
mjb – December 26, 2022
Computer Graphics

1

DataBuffers.pptx

Mike Bailey
mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

Data Buffers

mjb – December 26, 2022
Computer Graphics

2From the Quick Reference Card

Even though Vulkan is up to 1.3, the most current Vulkan Reference card is version 1.1

https://www.khronos.org/files/vulkan11-reference-guide.pdf

mjb – December 26, 2022
Computer Graphics

3

A Vulkan Data Buffer is just a group of contiguous bytes in GPU memory. They
have no inherent meaning. The data that is stored there is whatever you want it
to be. (This is sometimes called a “Binary Large Object”, or “BLOB”.)

It is up to you to be sure that the writer and the reader of the Data Buffer are
interpreting the bytes in the same way!

Vulkan calls these things “Buffers”. But, Vulkan calls other things “Buffers”, too,
such as Texture Buffers and Command Buffers. So, I sometimes have taken to
calling these things “Data Buffers” and have even gone so far as to extend
some of Vulkan’s own terminology:

typedef VkBuffer VkDataBuffer;

This is probably a bad idea in the long run.

Terminology Issues

mjb – December 26, 2022
Computer Graphics

4Creating and Filling Vulkan Data Buffers

vkCreateBuffer()

VkBufferCreateInfo

bufferUsage
queueFamilyIndices

size (bytes)
LogicalDevice

vkGetBufferMemoryRequirements()

Buffer

VkMemoryAllocateInfo

sizememoryType

vkAllocateMemory()LogicalDevice

vkBindBufferMemory()

bufferMemoryHandle

vkMapMemory()

gpuAddress

mjb – December 26, 2022
Computer Graphics

5

VkBuffer Buffer; // or "VkDataBuffer Buffer"

VkBufferCreateInfo vbci;
vbci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
vbci.pNext = nullptr;
vbci.flags = 0;
vbci.size = << buffer size in bytes >>
vbci.usage = <<or’ed bits of: >>

VK_USAGE_TRANSFER_SRC_BIT
VK_USAGE_TRANSFER_DST_BIT
VK_USAGE_UNIFORM_TEXEL_BUFFER_BIT
VK_USAGE_STORAGE_TEXEL_BUFFER_BIT
VK_USAGE_UNIFORM_BUFFER_BIT
VK_USAGE_STORAGE_BUFFER_BIT
VK_USAGE_INDEX_BUFFER_BIT
VK_USAGE_VERTEX_BUFFER_BIT
VK_USAGE_INDIRECT_BUFFER_BIT

vbci.sharingMode = << one of: >>
VK_SHARING_MODE_EXCLUSIVE
VK_SHARING_MODE_CONCURRENT

vbci.queueFamilyIndexCount = 0;
vbci.pQueueFamilyIndices = (const iont32_t) nullptr;

result = vkCreateBuffer (LogicalDevice, IN &vbci, PALLOCATOR, OUT &Buffer);

Creating a Vulkan Data Buffer

“or” these bits together
to specify how this
buffer will be used

mjb – December 26, 2022
Computer Graphics

6

VkMemoryRequirements vmr;
result = vkGetBufferMemoryRequirements(LogicalDevice, Buffer, OUT &vmr);

VkMemoryAllocateInfo vmai;
vmai.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
vmai.pNext = nullptr;
vmai.flags = 0;
vmai.allocationSize = vmr.size;
vmai.memoryTypeIndex = FindMemoryThatIsHostVisible();

. . .

VkDeviceMemory vdm;
result = vkAllocateMemory(LogicalDevice, IN &vmai, PALLOCATOR, OUT &vdm);

result = vkBindBufferMemory(LogicalDevice, Buffer, IN vdm, 0); // 0 is the offset

. . .

result = vkMapMemory(LogicalDevice, IN vdm, 0, VK_WHOLE_SIZE, 0, &ptr);

<< do the memory copy >>

result = vkUnmapMemory(LogicalDevice, IN vdm);

Allocating Memory for a Vulkan Data Buffer, Binding a
Buffer to Memory, and Writing to the Buffer

mjb – December 26, 2022
Computer Graphics

7

int
FindMemoryThatIsHostVisible()
{

VkPhysicalDeviceMemoryProperties vpdmp;
vkGetPhysicalDeviceMemoryProperties(PhysicalDevice, OUT &vpdmp);
for(unsigned int i = 0; i < vpdmp.memoryTypeCount; i++)
{

VkMemoryType vmt = vpdmp.memoryTypes[i];
if((vmt.propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
{

return i;
}

}
return -1;

}

Finding the Right Type of Memory

mjb – December 26, 2022
Computer Graphics

8

int
FindMemoryThatIsDeviceLocal()
{

VkPhysicalDeviceMemoryProperties vpdmp;
vkGetPhysicalDeviceMemoryProperties(PhysicalDevice, OUT &vpdmp);
for(unsigned int i = 0; i < vpdmp.memoryTypeCount; i++)
{

VkMemoryType vmt = vpdmp.memoryTypes[i];
if((vmt.propertyFlags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT) != 0)
{

return i;
}

}
return -1;

}

Finding the Right Type of Memory

mjb – December 26, 2022
Computer Graphics

9

6 Memory Types:
Memory 0:
Memory 1: DeviceLocal
Memory 2: HostVisible HostCoherent
Memory 3: HostVisible HostCoherent HostCached
Memory 4: DeviceLocal HostVisible HostCoherent
Memory 5: DeviceLocal

4 Memory Heaps:
Heap 0: size = 0xdbb00000 DeviceLocal
Heap 1: size = 0xfd504000
Heap 2: size = 0x0d600000 DeviceLocal
Heap 3: size = 0x02000000 DeviceLocal

VkPhysicalDeviceMemoryProperties vpdmp;
vkGetPhysicalDeviceMemoryProperties(PhysicalDevice, OUT &vpdmp);

Finding the Right Type of Memory

These are the numbers for the Nvidia A6000 cards

mjb – December 26, 2022
Computer Graphics

10

void *mappedDataAddr;

vkMapMemory(LogicalDevice, myBuffer.vdm, 0, VK_WHOLE_SIZE, 0, OUT (void *)&mappedDataAddr);

memcpy(mappedDataAddr, &VertexData, sizeof(VertexData));

vkUnmapMemory(LogicalDevice, myBuffer.vdm);

Memory-Mapped Copying to GPU Memory, Example I

mjb – December 26, 2022
Computer Graphics

11

struct vertex *vp;

vkMapMemory(LogicalDevice, IN myBuffer.vdm, 0, VK_WHOLE_SIZE, 0, OUT (void *)&vp);

for(int i = 0; i < numTrianglesInObjFile; i++) // number of triangles
{

for(int j = 0; j < 3; j++) // 3 vertices per triangle
{

vp->position = glm::vec3(. . .);
vp->normal = glm::vec3(. . .);
vp->color = glm::vec3(. . .);
vp->texCoord = glm::vec2(. . .);
vp++;

}
}

vkUnmapMemory(LogicalDevice, myBuffer.vdm);

Memory-Mapped Copying to GPU Memory, Example II

mjb – December 26, 2022
Computer Graphics

12Sidebar: The Vulkan Memory Allocator (VMA)

The Vulkan Memory Allocator is a set of functions to simplify your view of allocating
buffer memory. I am including its github link here and a little sample code in case you
want to take a peek.

https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator

This repositoryalso includes a smattering of documentation.

See our class VMA noteset for more VMA details

mjb – December 26, 2022
Computer Graphics

13Sidebar: The Vulkan Memory Allocator (VMA)

#define VMA_IMPLEMENTATION
#include “vk_mem_alloc.h”
. . .
VkBufferCreateInfo vbci;
. . .
VmaAllocationCreateInfo vaci;

vaci.physicalDevice = PhysicalDevice;
vaci.device = LogicalDevice;
vaci.usage = VMA_MEMORY_USAGE_GPU_ONLY;

VmaAllocator var;
vmaCreateAllocator(IN &vaci, OUT &var);
. . .
. .
VkBuffer Buffer;
VmaAllocation van;
vmaCreateBuffer(IN var, IN &vbci, IN &vaci, OUT &Buffer. OUT &van, nullptr);

void *mappedDataAddr;
vmaMapMemory(var, van, OUT &mappedDataAddr);

memcpy(mappedDataAddr, &VertexData, sizeof(VertexData));

vmaUnmapMemory(var, van);

See our class VMA noteset for more VMA details

mjb – December 26, 2022
Computer Graphics

14

typedef struct MyBuffer
{

VkDataBuffer buffer;
VkDeviceMemory vdm;
VkDeviceSize size; // in bytes

} MyBuffer;

. . .

// example:
MyBuffer MyObjectUniformBuffer;

I find it handy to encapsulate buffer information in a struct:

Something I’ve Found Useful

It’s the usual object-oriented benefit – you can pass around just one
data-item and everyone can access whatever information they need.

It also makes it impossible to accidentally associate the wrong
VkDeviceMemory and/or VkDeviceSize with the wrong data buffer.

mjb – December 26, 2022
Computer Graphics

15Initializing a Data Buffer

VkResult
Init05DataBuffer(VkDeviceSize size, VkBufferUsageFlags usage, OUT MyBuffer * pMyBuffer)
{
. . .

vbci.size = pMyBuffer->size = size;
. . .

result = vkCreateBuffer (LogicalDevice, IN &vbci, PALLOCATOR, OUT &pMyBuffer->buffer);
. . .

pMyBuffer->vdm = vdm;
. . .
}

It’s the usual object-oriented benefit – you can pass around just one
data-item and everyone can access whatever information they need.

mjb – December 26, 2022
Computer Graphics

16Here are C/C++ structs used by the Sample Code to hold some uniform variables

Here’s the associated GLSL shader code to access those uniform variables:

The uNormal is set to:
glm::inverseTranspose(uView * uSceneOrient * uModel)

In the vertex shader, each object vertex gets transformed by:
uProjection* uView * uSceneOrient * uModel

In the vertex shader, each surface normal vector gets
transformed by the uNormal

mjb – December 26, 2022
Computer Graphics

17Filling those Uniform Variables

const float EYEDIST = 3.0f;
const double FOV = glm::radians(60.); // field-of-view angle in radians

glm::vec3 eye(0.,0.,EYEDIST);
glm::vec3 look(0.,0.,0.);
glm::vec3 up(0.,1.,0.);

Scene.uProjection = glm::perspective(FOV, (double)Width/(double)Height, 0.1, 1000.);
Scene.uProjection[1][1] *= -1.; // account for Vulkan’s LH screen coordinate system
Scene.uView = glm::lookAt(eye, look, up);
Scene.uSceneOrient = glm::mat4(1.);

Object.uModelOrient = glm::mat4(1.); // identity
Object.uNormal = glm::inverseTranspose(Scene.uView * Scene.uSceneOrient * Object.uModel)

This code assumes that this line:

#define GLM_FORCE_RADIANS

is listed before GLM is #included!

mjb – December 26, 2022
Computer Graphics

18

This C struct is holding the original
data, written by the application.

The MyBuffer does not hold any actual data itself. It
just information about what is in the data buffer

The Data Buffer in GPU memory is
holding the copied data. It is
readable by the shaders

MyBuffer MyObjectUniformBuffer;

uniform objectBuf Object;

struct objectBuf Object;

The Parade of Buffer Data

mjb – December 26, 2022
Computer Graphics

19Filling the Data Buffer

Init05UniformBuffer(sizeof(Object), OUT &MyObjectUniformBuffer);

Fill05DataBuffer(MyObjectUniformBuffer, IN (void *) &Object);

mjb – December 26, 2022
Computer Graphics

20

VkResult
Init05DataBuffer(VkDeviceSize size, VkBufferUsageFlags usage, OUT MyBuffer * pMyBuffer)
{

VkResult result = VK_SUCCESS;
VkBufferCreateInfo vbci;

vbci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
vbci.pNext = nullptr;
vbci.flags = 0;
vbci.size = pMyBuffer->size = size;
vbci.usage = usage;
vbci.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
vbci.queueFamilyIndexCount = 0;
vbci.pQueueFamilyIndices = (const uint32_t *)nullptr;

result = vkCreateBuffer (LogicalDevice, IN &vbci, PALLOCATOR, OUT &pMyBuffer->buffer);

VkMemoryRequirements vmr;
vkGetBufferMemoryRequirements(LogicalDevice, IN pMyBuffer->buffer, OUT &vmr); // fills vmr

VkMemoryAllocateInfo vmai;
vmai.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
vmai.pNext = nullptr;
vmai.allocationSize = vmr.size;
vmai.memoryTypeIndex = FindMemoryThatIsHostVisible();

VkDeviceMemory vdm;
result = vkAllocateMemory(LogicalDevice, IN &vmai, PALLOCATOR, OUT &vdm);
pMyBuffer->vdm = vdm;

result = vkBindBufferMemory(LogicalDevice, pMyBuffer->buffer, IN vdm, OFFSET_ZERO);
return result;

}

Creating and Filling the Data Buffer – the Details

mjb – December 26, 2022
Computer Graphics

21

VkResult
Fill05DataBuffer(IN MyBuffer myBuffer, IN void * data)
{

// the size of the data had better match the size that was used to Init the buffer!

void * pGpuMemory;
vkMapMemory(LogicalDevice, IN myBuffer.vdm, 0, VK_WHOLE_SIZE, 0, OUT &pGpuMemory);

// 0 and 0 are offset and flags
memcpy(pGpuMemory, data, (size_t)myBuffer.size);

vkUnmapMemory(LogicalDevice, IN myBuffer.vdm);
return VK_SUCCESS;

}

Remember – to Vulkan and GPU memory, these are just bits. It is up to you to
handle their meaning correctly.

Creating and Filling the Data Buffer – the Details

