the Execution Group Assignment... menu command from the
Image window’s Connection menu.

DX\noPanelAccess

Removes (1) the Control Panel’s Panels menu and all its menu
commands; (2) the Open All Control Panels and Open Control Panel
by Name menu commands from the Image window’s Windows menu.

DX\noPanelEdit

302 IBM Visualization Data Explorer: User’s Guide

Removes the Control Panel’s Edit menu and all its menu commands.
This is equivalent to the following options:

noInteractorEdits

noInteractorAttribute

noEditorAccess

noInteractorMovement

By restricting the ability to highlight interactors with a mouse click, this
option in effect also disables interactor movement.

DX\noRWConfig

Removes the Open... and Save As... menu commands from the File
menu.

DX\noScriptCommand

Removes the Execute Script Command... menu command from the
Message window’s Options menu.

DX\printImageCommand

Specifies the default print image command to be used use in the Print
Image dialog box available from the Image window.

DX\printImageFormat

Specifies the default file format to be used in the Print Image dialog box
available in the Image window. The following values are recognized:

DX\printImagePageSize

Specifies the default page size that PostScript images should be
centered on when printing images from the Print Image dialog box
available from the Image window. Units are those indicated by the
metric option.

DX\printImageResolution

Specifies the default resolution that PostScript images should be printed
with when printing images from the Print Image dialog box available
from the Image window. Resolution is in dots per inch unless the
DX\metric resource is set, in which case dots per centimeter is used.
This resource is overridden by the printImageSize resource. If this is
set to zero (the default), then the Print Image... dialog box chooses
the resolution.

PSCOLOR Color PostScript
PSGREY Gray level PostScript UI Configuration

EPSCOLOR Encapsulated Color PostScript
EPSGREY Encapsulated Gray level PostScript

 Appendix D. User Interface Configuration 303

DX\printImageSize

Specifies the default size of PostScript images printed from the Print
Image dialog box available from the Image window. If specified this
option overrides the printImageResolution option. The value is a string
in the same format as that accepted by the dialog box (for example, “8”,
“8x”, “x10”, “8x10”). Units are those indicated by the metric option. The
default value is determined by printImageResolution option.

DX\restrictionLevel

Combines options to make it easier to build applications on top of Data
Explorer. The string value must be one of the following:

DX\saveImageFormat

Specifies the default file format to be used in the Print Image dialog box
available in the Image window. The following values are recognized:

DX\saveImagePageSize

Specifies the default page size that PostScript images should be

minimum Combines the restrictions implied by the following options:

noEditorAccess

noInteractorEdits

noInteractorMovement

limitImageOptions

noScriptCommand

noCMapSetNameOption

intermediate Combines the restrictions implied by minimum restriction
level plus the following options:

noImageRWNetFile

noOpenAllPanels

noImageLoad

noPanelEdit

noPanelOptions

noPGroupAssignment

maximum Combines the restrictions implied by the intermediate
restriction level plus the following options:

noPanelRWConfig

noImageSaving

noPanelAccess

noCMapOpenMap

noCMapSaveMap

PSCOLOR Color PostScript
PSGREY Gray level PostScript
EPSCOLOR Encapsulated Color PostScript
EPSGREY Encapsulated Gray level PostScript
RGB “rgb” format
R+G+B “r+g+b” format
TIFF TIFF format

304 IBM Visualization Data Explorer: User’s Guide

centered on when saving images from the Save Image dialog box
available from the Image window. Units are those indicated by the
metric option.

DX\saveImageResolution

Specifies the default resolution that PostScript images should be saved
with when saving images from the Save Image dialog box available from
the Image window. Resolution is in dots per inch unless the DX\metric
resource is set, in which case dots per centimeter is used. This
resource is overridden by the saveImageSize resource. If this is set to
zero (the default), then the Save Image dialog box chooses the
resolution, which may be specified inside the visual program.

DX\saveImageSize

Specifies the default size of PostScript images saved from the Print
Image dialog box available from the Image window. If specified this
option overrides the saveImageResolution option. The value is a string
in the same format as that accepted by the dialog box (for example, “8”,
“8x”, “x10”, “8x10”). Units are those indicated by the metric option. The
default value is determined by saveImageResolution option.

DX\vpeCanvas.lineThickness

Specifies the thickness of the lines that connect module outputs to
module inputs in the VPE.

DX\warningEnabled

Specifies the default value of the Warning Messages toggle button in the
Message window’s Option menu.

DX\warningOpensMessage

Specifies whether or not the Message window pops up when a warning
message is printed in the Message window.

 UI Configuration

 Appendix D. User Interface Configuration 305

306 IBM Visualization Data Explorer: User’s Guide

Appendix E. Data Explorer Fonts

All fonts used by Data Explorer are stored as files in the /usr/lpp/dx/fonts

directory. Users can add their own fonts by creating a file in the correct format and
using the DXFONTS environment variable to list the directory or directories where
the additional font files are stored.

Fonts are stored in the standard Data Explorer file format. A font file must contain
the following information (for more information on the Data Explorer file format, see
Appendix B, “Importing Data: File Formats” on page 241).

The font is a group that contains 256 fields, one for each ASCII character value,
and two attributes describing the height of the font. For example:

 object “myfont” class group

member ð value “empty”

member 1 value “control-a”

 .

 :
member 65 value “A”

member 66 value “B”

 .

 :
member 255 value “empty”

attribute “font ascent” number ð.75

attribute “font descent” number ð.25

The attributes describe the maximum height above and below the baseline for all
characters in this font. The values should be positive floating point numbers and
they should add to 1.0.

Each member of the group must be a field.

Each field must contain a 2-D or 3-D “positions” component, and a “connections”
component with element type “lines” or “triangles”.

 object “positions1” class array type float rank 1 shape 3 items 3

data follows ð.1 ð.5 ð.ð ð.3 ð.6 ð.ð ð.5 ð.5 ð.ð

 object “connections1” class array type int rank 1 shape 2 items 2

 data follows ð 1 1 2

attribute “element type” string “lines”

attribute “ref” string “positions”

The character positions are assumed to have their horizontal (X) origin at the left
edge and their vertical (Y) origin at the baseline.

Each field must have a “char width” attribute describing the character width for
spacing when combining characters into strings.

 object “circumflex” class field

component “positions” value “positions1”

component “connections1” value “connections1”

attribute “char width” number ð.55

 Fonts

 Copyright IBM Corp. 1991-1997 307

The fields can contain other components (such as “colors” or “normals”), although
the standard Data Explorer modules will not process this information.

Those ASCII codes for which there is no representation should be empty fields:

object “empty” class field

A space character can be generated by making an empty field with a positive width:

 object “wide” class field

attribute “char width” number ð.3

 object “myfont” class group

 .

 :
member 32 value “wide”

 .

 :

Overstrike characters can be generated by making a field with a zero or negative
width:

 object “umlaut” class field

component “connections” value “con1”

 component “positions” value “pos1”

component “char width” number ð.ð

The following fonts are supplied with Data Explorer, and may be found in this
directory /usr/lpp/dx/fonts. Each one is a Data Explorer format file. If you would
like to look at the structure of a font file, simply Import the data using the Import
module, and Export it in text format.

default fonts area an area font (same as pitman)

fixed a fixed width font (same as roman_sfix)

variable a variable width font (same as roman_s)

cyrilic font cyril_d a cyrilic double-line font

Gothic fonts gothiceng_t an English gothic triple-line font

gothicger_t a German gothic triple-line font

gothicit_t an Italian gothic triple-line font

Greek fonts greek_s a Greek single-line font

greek_d a Greek double-line font

italic fonts italic_d an italic double-line font

italic_t an italic triple-line font

area (filled)
font

pitman an area typewriter style font that includes European
National Language characters

Roman fonts roman_s a Roman single-line sans serif font

roman_d a Roman double-line sans serif font

roman_dser a Roman double-line serif font

roman_tser a Roman triple-line serif font

308 IBM Visualization Data Explorer: User’s Guide

The default font directory is /usr/lpp/dx/fonts. For user-added fonts, the
DXFONTS variable can contain a colon-separated list of directories to search for
fonts before searching the default directory. A font file name must be the same as
the font name. For example, the font “cursive” should be stored in the “cursive.dx”
file, and the font parameter to the Caption module should be “cursive” to use this
font. The names of user-supplied fonts should be all lowercase.

Since font files are in the standard Data Explorer file format, in addition to being
used by Caption, Plot, AutoAxes, and ColorBar, they can be read into Data
Explorer with Import and processed like any other group. Individual characters can
be selected with Select, colored with Color, and displayed with ShowConnections.
Newly constructed fonts can be exported with Export.

Table 8 and Table 9 on page 310 illustrate those characters that are part of the
roman_ext font. The appearance of a character may differ from that illustrated in
the tables.

roman_ext an extended character set Roman single-line
sans-serif font that includes European National
Language characters

script fonts script_s a script single-line font

script_d a script double-line font

Table 8. roman_ext Font Characters (Part 1)

Octal
Value 40 60 100 120 140 160 200

0 Blank 0 @ P ‘ p Ç

1 ! 1 A Q a q ü

2 " 2 B R b r é

3 # 3 C S c s â

4 $ 4 D T d t ä

5 % 5 E U e u à

6 & 6 F V f v å

7 ' 7 G W g w ç

10 (8 H X h x ê

11) 9 I Y i y ë

 Fonts 12 * : J Z j z è

13 + ; K [k { ï

14 , < L \ l ¦ î

15 - = M] m } ì

16 . > N ↑ n ˜ Ä

17 / ? O _ o Ø Å

 Appendix E. Data Explorer Fonts 309

Table 9. roman_ext Font Characters (Part 2)

Octal
Value 220 240 260 300 320 340 360

0 É á Α Ρ ι

1 æ í Β Σ κ

2 Æ ó Γ Τ λ

3 ô ú ∆ ϒ µ

4 ö ñ Ε Φ ν

5 ò Ñ Ζ Χ ξ

6 û ª Η Ψ ο

7 ù º Θ Ω π

8 ÿ ¿ Ι α ρ

9 Ö Κ β σ

10 Ü Λ γ τ

11 ¢ Μ δ υ

12 £ Ν ε φ

13 ¥ ¡ Ξ ζ χ

14 | « Ο η ψ

15 ƒ » ∫ Π θ ω

Table 10 (Page 1 of 2). Additional Symbols \001 - \035

1 apostrophe curly open ‘

2 apostrophe curly close ’

3 backslash \

4 bullet �

5 cent ¢

6 copyright 

7 cross product ×

10 degree °

11 emdash —

12 endash –

13 exclamation ¡

14 franc ƒ

15 guillemet open «

16 guillemet close »

17 guillemet single open

20 guillemet single close

21 infinity ∞

22 integral ∫

23 interrogatory ¿

24 minus −

310 IBM Visualization Data Explorer: User’s Guide

The octal values for the English and Greek character sets in the pitman (or area)
font are the same as those illustrated in Table 8 on page 309 and Table 9 on
page 310. European National Languages characters are provided using single
octal values or using a combination of values (see Table 11). For example, ä is
produced using 252a, and î is produced using \221\237. Additional special symbols
are provided with octal values 001 to 035 (see Table 10 on page 310).

The following illustrates how you could produce a caption that contains the string
“Jag är här på semester”.

caption = Caption("Jag \252ar h\252ar p\213a semester"; font="pitman");

camera = AutoCamera (caption);

Display(caption,camera);

Table 10 (Page 2 of 2). Additional Symbols \001 - \035

25 notequal ≠

26 plusminus ±

27 pound £

30 quote Open “

31 quote close ”

32 registered 

33 similar ∼

34 trademark 

35 yen ¥

Table 11 (Page 1 of 2). European National Language Symbols and Characters \200 to
\255

200 aBar

201 accentAcute ´ To type a acute, enter \201a. To type i
acute, enter\201\237.

202 AccentAcute ´ (Uppercase except I)

203 IAccentAcute Í (Uppercase I Acute) To type A acute,
enter \202A.

204 accentGrave ` (lowercase)

205 AccentGrave ` (Uppercase except I)

206 IAccentGrave Ì (Uppercase I)

 Fonts 207 accentHungarian (Double quote accent over o and u)

210 AccentHungarian (Double quote accent over O and U)

211 ae æ (Ligature)

212 AE Æ (Ligature)

213 angstrom (Lowercase)

214 Angstrom (Uppercase)

215 breve (Lowercase)

216 Breve (Uppercase)

217 c cedilla ç (Lowercase c cedilla)

 Appendix E. Data Explorer Fonts 311

Table 11 (Page 2 of 2). European National Language Symbols and Characters \200 to
\255

220 C cedilla Ç (Uppercase C cedilla)

221 widecircumflex ^ (Looks better than ASCII Circumflex when
used as a lowercase accent)

222 WideCircumflex ^ (Uppercase except for I and O)

223 WideCircumflex Î (Uppercase I)

224 WideCircumflex Ô (Uppercase O)

225 Clicka (Used in Lithuanian over C, S, Z, c, s,
and z; also called hacek or caron)

226 CommaRomanian (Used in Romanian under S, T, s, and t)

227 enya (Lowercase for Spanish n, and
Portuguese a and o)

230 Enya (Uppercase for Spanish N, and
Portuguese A and O)

231 eth ð (Icelandic)

232 Eth Ð (Icelandic)

233 hookLithuanian (Cedilla-like hook used under Lithuanian
a, e, and u)

234 ihookLithuanian (Cedilla-like hook used under Lithuanian i)

235 HookLithuanian (Cedilla-like hook used under Lithuanian
A, E, and U)

236 IHookLithuanian (Cedilla-like hook used under Lithuanian I)

237 i dotless (Dotless i to be accented with acute,
grave, etc.)

240 l slash (Slashed l used in Polish)

241 L slash (Slashed L used in Polish)

242 macron (Lowercase)

243 Macron (Uppercase)

244 oBar

245 o slash ø (Danish slashed o)

246 O slash Ø (Danish slashed O)

247 Overdot . (Dot placed over Polish Z and z)

250 thorn þ (Icelandic)

251 Thorn Þ (Icelandic)

252 umlaut ¨ (Lowercase, also called diaresis)

253 Umlaut ¨ (Uppercase, except for I and O)

254 IUmlaut ¨ (I umlaut)

255 OUmlaut ¨ (O umlaut)

312 IBM Visualization Data Explorer: User’s Guide

Appendix F. Data Explorer Colors

The following list of defined colors is internal to Data Explorer and is accessed
when the colors.txt file is unavailable (see “Color” on page 75 in IBM
Visualization Data Explorer User’s Reference).

Data Explorer accepts these names as valid strings for specifying colors to a visual
program. Each color is followed by the corresponding RGB vector.

aquamarine ð.4392157 ð.8588235 ð.57647ð6

black ð.ððððððð ð.ððððððð ð.ððððððð

blue ð.ððððððð ð.ððððððð 1.ððððððð

blueviolet ð.6235294 ð.372549ð ð.6235294

brown ð.647ð588 ð.1647ð59 ð.1647ð59

cadetblue ð.372549ð ð.6235294 ð.6235294

coral 1.ððððððð ð.498ð392 ð.ððððððð

cornflowerblue ð.2588235 ð.2588235 ð.4352941

cyan ð.ððððððð 1.ððððððð 1.ððððððð

darkgreen ð.1843137 ð.3ð98ð39 ð.1843137

darkolivegreen ð.3ð98ð39 ð.3ð98ð39 ð.1843137

darkorchid ð.6ðððððð ð.196ð784 ð.8ðððððð

darkslateblue ð.4196ð78 ð.1372549 ð.5568628

darkslategray ð.1843137 ð.3ð98ð39 ð.3ð98ð39

darkslategrey ð.1843137 ð.3ð98ð39 ð.3ð98ð39

darkturquoise ð.4392157 ð.57647ð6 ð.8588235

dimgray ð.3294118 ð.3294118 ð.3294118

dimgrey ð.3294118 ð.3294118 ð.3294118

firebrick ð.5568628 ð.1372549 ð.1372549

forestgreen ð.1372549 ð.5568628 ð.1372549

gold ð.8ðððððð ð.498ð392 ð.196ð784

goldenrod ð.8588235 ð.8588235 ð.4392157

gray ð.7529412 ð.7529412 ð.7529412

green ð.ððððððð 1.ððððððð ð.ððððððð

greenyellow ð.57647ð6 ð.8588235 ð.4392157

grey ð.7529412 ð.7529412 ð.7529412

indianred ð.3ð98ð39 ð.1843137 ð.1843137

khaki ð.6235294 ð.6235294 ð.372549ð

lightblue ð.749ð196 ð.847ð588 ð.847ð588

lightgray ð.827451ð ð.827451ð ð.827451ð

lightgrey ð.827451ð ð.827451ð ð.827451ð

lightsteelblue ð.56ð7843 ð.56ð7843 ð.7372549

limegreen ð.196ð784 ð.8ðððððð ð.196ð784

 Colors

 Copyright IBM Corp. 1991-1997 313

magenta 1.ððððððð ð.ððððððð 1.ððððððð

maroon ð.5568628 ð.1372549 ð.4196ð78

mediumaquamarine ð.196ð784 ð.8ðððððð ð.6ðððððð

mediumblue ð.196ð784 ð.196ð784 ð.8ðððððð

mediumforestgreen ð.4196ð78 ð.5568628 ð.1372549

mediumgoldenrod ð.9176471 ð.9176471 ð.6784314

mediumorchid ð.57647ð6 ð.4392157 ð.8588235

mediumseagreen ð.2588235 ð.4352941 ð.2588235

mediumslateblue ð.498ð392 ð.ððððððð 1.ððððððð

mediumspringgreen ð.498ð392 1.ððððððð ð.ððððððð

mediumturquoise ð.4392157 ð.8588235 ð.8588235

mediumvioletred ð.8588235 ð.4392157 ð.57647ð6

midnightblue ð.1843137 ð.1843137 ð.3ð98ð39

navy ð.1372549 ð.1372549 ð.5568628

navyblue ð.1372549 ð.1372549 ð.5568628

orange ð.8ðððððð ð.196ð784 ð.196ð784

orangered 1.ððððððð ð.ððððððð ð.498ð392

orchid ð.8588235 ð.4392157 ð.8588235

palegreen ð.56ð7843 ð.7372549 ð.56ð7843

pink ð.7372549 ð.56ð7843 ð.56ð7843

plum ð.9176471 ð.6784314 ð.9176471

red 1.ððððððð ð.ððððððð ð.ððððððð

salmon ð.4352941 ð.2588235 ð.2588235

seagreen ð.1372549 ð.5568628 ð.4196ð78

sienna ð.5568628 ð.4196ð78 ð.1372549

skyblue ð.196ð784 ð.6ðððððð ð.8ðððððð

slateblue ð.ððððððð ð.498ð392 1.ððððððð

springgreen ð.ððððððð 1.ððððððð ð.498ð392

steelblue ð.1372549 ð.4196ð78 ð.5568628

tan ð.8588235 ð.57647ð6 ð.4392157

thistle ð.847ð588 ð.749ð196 ð.847ð588

turquoise ð.6784314 ð.9176471 ð.9176471

violet ð.3ð98ð39 ð.1843137 ð.3ð98ð39

violetred ð.8ðððððð ð.196ð784 ð.6ðððððð

wheat ð.847ð588 ð.847ð588 ð.749ð196

white 1.ððððððð 1.ððððððð 1.ððððððð

yellow 1.ððððððð 1.ððððððð ð.ððððððð

yellowgreen ð.6ðððððð ð.8ðððððð ð.196ð784

314 IBM Visualization Data Explorer: User’s Guide

 Appendix G. Accelerator Keys

The following table is a summary of the accelerator keys available in Data Explorer.
To learn how to use these keys and their functions, see “Selecting Pull-Down
Menus and Pull-Down Menu Options” on page 62.

Table 12. Summary of Data Explorer Accelerator Keys

Function
Accelerator

Key

Active Primary Window

VPE
Window

Image
Window

Control
Panel

Colormap
Editor

Message
Window

Add Input Tab Ctrl+A √

Camera mode Ctrl+K √

Configuration Ctrl+F √

Cursors mode Ctrl+X √

Delete Ctrl+Delete √ √

Delete Selected Control Points Ctrl+Delete √

End Execution Ctrl+End √ √ √ √

Execute on Change Ctrl+C √ √ √ √

Execute Once Ctrl+O √ √ √ √

Hide All Tabs Ctrl+H √

Navigate mode Ctrl+N √

Next Error Ctrl+N √

Open All Control Panels Ctrl+P √

Open Colormap Editor Ctrl+E √

Open All Colormap Editors Ctrl+E √

Pan/Zoom mode Ctrl+G √

Pick mode Ctrl+I √

Previous Error Ctrl+P √

Quit/Close Ctrl+Q √ √ √ √

Redo Ctrl+D √

Remove Input Tab Ctrl+R √

Reset Ctrl+F √

Reveal All Tabs Ctrl+L √

Roam Ctrl+W √

Rotate mode Ctrl+R √

Save Ctrl+S √ √

Select All Control Points Ctrl+A √

Tool Palettes Ctrl+T √

Undo Ctrl+U √ Accelerators

View Control Ctrl+V √

Zoom mode Ctrl+Z √

 Copyright IBM Corp. 1991-1997 315

316 IBM Visualization Data Explorer: User’s Guide

 Glossary

Some of the definitions in this glossary are taken from
the IBM Dictionary of Computing, SC20-1699.

A
accelerator . A “shortcut” that minimizes the number of
keystrokes or mouse clicks required to complete a task.

anchor window . The window in which a Data Explorer
session starts (either the Visual Program Editor or the
Image window). The window is identified by an anchor
symbol in the top left corner. When this window is
closed, the Data Explorer session ends.

architecture . The organizational structure of a
computer system, including hardware and software.

array . In Data Explorer, an array structure containing
an ordered list of data items of the same type along
with additional descriptive information. Arrays are either
compact or irregular. See compact array, irregular
array.

assembly . An object representing a collection of
objects.

attribute . A characteristic of an object. Objects can
have attributes that are indexed by a string name and
have a value that is an object. See also component
attribute.

C
camera . An object that describes the viewing
parameters of an image (e.g., width of the viewport,
viewer’s location relative to the object, and the
resolution and aspect ratio of the image). A camera
may be explicitly defined and passed as a parameter to
the Render or Display module. It may also be implicitly
defined in the use of interactive, mouse-driven options
(such as zoom or rotate) in the Image window.

canvas . The area of a VPE window used in building
and editing visual programs.

cell-centered data . Connection-dependent data.

clipping plane . A plane that divides a
three-dimensional object into a rendered and an
unrendered region, making the object’s interior visible.

colormap . A map that relates colors to data values.
The colors are carried in the map’s “data” component
and the data values to which each color applies in its
“positions” component.

colormap editor . A special tool for mapping precise
colors to specified data values, the results of which are
displayed in a visual image.

compact array . Any of five types of compact encoding
of array data:

 constant array
 mesh array
 path array
 product array
 regular array

component . A basic part of a field (such as
“positions,” “data,” or “colors”); each component is
indexed by a string (e.g., “positions”), and its value is
typically an array object (e.g., the list of position values).
See also component attribute.

component attribute . A characteristic of a
component. Components of a field can have attributes
that are indexed by a string name and have a value that
is an object.

composite field . A grouping of like fields for
processing a single spatial entity. See also partitioned
field.

connection . Component of an IBM Data Explorer data
field that specifies how a set of points are joined
together. Also controls interpolation.

connection-dependent data . Cell-centered data. The
data value is interpreted as constant throughout the
connection element.

contour . On a surface, a line that connects points
having the same data value (e.g., pressure, depth,
temperature).

control panel . An IBM Data Explorer window that
facilitates setting and changing the parameters of visual
programs.

cube . A volumetric connection element that connects
eight positions in a data field.

cutting plane . An arbitrary plane, in three-dimensional
space, onto which data are mapped.

 Glossary

 Copyright IBM Corp. 1991-1997 317

D
data-driven interactors . Interactors whose attributes
(such as minimum and maximum) are set by an input
data field.

Data Prompter . An interface that enables a user to
describe the format of the data in a file. The prompter
creates a General Array Format header file that is used
by the Import module to import the data.

dependence . A component attribute. One component
is said to be dependent (“dep”) on another if the items
in their component arrays are in one-to-one
correspondence to each other.

dialog box . The “window” displayed when the user
selects a pull-down option that offers or requires more
detailed specification.

display . (1) To present information for viewing, usually
on a terminal screen or a hard-copy device. (2) A
device or medium on which information is presented,
such as a terminal screen. (3) Deprecated term for
panel.

E
element . Connection item.

element type . An attribute that describes the type of
connection element, for example, “cubes”, “tetrahedra”,
or “lines”.

executive . The component of the Data Explorer
system that manages the execution of specified
modules. The term often refers to the entire server
portion of the Data Explorer client-server model,
including the executive, modules, and
data-management components.

F
face . (1) Any planar surface that bounds a
three-dimensional object. (2) A polygon.

field . A self-contained collection of data items. A Data
Explorer field typically consists of the data itself (the
“data” component), a set of sample points (the
“positions” component), a set of interpolation elements
(the “connections” component), and other information as
needed.

flat shading . A shading model in which each face of
an object is shaded with a single intensity value.
Contrast with Gouraud shading.

fork . An operation that causes a program to branch
into two or more parallel concurrent paths.

fork-join parallelism . A programming mechanism that
supports parallel processing: The fork statement splits
a single computation into multiple independent
computations. The join statement recombines two or
more concurrent computations into one.

G
general array format . A data-importing method that
uses a header file to describe the data format of a data
file. This “format” makes it possible to import data in a
variety of formats.

glyph . A graphical figure used to represent values of a
particular variable. The length, angle, or other attribute
of the glyph is some function of the value of that
variable. Each occurrence of a glyph represents a
single value of the variable.

Gouraud shading . Also called intensity interpolation
shading. A shading model in which the intensity of
values of incident illumination on a polygon are
interpolated from intensity values at the vertices of the
polygon. Contrast with flat shading.

graphical user interface . A set of panels and dialogs
for interacting with an application.

group . A collection of objects.

I
icon . A displayed symbol that a user can point to with
a device such as a mouse to select a particular
operation or software application.

image window . IBM Data Explorer window that
displays the image generated by a visual program.
Associated with the Image window are special
interactors for 3-D viewing.

interactor . A Data Explorer device used to manipulate
data in order to change the visual image produced by a
program. See also data-driven interactor, interactor
stand-in.

interactor stand-in . An icon used in the VPE window
to represent an interactor. Stand-ins are named after
the type of data they generate:

 � integer
 � scalar
� selector (outputs a value and a string)

 � string
 � value
 � vector

interpolation element . An item in the connections
component array. Each interpolation element provides

318 IBM Visualization Data Explorer: User’s Guide

a means for interpolating data values at locations other
than the specified set of sample points. See positions
component.

invalid . A classification of an array item (typically
positions or connections). An invalid item is not to be
rendered or realized.

irregular array . In contrast to a compact array, an
array in which the data is stored explicitly.

isosurface . A surface in three-dimensional space that
connects all the points in a data set that have the same
value.

isovalue . The single value that characterizes each and
every point constituting an isosurface. By default, this
value is the average of all the data values in the set
being visualized.

item . A single piece of data in an array.

J
join . An operation that merges two or more
computation paths.

L
line . An element that connects two positions in a field.

M
macro . In IBM Data Explorer, a sequence of modules
that acts as a functional unit and is displayed as a
single icon. Macros can also be defined in the Data
Explorer scripting language.

member . An individual unit or object in a group. A
collection of members makes a group.

menu bar . In windows, a horizontal bar that displays
the names of one or more menus (or tasks). When the
user selects a menu, a pull-down list of options for that
menu is displayed.

mesh array . A compact array that encodes
multidimensional regularity of connections. It is a
product of path arrays. In a mesh array, which
positions are connected to one another is implicitly
rather than explicitly defined.

module . (1) In IBM Data Explorer, a primitive function,
such as Isosurface. (2) In a VPE window, the icon for
a module. (3) A program unit that is functionally
discrete and identifiable (i.e., it can be assembled,
compiled, combined with other units, and so on).

N
navigate . To move the camera (changing the “to” and
“from” points) around the image scene, using the
mouse.

netCDF . Network Common Data Form.

network . In Data Explorer the set of tool modules,
interactor stand-ins, and connections that constitute a
visual program. In the VPE window, a network appears
as a set of icons connected by arcs.

Network Common Data Form (netCDF) . A data
format that stores and retrieves scientific data in
self-describing, multidimensional blocks (netCDF is not
a database management system, however). netCDF is
accessible with C and FORTRAN.

normal . (1) Perpendicular to a surface. (2) In IBM
Data Explorer, a vector that is perpendicular to a face
or surface of an object. A normal may depend on
connections or positions. A connection-dependent
normal results in flat shading; a position-dependent
normal results in Gouraud shading.

O
object . In IBM Data Explorer, any discrete and
identifiable entity; specifically, a region of global
memory that contains its own type-identification and
other type-specific information.

opacity . The capacity of matter to prevent the
transmission of light. For a surface, an opacity of 1
means that it is completely opaque; an opacity of 0, that
it is completely transparent. For volume, opacity is
defined as the amount of attenuation (of light) per unit
distance.

P
page . (1) That portion of a panel displayed by a user
interface. (2) To move back and forth through the
pages of a multipage panel. See also scroll.

palette . A displayed grouping of available selections
(such as functions, modules, or colors) in a
user-interface window.

palindrome . In Data Explorer, a mode of running an
entire sequence, first in one direction, then in the
opposite direction.

panel . A formatted display of information on a display
screen. See also window. Synonymous with display. Glossary

 Glossary 319

partitioned field . A composite field, created by
partitioning a single field into a collection of separate
fields; used for parallel processing and
data-management purposes.

path array . A compact array that encodes linear
regularity of connections. It is a set of n−1 line
segments, where the ith line segment joins points i and
i + 1.

pixel . Picture element. In computer graphics, the
smallest element of a display surface that can be
independently assigned color and intensity.

polygon . (1) Any multisided planar figure. (2) A face
of a three-dimensional object.

position-dependent data . Data that are in one-to-one
correspondence with positions.

positions component . A component that consists of a
set of dimensional points in a field.

probe . A list of one or more vectors that represent
points in a graphical image. Probes can be used with
Data Explorer tools that accept vectors as input (such
as ClipPlane and Streamline) or to control the view of
an image.

product array . A compact array that encodes
multidimensional positional regularity. It is the set of
points obtained by summing one point from each of the
terms in all possible combinations. In the simplest
case, each term is a regular array.

pull-down . In windows, the list of options displayed
when a task is selected from the menu bar.

Q
quad . An element that connects four positions in a
field.

R
rank . The number of dimensions in an array. Rank
zero corresponds to scalars (e.g., the number 3). Rank
one corresponds to vectors (e.g, [1.5 3.7] and
[2.9 4.0 6.0]). Rank two corresponds to matrices or
rank-two tensors (e.g., the matrix
[[1 3 8][5 7 2][1 0 1]]). Higher ranks correspond to
higher-order tensors. See also shape.

realization . A description of how raw data is to be
represented in terms of boundaries, surfaces,
transparency, color, and other graphical, image, and
geometric characteristics.

reference . A component attribute. One component is
said to refer to another (“ref”) if the items in the first
array are integer indices into the second array. The
connections component references the positions
component.

regular array . A compact array that is a set of n
points lying on a line, with constant spacing between
them, which can represent one-dimensional regular
positions.

rendering . The generation of an image from some
representation of an object, such as a surface, or from
volumetric information.

ribbon . A figure derived from lines (e.g., from
streamlines and streaklines). Ribbons may twist to
indicate vorticity.

S
sample point . A point that represents user data. Data
is interpolated between sample points by interpolation
elements (connections).

scalar . A non-vector value characterized by a single,
real number.

scatter data . A collection of sample points without
connections.

screen . An illuminated display surface (e.g., the
display surface of a CRT or plasma panel).

scripting language . The IBM Data Explorer command
language. Used for writing visual programs, to manage
the execution of modules, and to invoke visualization
functions.

scroll . To move all or part of the display image
vertically or horizontally to display data that cannot be
observed in a single display image.

secondary window . Any window generated by
another window. A secondary window always appears
on top of its parent window and is automatically
minimized or closed when the parent window is
minimized or closed. Synonymous with child window.

sequencer . An IBM Data Explorer tool for creating
“animated” sequences of images.

series . In IBM Data Explorer, used to represent a
single field sampled across some parameter (e.g., a
simulation of a CMOS device across a temperature
range). Members of a series have a position. A copy
of the position is found in the “series position” attribute.

320 IBM Visualization Data Explorer: User’s Guide

shape . A list of the dimensions of a structure (the list
contains nothing for scalars, one entry for vectors, two
for rank-two tensors, and so on). See also rank.

shared . A term used to indicate the availability of a
resource for use by more than one program at the
same time.

specular reflection . A reflection from a shiny object.

stand-in . See interactor stand-in.

streaklines . Lines that represent the path of particles
in a changing vector field. Also called rakes.

streamlines . Lines that represent the path of particles
in a vector field at a particular time. Also called flow
lines.

T
task . A basic unit of work to be accomplished by a
computer.

tetrahedron . A volumetric connection element that
connects four positions in a field.

tool . In IBM Data Explorer, a general term for any icon
used to build a visual program (specifically, module,
macro, or interactor stand-in).

triangle . A connection element that connects three
points in a field.

tube . A surface centered on a deriving line (e.g., a
streamline or streakline). Tubes may twist to indicate
vorticity.

U
user . Anyone who uses the services of a computer
system. See also user display station.

V
value . An instance of an attribute (for example, “blue”
as the value of the attribute “color”).

vector . A quantity characterized by more than one
component.

visual program . A user-specified interconnected set of
Data Explorer modules that performs a sequence of
operations on data and typically produces an image as
output.

vertex . One of the positions that define a connection
element.

visual program editor . IBM Data Explorer window
used to create and edit visual programs and macros.
See also canvas.

volume . The amount of three-dimensional space
occupied by an object or substance (measured in cubic
units). To be distinguished from an object’s surface,
which is a mathematical abstraction.

volume rendering . A technique for using color and
opacity to visualize all the data in a 3-dimensional data
set. The internal details visualized may be physical
(such as the structure of a machine part) or they may
be other characteristics (such as fluid flow, temperature,
or stress).

vorticity . Mathematically defined as the curl of a
velocity field. A particle in a velocity field with nonzero
vorticity will rotate.

W
window . On a visual display terminal, information in a
framed area on a panel that overlies part of the panel.
See also anchor window, primary window, secondary
window.

wireframe . Connected lines that represent a surface.

 Glossary

 Glossary 321

322 IBM Visualization Data Explorer: User’s Guide

 Index

 Index

Special Characters
@ variables 192, 206, 207

Numerics
3-D cursor 79, 85

A
accelerator keys 63
adding comments to a visual program 114
adding input tabs 106
advanced looping constructs 50
align (for navigating) 80
aligning interactors in a Control Panel 134
aligning tools in the VPE window 113
anchor symbol 60
angle for perspective rendering 77
animation 68, 217, 237
arithmetic expressions in scripting language 197
Array items

category 28
rank 28
shape 28
type 28

Array Objects in Data Explorer file format 272
Array types 28
Arrays

compact
constant 33
in Data Explorer file format 244
mesh 31
path 31
product 29
regular 29

irregular 28
items in 28

assignment statements in scripting language
expression assignments 199
function call assignments 199
general description 198

at (@) variables in scripting language 192, 206, 207
attributes

color multiplier 27
dependence (dep) 26
derived (der) 27
element type 27
opacity multiplier 27
reference (ref) 27

attributes, function call in scripting language 202
attributes, setting interactor

See interactor attributes

AutoAxes 88
axes box 88

B
back colors component 22
binormals component 24
box component 24
by-name arguments in scripting language 201

C
cache attribute 202
cache in memory use 214
cache, object 214
cacheability, setting output 214
Camera

getting precise settings 82
resetting 85

Camera Objects in Data Explorer file format 278
category of an Array item 28
changing the look-to point 79
changing the size of interactors 132
changing your view direction 76
Clipped Objects in Data Explorer file format 278
closing windows 65
color map component 23
color mapping 219
color multiplier attribute 27
Colormap Editor

adding control points 122
entering values 121
menus

Edit 169
Execute 170
File 168
Options 170

moving control points 123
selecting control points 123
using 119

colors component 22
comments

adding to a visual program 114
in a Control Panel 67
in a data file 269
in a script 191
in a visual program 67
user-defined 67

Compact Arrays 29
component attributes 26
component sharing 19

 Copyright IBM Corp. 1991-1997 323

component, definition 17
Composite Field Groups 35
Composite Field Objects in Data Explorer file

format 271
configuration dialog box

buttons 110
entering values in 107
for Compute module 111
notation field 108
toggle button 108
value field 109

connecting to the server 183
connection dependence 8, 20
connections 9, 20
Constant Array in Data Explorer file format 273
Constant Arrays 33
constants in scripting language

scalar numeric 194
string 193

constraints on 3-D cursor tool 79, 85
constructs, advanced looping 50
contours 221
Control Panels 232

access 138
adding interactors 130
building 129
customizing 133
deleting 132
Groups 138, 139
menus

Edit 163
Execute 164
File 163
Options 164
Panels 164

placing interactors 130
saving and restoring 132

Control Panels, dialog-style 135
controlling view of an image

See image, controlling view of
copying tools 105
cuboid vertices ordering 21
cursor constraints 79, 85
customizing the VPE window 113

D
data component 22
Data Explorer

Data Model 16
environment variables 59, 292
file format examples

See examples of Data Explorer file format
overview 2
scripting language 188
starting Data Explorer 58

Data Explorer (continued)
system structure 3
windows

Colormap Editor 119
Image 74
pull-down options 62
structure 61
using on-line help 65
VPE 99
working with windows 65

data flow 38
data mode clause in Data Explorer file format 278
Data Model, Data Explorer 16
data section of Data Explorer file format 269
data statistics component 24
data structures supported 16
data-driven interactors 147
debugging visual programs 212
decimal notation in scripting language 194
default values

in configuration dialog box 109
in scripting language 204

deforming a surface field 227
dependence (dep) attribute 27
dependence, data 8, 17
derivative (der) attribute 26
description button in configuration dialog box 110
dialog-style Control Panels 135
distributed computation 3, 178
drag and drop 105

E
edges component 24
element type attribute 27
end clause of the Data Explorer file 279
environment variables 59, 292
error messages 71
examples of Data Explorer file format

faces, loops, edges, and polylines 25, 260, 263,
265

header and data in separate files 254
image files 268
irregular grid 251
Product Arrays 255
regular grid 247
regular skewed grid 248
series 257
two-dimensional grid 260
warped grid 249

executing a visual program 67
execution Groups 178

assigning Groups to workstations 181
creating 178, 180
deleting 178, 180
modifying 178, 180

324 IBM Visualization Data Explorer: User’s Guide

 Index

execution model 38
execution, stopping 212
explicit state, preserving 45
expression assignments in scripting language 199

F
faces component 24
Field attributes

color multiplier 27
opacity multiplier 27

Field Objects 17, 18, 272
Fields

Data Explorer file format 244
Data Model 16
general discussion 12

file format
CDF 279
Data Explorer 244
HDF 288
netCDF 281

Find Tool dialog box 111
flow control 38
flow, data 38
frame display rate 93, 237
front colors component 22
function call assignments in scripting language 199
function call attributes 202
function call conventions in scripting language

by-name arguments 201
function call example 201
introduction to 200
missing arguments 201
positional arguments 200

G
GetGlobal (preserving state) 45
GetLocal (preserving state) 45
graphical user interface 58, 74, 128, 156, 178
graphics card hardware rendering options 91
grid types 21
gridconnections keyword in Data Explorer file

format 275
gridpositions keyword in Data Explorer file format 274
Groups 34

Composite Field 35
general description 34
in Data Explorer file format 270
Multigrid 34, 271
Series 35

H
header section of the Data Explorer file format 268

help
Context-Sensitive Help 65
in a Control Panel 67, 133
in a visual program 67
Overview (of Window) 65
Table of Contents 65
Technical Support 65
Tutorial 65
user-defined 67
Using Help 65

hexadecimal numbers in scripting language 194
hiding input tabs 110
hints for using Data Explorer 212
Histogram 227

in Colormap Editor 124

I
identifiers in scripting language 192
Image Window

changing the name of 93
menus

Connection 167, 171
Execute 166, 171
File 165, 171
Options 167
Windows 166, 172

organization 165
image, controlling view of

changing look-to point (roaming) 79
changing view direction 76
navigating 80
panning 80
resizing 84
rotating 77
selecting view mode 74
zooming 78

import, changing data 185
importing data 242
include command 207
input tabs, adding and removing 106
input tabs, revealing and hiding 110
instance attribute in scripting language 202
interactive use 232
interactor attributes

in general 134
incrementing 135
label 137
layout 134
style 134
updating 135

interactor stand-ins 128
interactors

adding and moving to existing Control Panel 130
and Control Panels 232
changing the label 137

 Index 325

interactors (continued)
changing the layout 134
changing the size of 132
changing the style 134
deleting 131
Dial 142
Integer 142
List 145
moving a group 131
moving single interactor 131
placing in Control Panel 130
radio-button 146
Reset 147
Scalar 142
selecting a group 131
Selector 136, 146
SelectorList 146
Slider 143
Stepper 142
String 144
Toggle 147
use of 130—147
Value 144
Vector 144

interface, user 58, 74, 128, 156, 178
interpolation 9
invalid-positions and invalid-connections

components 23
irregular Arrays in Data Explorer file format 28
isosurfaces 221
issues of visualization presentation 238
iteration using looping 44

L
light object in Data Explorer file format 277
lists in scripting language 196
loading modules 183
locating tools 111
look direction (for navigating) 80
look-to point 79
looping

constructs, advanced 50
iteration using 44

loops component 24

M
macros

in scripting language
body 205
definition of 204
example of macro execution 210
examples 205
expansion 208
header 204
variables in 208

macros (continued)
in visual programs

creating 149
loading 152
naming 151
opening 154

Map 223
matrices in scripting language 195
maximizing windows 65
memory, use of 213
Mesh Array Objects in Data Explorer file format 276

in data model 32
Message window 174

menus
Commands 173
Edit 173
Execute 173
File 172
Options 173

minimizing windows 65
missing arguments in scripting language 201
modules, loading 183
mouse, use in Data Explorer 62
moving tools 105
Multigrid Groups 34
Multigrid Objects 34, 271

N
named arguments 201
naming the image 93
navigating around the image 80
neighbors component 24
netCDF file format

complex Fields 282
description 281
examples 286
series data 284
simple Fields 281

networks 13
normals component 24
notation field in a configuration dialog box 108

O
object attributes 27
object cache 214
Objects

Array 28
definition of 16
Field 17
Group 34
in Data Explorer files 244

Objects, Array
compact

constant 33
in Data Explorer file format 244

326 IBM Visualization Data Explorer: User’s Guide

 Index

Objects, Array (continued)
compact (continued)

mesh 31
path 31
product 29
regular 29

irregular 28
items in 28

octal numbers in scripting language 194
on-line help

Context-Sensitive Help 65
in a Control Panel 67, 133
in a visual program 67
Overview (of Window) 65
Table of Contents 65
Technical Support 65
Tutorial 65
user-defined 67
Using Help 65

opacities component 23
opacity map component 23
opacity multiplier attribute 27
operators in scripting language 198
options box 63
ordering of vertices 20, 21
orthographic projection method 76
outboard modules, loading 183
output cacheability, setting 214

P
panning 80

See also look-to point
parallelism 55, 56
Path Array Objects

in Data Explorer format 276
in the Data Model 31

paths component in the Data Model 25
perspective projection method 76
pick paths component 25
picking 25, 87
Plot 227
pokes component 25
positional arguments in scripting language 200
positions component 20
positions dependence 8, 17
positions, definition 17
preserving explicit state 45
printing an image 97
probes 85
Product Array Objects

in Data Explorer format 275
in the Data Model 29

projection methods 76
pull-down menus, selecting 62

R
rank of an Array item 28
Receiver tool 106, 234
Redo action 84
reference (ref) attribute 27
Regular Array Objects

in Data Explorer format 274
in the Data Model 29

remote tab connections 106
removing input tabs 106
render options 91
rendering, volume 231
required inputs 103
reserved words in scripting language 192
Reset interactor 147
resetting the camera 85
resetting the server 185
resizing the image 84
restoring a camera setting 84
restoring a visual program file 115
revealing input tabs 110
roaming in the image scene 79
rotating the image 77
RubberSheet 227
runtime modules, loading 183

S
saving a visual program file 115
saving an image 94
scalar numeric constants in scripting language

definition of 194
floating-point numbers

scientific notation 195
standard representation 195

integers
decimal notation 194
hexadecimal numbers 194
octal numbers 194

scientific notation in scripting language 195
Screen Objects in Data Explorer file format 278
script execution model

executing macro or module 208
macro expansion 208
top level environment 208

scripting language, Data Explorer 188
scroll bars 101
selecting options with an options box 63
Selector interactor 136
SelectorList interactor 146
separate files

for Data Explorer header and data 254
for netCDF variables 285

Sequencer
frame controls 69

 Index 327

Sequencer (continued)
script commands 206
sequence controls 68
using 68

Series
for Data Explorer file format 271
for netCDF file format 284

Series in the Data Model 35
server

connecting to 183
resetting 185

SetGlobal (preserving state) 45
SetLocal (preserving state) 45
setting interactor attributes

See interactor attributes
setting output cacheability 214
setting render options 91
shape of an Array item 28
shared components 19
simplex vertices ordering 20
standard attributes

color multiplier 27
dependence (dep) 26
derived (der) 27
element type 27
opacity multiplier 27
reference (ref) 27

standard components
attributes

dependence (dep) 26
derivative (der) 27
element type 27
reference (ref) 27

box 24
color map 23
colors, front colors, and back colors 22
connections 20
data 22
data statistics 24
edges and polylines 25
faces, loops, and edges 24
invalid positions and invalid connections 23
neighbors 24
opacities 23
opacity map 23
pokes, paths, and pick paths 25
positions 20
tangents, normals, and binormals 24

Start Server option 183
state, preserving explicit 45
stopping execution 212
string constants in scripting language 193
String Objects in Data Explorer file format 277
structuring in modules 228

T
tabs

connecting 104
deleting 105
moving 105

tangents component 24
techniques for presentation 238
techniques, visualization 217
television

color resolution 237
line resolution 236

tensors in scripting language 196
Throttle option 93
Toggle interactor 147
tool icons 101
tools

deleting 103
icons 101
moving 103
moving a group 103
placing 102
requesting general information 65
selecting 102
selecting a group 102
special 218
specifying values for inputs 103

transformation modules 228
Transmitter tool 106, 234
type of an Array item 28
types of Arrays 28

U
Undo action 84
use of memory 213
user interface 58, 74, 128, 156, 178
using the Sequencer 68

V
vector Fields 229
vectors in scripting language 195
vertex ordering 20, 21
video output 236
video output design 236
view angle for perspective rendering 77
view direction, changing 76
view of an image, controlling

See image, controlling view of
Visual Program Editor (VPE)

customizing 113
finding tools 111
menus

Connection 162
Edit 157
Execute 160
File 156

328 IBM Visualization Data Explorer: User’s Guide

 Index

Visual Program Editor (VPE) (continued)
menus (continued)

Options 162
Windows 161

tool palette 100
visual program (definition) 99

visual programming 13
visual programs

creating
See tools

executing 67
restoring previously created programs 118
saving

a previous file 117
in general 115
to a different directory 118

visualization techniques 217
volume rendering 231

W
waveforms in the Colormap Editor 124

X
xform Objects in Data Explorer file format 277

Z
zooming into and out of an image 78

 Index 329

Readers' Comments — We'd Like to Hear from You

IBM Visualization Data Explorer
User’s Guide
Version 3 Release 1 Modification 4

Publication No. SC38-0496-06

Overall, how satisfied are you with the information in this book?

How satisfied are you that the information in this book is:

Please tell us how we can improve this book:

Thank you for your responses. May we contact you? Ø Yes Ø No

When you send comments to IBM, you grant IBM a nonexclusive right to use or distribute your comments
in any way it believes appropriate without incurring any obligation to you.

Name Address

Company or Organization

Phone No.

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Overall satisfaction Ø Ø Ø Ø Ø

Very

Satisfied Satisfied Neutral Dissatisfied
Very

Dissatisfied

Accurate Ø Ø Ø Ø Ø
Complete Ø Ø Ø Ø Ø
Easy to find Ø Ø Ø Ø Ø
Easy to understand Ø Ø Ø Ø Ø
Well organized Ø Ø Ø Ø Ø
Applicable to your tasks Ø Ø Ø Ø Ø

Cut or Fold
Along Line

Cut or Fold
Along Line

Readers' Comments — We'd Like to Hear from You
SC38-0496-06 IBM

Fold and Tape Please do not staple Fold and Tape

NO POSTAGE
NECESSARY
IF MAILED IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST-CLASS MAIL PERMIT NO. 40 ARMONK, NEW YORK

POSTAGE WILL BE PAID BY ADDRESSEE

IBM Corporation
Thomas J. Watson Research Center/Hawthorne
Data Explorer Development
P.O. Box 704
YORKTOWN HEIGHTS, NY
USA 10598-0704

Fold and Tape Please do not staple Fold and Tape

SC38-0496-06

IBM

Printed in U.S.A.

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber

SC38-ð496-ð6

	Cover Page
	Table of Contents
	Table of Figures
	List of Tables
	About This Guide
	New Features in DX 3.1.4
	Chapter 1. Overview
	Chapter 2. Intro to Visualization
	Chapter 3. Understanding the Data Model
	Chapter 4. Data Explorer Execution Model
	Chapter 5. Graphical User Interface: Basics
	Chapter 6. Graphical User Interface: Important Windows
	Chapter 7. Graphical User Interface: Control Panels, Interactors, and Macros
	Chapter 8. Graphical User Interface: Menus, Options, and the Message Window
	Chapter 9. Graphical User Interface: For Advanced Users
	Chapter 10. Data Explorer Scripting Language
	Appendix A. Using Data Explorer
	Appendix B. Importing Data: File Formats
	Appendix C. Environment Variables and Command Line Options
	Appendix D. User Interface Configuration
	Appendix E. Data Explorer Fonts
	Appendix F. Data Explorer Colors
	Appendix G. Accelerator Keys
	Glossary
	Index
	A - component sharing
	component - execution Groups
	execution model - interactors
	interactors - Objects
	Objects - Sequencer
	Sequencer - VPE
	VPE - WXZ

	Readers' Comments

