An Efficient Ray-Triangle Intersection Algorithm

Mike Bailey
mjb@cs.oregonstate.edu

Why Do We Want to Intersect a Ray and a Triangle?

There are many applications for finding if a line intersects the inside of a triangle, and, if so, where. Examples include collision detection, ray-tracing, etc.
Parametrizing a Ray

Given:
- S is the (x, y, z) starting point
- Q is the (x, y, z) direction of travel

Then, the (x, y, z) position of a point \(p \) at some position along its direction of travel is:

\[
p = S + tQ
\]

\(t \geq 0. \)

Parametrizing a Triangle

It's often useful to be able to parameterize a triangle into \((u, v)\), like this:

\[
p = P_0 + u(P_1 - P_0) + v(P_2 - P_0)
\]

Note! There is no place in this triangle where \(u = 1 \) and \(v = 1 \).
The Setup

We want to find out where the ray intersects the triangle. That is, where is the point p that is common to both the ray and the triangle?

$$\text{Such that:}$$

$$t \geq 0.$$
$$0 \leq u \leq 1.$$
$$0 \leq v \leq 1-u.$$

Equation Setup

Triangle: $p = P0 + u*(P1-P0) + v*(P2-P0)$
Ray: $p = S + tQ$

Re-arranging:
$$P0 + u*(P1-P0) + v*(P2-P0) = S + tQ$$

Re-arranging some more:
$$-tQ + u*(P1-P0) + v*(P2-P0) = S - P0$$

Then collecting terms, we get:
$$At + Bu + Cv = D$$

where:
$$A = -Q$$
$$B = P1 - P0$$
$$C = P2 - P0$$
$$D = S - P0$$
Three Equations, Three Unknowns

Remembering that this equation is really 3 equations in \((x,y,z)\):

\[At + Bu + Cv = D \]

we have 3 equations with 3 unknowns, which can be cast into a matrix form

\[
\begin{bmatrix}
A_x & B_x & C_x \\
A_y & B_y & C_y \\
A_z & B_z & C_z
\end{bmatrix}
\begin{bmatrix}
t \\
u \\
v
\end{bmatrix}
=
\begin{bmatrix}
D_x \\
D_y \\
D_z
\end{bmatrix}
\]

Our goal is to solve this for \(t^*, u^*, \) and \(v^*\)

\[D_0 = \det \begin{bmatrix}
A_x & B_x & C_x \\
A_y & B_y & C_y \\
A_z & B_z & C_z
\end{bmatrix} \]

\[D_t = \det \begin{bmatrix}
D_x & B_x & C_x \\
D_y & B_y & C_y \\
D_z & B_z & C_z
\end{bmatrix} \]

\[t^* = \frac{D_t}{D_0} \]

\[D_u = \det \begin{bmatrix}
A_x & D_x & C_x \\
A_y & D_y & C_y \\
A_z & D_z & C_z
\end{bmatrix} \]

\[u^* = \frac{D_u}{D_0} \]

\[D_v = \det \begin{bmatrix}
A_x & B_x & D_x \\
A_y & B_y & D_y \\
A_z & B_z & D_z
\end{bmatrix} \]

\[v^* = \frac{D_v}{D_0} \]
Flashback: The Determinant of a 3x3 Matrix

\[\text{det} \begin{bmatrix} M_{00} & M_{01} & M_{02} \\ M_{10} & M_{11} & M_{12} \\ M_{20} & M_{21} & M_{22} \end{bmatrix} = M_{00} \cdot [M_{11} \cdot M_{22} - M_{21} \cdot M_{12}] - M_{01} \cdot [M_{10} \cdot M_{22} - M_{20} \cdot M_{12}] + M_{02} \cdot [M_{10} \cdot M_{21} - M_{20} \cdot M_{11}] \]

The Steps

1. Compute \(D_0 \)
2. If \(D_0 \approx 0 \), then the ray is parallel to the plane of the triangle
3. Compute \(D_t \)
4. Compute \(t^* \)
5. If \(t^* < 0 \), the ray goes away from the triangle
6. Compute \(D_u \)
7. Compute \(u^* \)
8. If \(u^* < 0 \) or \(u^* > 1 \), then the ray hits outside the triangle
9. Compute \(D_v \)
10. Compute \(v^* \)
11. If \(v^* < 0 \) or \(v^* > 1 - u^* \), then the ray hits outside the triangle
12. The intersection is at the point \(p = S + Qt^* \)

This is known as the Möller-Trumbore Triangle Intersection Algorithm
Computing the Determinant of a 3-Column Matrix using GLM

```cpp
float Determinant( glm::vec3 c0, glm::vec3 c1, glm::vec3 c2 )
{
    float d00 = c0.x * ( c1.y*c2.z – c1.z*c2.y );
    float d01 = c1.x * ( c0.y*c2.z – c0.z*c2.y );
    float d02 = c2.x * ( c0.y*c1.z – c0.z*c1.y );
    return d00 – d01 + d02;
}
```

Setting Up the Equations

```cpp
float Ax = -Qx;
float Ay = -Qy;
float Az = -Qz;

float Bx = P1x – P0x;
float By = P1y – P0y;
float Bz = P1z – P0z;

float Cx = P2x – P0x;
float Cy = P2y – P0y;
float Cz = P2z – P0z;

float Dx = Sx – P0x;
float Dy = Sy – P0y;
float Dz = Sz – P0z;
```
Cramer's Rule using GLM

```cpp
glm::vec3 colA = glm::vec3( Ax, Ay, Az );
glm::vec3 colB = glm::vec3( Bx, By, Bz );
glm::vec3 colC = glm::vec3( Cx, Cy, Cz );
glm::vec3 colD = glm::vec3( Dx, Dy, Dz );

float d0 = Determinant( colA, colB, colC );
float dt  = Determinant( colD, colB, colC );
float du = Determinant( colA, colD, colC );
float dv = Determinant( colA, colB, colD );

float tstar = dt / d0;
float ustar = du / d0;
float vstar = dv / d0;
```