An Efficient Ray-Triangle Intersection Algorithm

There are many applications for finding if a line intersects the inside of a triangle, and, if so, where. Examples include collision detection, ray-tracing, etc.

Why Do We Want to Intersect a Ray and a Triangle?

Parametrizing a Ray

Given:
S is the (x,y,z) starting point
Q is the (x,y,z) direction of travel
Then, the (x,y,z) position of a point p at some position along its direction of travel is:

\[p = S + tQ \]
\[t \geq 0. \]

Parametrizing a Triangle

It’s often useful to be able to parameterize a triangle into (u,v), like this:

\[(u,v) = (0,0) \]
\[(u,v) = (0,1) \]
\[(u,v) = (1,0) \]

\[p = P0 + u*(P1-P0) + v*(P2-P0) \]

Note! There is no place in this triangle where \(u = 1 \) and \(v = 1 \).

The Setup

We want to find out where the ray intersects the triangle. That is, where is the point \(p \) that is common to both the ray and the triangle?

\[t \geq 0. \]
\[0 \leq u \leq 1. \]
\[0 \leq v \leq 1-u. \]

Equation Setup

Triangle: \(p = P0 + u*(P1-P0) + v*(P2-P0) \)
Ray: \(p = S + tQ \)

Re-arranging:
\[P0 + u*(P1-P0) + v*(P2-P0) = S + tQ \]

Re-arranging some more:
\[-Q + u*(P1-P0) + v*(P2-P0) = S - P0 \]

Then collecting terms, we get:
\[At + Bu + Cv = D \]

where:
\[A = -Q \]
\[B = P1-P0 \]
\[C = P2-P0 \]
\[D = S - P0 \]
Three Equations, Three Unknowns

Remembering that this equation is really 3 equations in (x,y,z):

\[A t + B u + C v = D \]

we have 3 equations with 3 unknowns, which can be cast into a matrix form

\[
\begin{bmatrix}
A_x & B_x & C_x \\
A_y & B_y & C_y \\
A_z & B_z & C_z \\
\end{bmatrix}
\begin{bmatrix}
t \\
u \\
v \\
\end{bmatrix}
=
\begin{bmatrix}
D_x \\
D_y \\
D_z \\
\end{bmatrix}
\]

Our goal is to solve this for \(t^*, u^*, \) and \(v^* \)

Solve for \((t^*,u^*,v^*) \) using Cramer’s Rule

\[
D_0 = \text{det}
\begin{bmatrix}
A_x & B_x & C_x \\
A_y & B_y & C_y \\
A_z & B_z & C_z \\
\end{bmatrix}

D_t = \text{det}
\begin{bmatrix}
B_x & C_x & D_x \\
B_y & C_y & D_y \\
B_z & C_z & D_z \\
\end{bmatrix}

D_u = \text{det}
\begin{bmatrix}
A_x & B_x & D_x \\
A_y & B_y & D_y \\
A_z & B_z & D_z \\
\end{bmatrix}

D_v = \text{det}
\begin{bmatrix}
A_x & B_y & C_x \\
A_y & B_y & C_y \\
A_z & B_z & C_z \\
\end{bmatrix}

\]

\[t^* = \frac{D_t}{D_0} \]

\[u^* = \frac{D_u}{D_0} \]

\[v^* = \frac{D_v}{D_0} \]

Flashback: The Determinant of a 3x3 Matrix

\[
\text{det}
\begin{bmatrix}
M_{00} & M_{01} & M_{02} \\
M_{10} & M_{11} & M_{12} \\
M_{20} & M_{21} & M_{22} \\
\end{bmatrix}
=
M_{00} \cdot [M_{11} \cdot M_{22} - M_{12} \cdot M_{21}] - M_{01} \cdot [M_{10} \cdot M_{22} - M_{12} \cdot M_{20}] + M_{02} \cdot [M_{10} \cdot M_{21} - M_{11} \cdot M_{20}]
\]

Setting Up the Equations

\[
\begin{align*}
Ax &= -Qx; \\
Ay &= -Qy; \\
Az &= -Qz; \\
Bx &= P1x - P0x; \\
By &= P1y - P0y; \\
Bz &= P1z - P0z; \\
Cx &= P2x - P0x; \\
Cy &= P2y - P0y; \\
Cz &= P2z - P0z; \\
Dx &= Sx - P0x; \\
Dy &= Sy - P0y; \\
Dz &= Sz - P0z; \\
\end{align*}
\]
Cramer's Rule using GLM

```cpp
glm::vec3 colA = glm::vec3(Ax, Ay, Az);
glm::vec3 colB = glm::vec3(Bx, By, Bz);
glm::vec3 colC = glm::vec3(Cx, Cy, Cz);
glm::vec3 colD = glm::vec3(Dx, Dy, Dz);

float d0 = Determinant( colA, colB, colC );
float dt = Determinant( colD, colB, colC );
float du = Determinant( colA, colD, colC );
float dv = Determinant( colA, colB, colD );

float tstar = dt / d0;
float ustar = du / d0;
float vstar = dv / d0;
```