Wuiian.

The Swap Chain

Oregon State
University
Mike Bailey

mib@cs.oregonstate.edu

iversity
Compuler Graphics

mib — Docombor 21,2022

12/29/2022

How OpenGL Thinks of Framebuffers

Refresh

University
Computer Graphics

b —Dacenbar 21, 2022 |

How Vulkan Thinks of Framebuffers — the Swap Chain

o

Back 1]

Update -

Present

um’.lm tate

L Front

Compuler GItxyaphlcs T

mib — Decerber 21, 2022

What is a Swap Chain? 4

Vulkan does not use the idea of a “back buffer”. So, we need a place to render into
before moving an image into place for viewing. The is called the Swap Chain.

In essence, the Swap Chain manages one or more image objects that form a sequence
of images that can be drawn into and then given to the Surface to be presented to the
user for viewing.

Swap Chains are arranged as a ring buffer

Swap Chains are tightly coupled to the window system. ad

After creating the Swap Chain in the first place, the process for using the Swap Chain is:

1.
2
3
4

Ask the Swap Chain for an image

Render into it via the Command Buffer and a Queue
Return the image to the Swap Chain for presentation
Present the image to the viewer (copy to “front buffer”)

Un. State

Compier Gfaphics

We Need to Find Out What our Display Capabilities Are 5

VkSurfaceCapabi\i(iﬂKHR

PhysicalDevice, Surface, OUT &vsc);
VKExtent2D surfaceRes = vsc.currentExtent;
fprintf(FpDebug, i An);

VKBool32 supported;
result = icalDevi (PhysicalDevice, FindQu i ics(), Surface, X
u(supported == VK_TRUE)
forintf(FpDebug, *** This Surface is supported by the Graphics Queue **\n");

uint32_t formatCount;

vkGetPhysicalDeviceSurfaceF ormatsKHR(PhysicalDevice, Surface, &formatCount, (VkSurfaceFormatkHR *) nulptr)
= new [formatCount J;

VkGetPhysicalDeviceSurfaceFormatskHR(PhysicalDevice, Surface, &formatCount, surfaceFormats);

fprintf(FpDebug, "\nFound %d Surface Formats:\n", formatCount)

uint32_t presentModeCount;

PhyslcalDevlce Surtace, 8presentihodeCount, (VkPresenthodeKHR) nulpir);

=new

PhysicalDevice, Surface, &presen(ModeOoum presentModes);
fprintf(FpDebug, "\nFound %d Present Modes:\n", presentModeCount);

b4
Oregon State

Computer Graphics
iy - Deconer 21,2022

We Need to Find Out What our Display Capabilities Are 6

VulkanDebug.txt output for an Nvidia A6000:

*+** nit08Swapchain *****

minlmageCount = 2 ; maximageCount = 8
currentExtent = 1024 x 1024
minlmageExtent = 1024 x 1024
maximageExtent = 1024 x 1024
maximageArrayLayers = 1
supportedTransforms = 0x0001
currentTransform = 0x0001
supportedCompositeAlpha = 0x0001
supportedUsageFlags = 0x009f

** This Surface is supported by the Graphics Queue **

Found 3 Surface Formats:

0. 44 0 VK_COLOR_SPACE_SRGB_NONLINEAR_KHR
1 50 0 VK_COLOR_SPACE_SRGB_NONLINEAR_KHR
2 64 0 VK_COLOR_SPACE_SRGB_NONLINEAR_KHR

Found 4 Present Modes:

2 VK_PRESENT_MODE_FIFO_KHR

15 3 VK_PRESENT_MODE_FIFO_RELAXED_KHR
2. 1 VK_PRESENT_MODE_MAILBOX_KHR

3. 0 VK_PRESENT_MODE_IMMEDIATE_KHR

°

University
Computer Graphics

b - Docenber 21,2022 |

Here's What the Vulkan Spec Has to Say About Present Modes, |

VK_PRESENT_MODE_IMMEDIATE_KHR specifies that the presentation engine does not wait for a vertical
blanking period to update the current image, meaning this mode may result in visible tearing. No internal
queving of presentation requests is needed, as the requests are applied immediately.

V&_PRESENT_MODE_MATLBOX KR specifies that the prescatation engine waits for the next vertical blanking
period to update the current image. Tearing cannot be observed. An internal single-entry queue is used to
hold pending presentation requests. If the queue is full when a new presentation request is received, the new
request replaces the existing entry, and any images associated with the prior entry become available for re-
use by the application. One request is removed from the queue and processed during each vertical blanking
period in which the queue is non-empty.

V_PRESENT LMODE_FTFO_KiR specifies that the presentation engine waits for the next vertical blanking
period to update the current image. Tearing cannot be observed. An internal queue is used to hold pending
presentation requests. New requests are appended to the end of the queue, and one request is removed from
the beginning of the queue and processed during cach vertical blanking period in which the queue is non-
empty. This is the only value of pre sentlode| that is required to be supported

VE_PRESENT_MODE_FIFO_RELAXED KER specifies that the presentation engine generally waits for the next
vertical blanking period fo update the current image. If a vertical blanking period has already passed since
the last update of the current image then the presentation engine does not wait for another vertical blanking
period for the update, meaning this mode may result in visible tearing in this case. This mode is useful for
reducing visual stutter with an application that will mostly present a new image before the next vertical
blanking period, but may occasionally be late, and present a new image just after the next vertical blanking
period. An internal quene is used to hold pending presentation requests. New requests are appended to the,
end of the queue, and one request is removed from the beginning of the queue and processed during or after
each vertical blanking period in which the queue is non-empty.

Computer Graphics

mib — Docombor 21,2022

12/29/2022

Here's What the Vulkan Spec Has to Say About Present Modes, Il 8

VK_PRESENT_MODE_SHARED DEMAND REFRESH KHR specifies that the presentation engine and application
have concurrent access to a single image, which is referred to as a shared presentable image. The
presentation engine is only required to update the current image after a new presentation request is received.
Therefore the ‘must make a request whenever an update is required. However, the
engine may update the current image at any point, meaning this mode may result in visible

tearing |

VK_PRESENT_MODE_SHARED_CONTINUOUS_REFRESH_KHR specifies that the presentation engine and
application have concurrent access to a single image, which is referred to as a shared presentabie image.
The presentation engine periodically updates the current image on its regular refresh cycle. The application
is only required to make one initial ion request, after which the engine must update
the current image without any need for further presentation requests. The application can indicate the image
contents have been updated by making a presentation request, but this does not guarantee the timing of
when it will be updated. This mode may result in visible tearing if rendering to the image is not timed
correctly.

DregonState

University
Computer Graphics

b —Dacenbar 21, 2022 |

Creating a Swap Chain

VkGetDevicePhysicalSurfaceCapabilities()

VkSurfaceCapabilities

minimageCount
imageFormat maximageCount

imageColorSpace | __4— currentExtent
imageExtent «— minimageExtent

imageArrayLayers maximageExtent
imageUsage maximageArayLayers
imageSharingMode supportedTransforms.
preTransform currentTransform
compositeAlpha supportedCompositeAlpha
presentiode,
cliped

VkSwapchainCreatelnfo

vkCreateSwapchain()

vkGetSwapChainlmages()
vkCreatelmageView()

University
Computer Graphics

mib — Decerber 21, 2022

Creating a Swap Chain 10

VkSurfaceCapabilitieskHR <D

HR(PhysicalDevice, Surface, OUT &vsc);

VKExtent2D surfaceRes = vsc.currentExtent;

VkSwapchainCreatelnfokHR
vscei.sType = VKﬁSTRUCT
vscei.pNext = nullptr;
vsceiflags
vscei.surface = Surface;
vscei.minimageCount = Il double buffering
vscei.imageFormat VK_FORMAT_B8GBR8A8_UNORM:
vscei.imageColorSpace = VK_COLORSPACE_SRGB_NONLINEAR_KHR;
vscel.imageExtent width \vidth;
vscci.imageExtent height XYeight;
vscciimageUsage = VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
vscci.preTransform = VK_SURFACE_KRANSFORM_IDENTITY_BIT_KHR;
vscci.compositeAlpha = VK_COMPOSITE, ALPHA_OPAQUE_BIT_KHR;
vscciimageArrayLayers = 1;
vscci.imageSharingMode = VK_SHARING_\MODE_EXCLUSIVE;
vscci.queueFamilylndexCount = 0;
vscci.pQueueFamilylndices = (const uint32_t*)nullptr;
vscci.presentMode = VK_PRESENT_MODE_MAILBOX_KHR;
vscei.oldSwapchain = VK_NULL_HANDLE;
vscci.clipped = VK_TRUE;

PE_SWAPCHAIN_CREATE_INFO_KHR;

result = vkCreateSwapchainKHR(LogicalDevice, IN &vscci, PALLOCATOR, OUT &SwapChain);

University
Computer Graphics

o —Decerter 21,2022 |

Creating the Swap Chain Images and Image Views

uint32_t imageCount; 11 # of display buffers —2? 3?
result = vkGetSwapchainimagesKHR(LogicalDevice, IN SwapChain, OUT &imageCount, (Vkimage *)nullptr);

Presentimages = new Vkimage] imageCount J;
result = vkGetSwapchainimagesKHR(LogicalDevice, SwapChain, OUT &imageCount, Presentimages);

Il present views for the double-buffering:

=new g i I3

for(unsigned int i = 0; i < imageCount; i++)

Civei

URE_TYPE_IMAGE_VIEW_CREATE_INFO;

VkimageViewCreatelnfo
vivcisType = VK_STRU!
vivci.pNext = nullptr;
vivciflags = 0;
vivci.viewType = VK_IMAGE_VIE\V_TYPE_2D;
vivciformat = VK_FORMAT_B8GBR8AS_UNORM;
vivci.components.r = VK_COMPONENT_SWIZZLE_R;
vivci.components.g = VK_COMPONENT_SWIZZLE_G;
vivci.components.b = VK_COMPONBNT_SWIZZLE_B;
vivci.components.a = VK_COMPONENT_SWIZZLE_A;
vivcisubresourceRange.aspectMask = YK_IMAGE_ASPECT_COLOR_BIT;
vivcisubresourceRange.baseMipLevel 0
vivcisubresourceRange levelCount = 1;
vivcisubresourceRange.baseArrayLayer
vivcisubresourceRange.layerCount = 1;
vivciimage = Presentimages] i J

result = vkCreatelmageView(LogicalDevice, IN &vivci, PALLOCATOR, OUT &PresentimageViews[i]):

Rendering into the Swap Chain, | 12

VkSemaphoreCreatelnfo
vscisType = VK_STRUCTURI
vsci.pNext = nullptr;
vsciflags =

YRE_SEMAPHORE_CREATE_INFO;

VkSemaphore imageReadySemaphore;
result = vkCreateSemaphore(LogicalDevice, IN &vsci, PALLOCATOR, OUT &imageReadySemaphore);

uint32_t nextimagelndex;

INT64_MAX;

KHR(LogicalDevice, IN in, IN timeout, IN imag)
IN VK_NULL_HANDLE, OUT &nextimagelndex);

result = vkBeginC: C 1, IN &vebbi);

KC i (C IN 8vrpbi,
IN VK_SUBPASS_CONTENTS_INLINE);

VkCmdBindPipeline(C VK_PIPELINE_BIND_POINT_GRAPHICS, GraphicsPipeline);
kCi Ce 1)
KEndC c 1

University
Computer Graphics

b - Docenber 21,2022 |

Rendering into the Swap Chain, Il

VkFenceCreatelnfo
vici.sType = VK_STRU!
vfci.pNext = nullptr;
viciflags = 0;

RE_TYPE_FENCE_CREATE_INFO;

VkFence renderFence;
vkCreateFence(LogicalDevice, &vfci, PALLOCATOR, OUT &renderFence);

VkQueue presentQueue;
vkGetDeviceQueue(LogicalDevice, FindQueueFamilyThatDoesGraphics(), 0,
OUT &presentQueue);

VkSubmitinfo
vsi.sType = VK_STRU
vsi.pNext = nullptr;
vsi.waitSemaphoreCount g

URE_TYPE_SUBMIT_INFO;

Vsi.p o€ ore;
vsi.pWaitDstStageMask = &waitAtBottom;
vsi.commandBufferCount = 1
i.pC iffers = &C
vsi.signalSemaphoreCount = 0;
vsi.pSignalSemaphores = &SemaphdreRenderFinished;

dBuffers| I

result = vkQueueSubmit(presentQueue, 1, IN &vsi, IN renderFence); /1 = submitCount
0

Urversy—
Computer Graphics

mib — Docombor 21,2022

12/29/2022

Rendering into the Swap Chain, lll

result = vkWaitForFences(LogicalDevice, 1, IN &renderFence, VK_TRUE, UINT64_MAX);

VkPresentinfoKHR
vpi.sType = VK_STRUCTURI
vpi.pNext = nullptr;
vpi.waitSemaphoreCount = 0;
vpi.pWaitSemaphores = (VkSemaphore *)nullptr;
vpi.swapchainCount = 1;
vpi.pSwapchains = &SwapChain;

=8

PE_PRESENT_INFO_KHR;

pi.
vpi.pResults = (VkResult *) nullptr;

result = vkQueuePresentKHR(presentQueue, IN &vpi);

nState

University
Computer Graphics

)
A2

mib — Docombor 21,2022

