
I've written this post with a specific target audience in mind, namely those who have a good grounding in existing

APIs (e.g. D3D11 and GL) and understand the concepts of multithreading, staging resources, synchronisation and

so on but want to know specifically how they are implemented in Vulkan. So we end up with a whirlwind tour of what

the main Vulkan concepts look like.

This isn't intended to be comprehensive (for that you should read the spec or a more in-depth tutorial), nor is it

heavy in background or justification. Hopefully by the end of this you should be able to read specs or headers and

have a sketched idea of how a simple Vulkan application is implemented, but you will need to do additional reading.

Mostly, this is the document I wish had already been written when I first encountered Vulkan - so for the most part it

is tuned to what I would have wanted to know. I'll reference the spec whenever you should do more reading to get a

precise understanding, but you'll at least know what to look for.

- baldurk (https://twitter.com/baldurk)

At the end of the post I've included a heavily abbreviated pseudocode program showing the rough steps to a hello

world triangle, to match up to the explanations.

A few simple things that don't fit any of the other sections:

Vulkan is a C API, i.e. free function entry points. This is the same as GL.

The API is quite heavily typed - unlike GL. Each enum is separate, handles that are returned are opaque 64-

bit handles so they are typed on 64-bit (not typed on 32-bit, although you can make them typed if you use

C++).

A lot of functions (most, even) take extensible structures as parameters instead of basic types.

VkAllocationCallbacks * is passed into creation/destruction functions that lets you pass custom malloc/free

functions for CPU memory. For more details read the spec, in simple applications you can just pass NULL

and let the implementation do its own CPU-side allocation.

Warning: I'm not considering any error handling, nor do I talk much about querying for implementation limits

and respecting them. While I'm not intentionally getting anything outright wrong, I am skipping over many

details that a real application needs to respect. This post is just to get a grasp of the API, it's not a tutorial!

You initialise Vulkan by creating an instance (VkInstance). The instance is an entirely isolated silo of Vulkan -

instances do not know about each other in any way. At this point you specify some simple information including

which layers and extensions you want to activate - there are query functions that let you enumerate what layers and

extensions are available.

With a VkInstance , you can now examine the GPUs available. A given Vulkan implementation might not be running

on a GPU, but let's keep things simple. Each GPU gives you a handle - VkPhysicalDevice . You can query the

GPUs names, properties, capabilities, etc. For example see vkGetPhysicalDeviceProperties and

vkGetPhysicalDeviceFeatures .

30 minutes not actually guaranteed.

Vulkan in 30 minutes https://renderdoc.org/vulkan-in-30-minutes.html

1 of 12 1/1/2018, 6:09 AM

With a VkPhysicalDevice, you can create a VkDevice . The VkDevice is your main handle and it represents a

logical connection - i.e. 'I am running Vulkan on this GPU'. VkDevice is used for pretty much everything else. This is

the equivalent of a GL context or D3D11 device.

N.B. Each of these is a 1:many relationship. A VkInstance can have many VkPhysicalDevices , a

VkPhysicalDevice can have many VkDevices . In Vulkan 1.0, there is no cross-GPU activity, but you can bet

this will come in the future though.

I'm hand waving some book-keeping details, Vulkan in general is quite lengthy in setup due to its explicit nature and

this is a summary not an implementation guide. The overall picture is that your initialisation mostly looks like

vkCreateInstance() → vkEnumeratePhysicalDevices() → vkCreateDevice() . For a quick and dirty hello world

triangle program, you can do just that and pick the first physical device, then come back to it once you want error

reporting & validation, enabling optional device features, etc.

Now that we have a VkDevice we can start creating pretty much every other resource type (a few have further

dependencies on other objects), for example VkImage and VkBuffer .

For GL people, one kind of new concept is that you must declare at creation time how an image will be used. You

provide a bit field, with each bit indicating a certain type of usage - color attachment, or sampled image in shader, or

image load/store, etc.

You also specify the tiling for the image - LINEAR or OPTIMAL . This specifies the tiling/swizzling layout for the image

data in memory. OPTIMAL tiled images are opaquely tiled, LINEAR are laid out just as you expect. This affects

whether the image data is directly readable/writable, as well as format support - drivers report image support in

terms of 'what image types are supported in OPTIMAL tiling, and what image types are supported in LINEAR '. Be

prepared for very limited LINEAR support.

Buffers are similar and more straightforward, you give them a size and a usage and that's about it.

Images aren't used directly, so you will have to create a VkImageView - this is familiar to D3D11 people. Unlike

GL texture views, image views are mandatory but are the same idea - a description of what array slices or mip

levels are visible to wherever the image view is used, and optionally a different (but compatible) format (like

aliasing a UNORM texture as UINT).

Buffers are usually used directly as they're just a block of memory, but if you want to use them as a texel buffer

in a shader, you need to provide a VkBufferView .

Those buffers and images can't be used immediately after creation as no memory has been allocated for them. This

step is up to you.

Available memory is exposed to applications by the vkGetPhysicalDeviceMemoryProperties() . It reports one or

more memory heaps of given sizes, and one or more memory types with given properties. Each memory type

comes from one heap - so a typical example for a discrete GPU on a PC would be two heaps - one for system RAM,

and one for GPU RAM, and multiple memory types from each.

The memory types have different properties. Some will be CPU visible or not, coherent between GPU and CPU

access, cached or uncached, etc. You can find out all of these properties by querying from the physical device. This

allows you to choose the memory type you want. E.g. staging resources will need to be in host visible memory, but

your images you render to will want to be in device local memory for optimal use. However there is an additional

Vulkan in 30 minutes https://renderdoc.org/vulkan-in-30-minutes.html

2 of 12 1/1/2018, 6:09 AM

restriction on memory selection that we'll get to in the next section.

To allocate memory you call vkAllocateMemory() which requires your VkDevice handle and a description

structure. The structure dictates which type of memory to allocate from which heap and how much to allocate, and

returns a VkDeviceMemory handle.

Host visible memory can be mapped for update - vkMapMemory() / vkUnmapMemory() are familiar functions. All maps

are by definition persistent, and as long as you synchronise it's legal to have memory mapped while in use by the

GPU.

GL people will be familiar with the concept, but to explain for D3D11 people - the pointers returned by

vkMapMemory() can be held and even written to by the CPU while the GPU is using them. These 'persistent' maps

are perfectly valid as long as you obey the rules and make sure to synchronise access so that the CPU isn't writing

to parts of the memory allocation that the GPU is using (see later).

This is a little outside the scope of this guide but I'm going to mention it any chance I get - for the purposes of

debugging, persistent maps of non-coherent memory with explicit region flushes will be much more

efficient/fast than coherent memory. The reason being that for coherent memory the debugger must jump

through hoops to detect and track changes, but the explicit flushes of non-coherent memory provide nice

markup of modifications.

In RenderDoc to help out with this, if you flush a memory region then the tool assumes you will flush for every

write, and turns off the expensive hoop-jumping to track coherent memory. That way even if the only memory

available is coherent, then you can get efficient debugging.

Each VkBuffer or VkImage , depending on its properties like usage flags and tiling mode (remember that one?) will

report their memory requirements to you via vkGetBufferMemoryRequirements or vkGetImageMemoryRequirements .

The reported size requirement will account for padding for alignment between mips, hidden meta-data, and anything

else needed for the total allocation. The requirements also include a bitmask of the memory types that are

compatible with this particular resource. The obvious restrictions kick in here: that OPTIMAL tiling color attachment

image will report that only DEVICE_LOCAL memory types are compatible, and it will be invalid to try to bind some

HOST_VISIBLE memory.

The memory type requirements generally won't vary if you have the same kind of image or buffer. For example if you

know that optimally tiled images can go in memory type 3, you can allocate all of them from the same place. You will

only have to check the size and alignment requirements per-image. Read the spec for the exact guarantee here!

Note the memory allocation is by no means 1:1. You can allocate a large amount of memory and as long as

you obey the above restrictions you can place several images or buffers in it at different offsets. The

requirements include an alignment if you are placing the resource at a non-zero offset. In fact you will definitely

want to do this in any real application, as there are limits on the total number of allocations allowed.

There is an additional alignment requirement bufferImageGranularity - a minimum separation required

between memory used for a VkImage and memory used for a VkBuffer in the same VkDeviceMemory . Read

the spec for more details, but this mostly boils down to an effective page size, and requirement that each page

is only used for one type of resource.

Once you have the right memory type and size and alignment, you can bind it with vkBindBufferMemory or

vkBindImageMemory . This binding is immutable, and must happen before you start using the buffer or image.

Vulkan in 30 minutes https://renderdoc.org/vulkan-in-30-minutes.html

3 of 12 1/1/2018, 6:09 AM

Work is explicitly recorded to and submitted from a VkCommandBuffer .

A VkCommandBuffer isn't created directly, it is allocated from a VkCommandPool . This allows for better threading

behaviour since command buffers and command pools must be externally synchronised (see later). You can have a

pool per thread and vkAllocateCommandBuffers() / vkFreeCommandBuffers() command buffers from it without

heavy locking.

Once you have a VkCommandBuffer you begin recording, issue all your GPU commands into it *hand waving goes

here* and end recording.

Command buffers are submitted to a VkQueue . The notion of queues are how work becomes serialised to be

passed to the GPU. A VkPhysicalDevice (remember way back? The GPU handle) can report a number of queue

families with different capabilities. e.g. a graphics queue family and a compute-only queue family. When you create

your device you ask for a certain number of queues from each family, and then you can enumerate them from the

device after creation with vkGetDeviceQueue() .

I'm going to focus on having just a single do-everything VkQueue as the simple case, since multiple queues must be

synchronised against each other as they can run out of order or in parallel to each other. Be aware that some

implementations might require you to use a separate queue for swapchain presentation - I think chances are that

most won't, but you have to account for this. Again, read the spec for details!

You can vkQueueSubmit() several command buffers at once to the queue and they will be executed in turn.

Nominally this defines the order of execution but remember that Vulkan has very specific ordering guarantees -

mostly about what work can overlap rather than wholesale rearrangement - so take care to read the spec to make

sure you synchronise everything correctly.

The reasoning behind moving to monolithic PSOs is well trodden by now so I won't go over it.

A Vulkan VkPipeline bakes in a lot of state, but allows specific parts of the fixed function pipeline to be set

dynamically: Things like viewport, stencil masks and refs, blend constants, etc. A full list as ever is in the spec.

When you call vkCreateGraphicsPipelines() , you choose which states will be dynamic, and the others are taken

from values specified in the PSO creation info.

You can optionally specify a VkPipelineCache at creation time. This allows you to compile a whole bunch of

pipelines and then call vkGetPipelineCacheData() to save the blob of data to disk. Next time you can prepopulate

the cache to save on PSO creation time. The expected caveats apply - there is versioning to be aware of so you

can't load out of date or incorrect caches.

Shaders are specified as SPIR-V. This has already been discussed much better elsewhere, so I will just say that you

create a VkShaderModule from a SPIR-V module, which could contain several entry points, and at pipeline creation

time you chose one particular entry point.

The easiest way to get some SPIR-V for testing is with the reference compiler glslang (https://github.com

/KhronosGroup/glslang), but other front-ends are available, as well as LLVM → SPIR-V support.

To establish a point of reference, let's roughly outline D3D11's binding model. GL's is quite similar.

Each shader stage has its own namespace, so pixel shader texture binding 0 is not vertex shader texture

binding 0.

Each resource type is namespaced apart, so constant buffer binding 0 is definitely not the same as texture

binding 0.

Vulkan in 30 minutes https://renderdoc.org/vulkan-in-30-minutes.html

4 of 12 1/1/2018, 6:09 AM

Resources are individually bound and unbound to slots (or at best in contiguous batches).

In Vulkan, the base binding unit is a descriptor. A descriptor is an opaque representation that stores 'one bind'. This

could be an image, a sampler, a uniform/constant buffer, etc. It could also be arrayed - so you can have an array of

images that can be different sizes etc, as long as they are all 2D floating point images.

Descriptors aren't bound individually, they are bound in blocks in a VkDescriptorSet which each have a particular

VkDescriptorSetLayout . The VkDescriptorSetLayout describes the types of the individual bindings in each

VkDescriptorSet .

The easiest way I find to think about this is consider VkDescriptorSetLayout as being like a C struct type - it

describes some members, each member having an opaque type (constant buffer, load/store image, etc). The

VkDescriptorSet is a specific instance of that type - and each member in the VkDescriptorSet is a binding you

can update with whichever resource you want it to contain.

This is roughly how you create the objects too. You pass a list of the types, array sizes and bindings to Vulkan to

create a VkDescriptorSetLayout , then you can allocate VkDescriptorSets with that layout from a

VkDescriptorPool . The pool acts the same way as VkCommandPool , to let you allocate descriptors on different

threads more efficiently by having a pool per thread.

VkDescriptorSetLayoutBinding bindings[] = {

// binding 0 is a UBO, array size 1, visible to all stages

{ 0, VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER, 1, VK_SHADER_STAGE_ALL_GRAPHICS, NULL },

// binding 1 is a sampler, array size 1, visible to all stages

{ 1, VK_DESCRIPTOR_TYPE_SAMPLER, 1, VK_SHADER_STAGE_ALL_GRAPHICS, NULL },

// binding 5 is an image, array size 10, visible only to fragment shader

{ 5, VK_DESCRIPTOR_TYPE_SAMPLED_IMAGE, 10, VK_SHADER_STAGE_FRAGMENT_BIT, NULL },

};

Example C++ outlining creation of a descriptor set layout

Once you have a descriptor set, you can update it directly to put specific values in the bindings, and also copy

between different descriptor sets.

When creating a pipeline, you specify N VkDescriptorSetLayouts for use in a VkPipelineLayout . Then when

binding, you have to bind matching VkDescriptorSets of those layouts. The sets can update and be bound at

different frequencies, which allows grouping all resources by frequency of update.

To extend the above analogy, this defines the pipeline as something like a function, and it can take some number of

structs as arguments. When creating the pipeline you declare the types (VkDescriptorSetLayouts) of each

argument, and when binding the pipeline you pass specific instances of those types (VkDescriptorSets).

The other side of the equation is fairly simple - instead of having shader or type namespaced bindings in your

shader code, each resource in the shader simply says which descriptor set and binding it pulls from. This matches

the descriptor set layout you created.

Vulkan in 30 minutes https://renderdoc.org/vulkan-in-30-minutes.html

5 of 12 1/1/2018, 6:09 AM

#version 430

layout(set = 0, binding = 0) uniform MyUniformBufferType {

// ...

} MyUniformBufferInstance;

// note in the C++ sample above, this is just a sampler ‐ not a combined image+sampler

// as is typical in GL.

layout(set = 0, binding = 1) sampler MySampler;

layout(set = 0, binding = 5) uniform image2D MyImages[10];

Example GLSL showing bindings

I'm going to hand wave a lot in this section because the specific things you need to synchronise get complicated and

long-winded fast, and I'm just going to focus on what synchronisation is available and leave the details of what you

need to synchronise to reading of specs or more in-depth documents.

This is probably the hardest part of Vulkan to get right, especially since missing synchronisation might not

necessarily break anything when you run it!

Several types of objects must be 'externally synchronised'. In fact I've used that phrase before in this post. The

meaning is basically that if you try to use the same VkQueue on two different threads, there's no internal locking so it

will crash - it's up to you to 'externally synchronise' access to that VkQueue .

For the exact requirements of what objects must be externally synchronised when you should check the spec, but

as a rule you can use VkDevice for creation functions freely - it is locked for allocation sake - but things like

recording and submitting commands must be synchronised.

N.B. There is no explicit or implicit ref counting of any object - you can't destroy anything until you are sure it is

never going to be used again by either the CPU or the GPU.

Vulkan has VkEvent , VkSemaphore and VkFence which can be used for efficient CPU-GPU and GPU-GPU

synchronisation. They work as you expect so you can look up the precise use etc yourself, but there are no

surprises here. Be careful that you do use synchronisation though, as there are few ordering guarantees in the spec

itself.

Pipeline barriers are a new concept, that are used in general terms for ensuring ordering of GPU-side operations

where necessary, for example ensuring that results from one operation are complete before another operation

starts, or that all work of one type finishes on a resource before it's used for work of another type.

There are three types of barrier - VkMemoryBarrier , VkBufferMemoryBarrier and VkImageMemoryBarrier . A

VkMemoryBarrier applies to memory globally, and the other two apply to specific resources (and subsections of

those resources).

The barrier takes a bit field of different memory access types to specify what operations on each side of the barrier

should be synchronised against the other. A simple example of this would be "this VkImageMemoryBarrier has

srcAccessMask = ACCESS_COLOR_ATTACHMENT_WRITE and dstAccessMask = ACCESS_SHADER_READ ", which indicates

that all color writes should finish before any shader reads begin - without this barrier in place, you could read stale

data.

Vulkan in 30 minutes https://renderdoc.org/vulkan-in-30-minutes.html

6 of 12 1/1/2018, 6:09 AM

Image layouts

Image barriers have one additional property - images exist in states called image layouts. VkImageMemoryBarrier

can specify a transition from one layout to another. The layout must match how the image is used at any time. There

is a GENERAL layout which is legal to use for anything but might not be optimal, and there are optimal layouts for

color attachment, depth attachment, shader sampling, etc.

Images begin in either the UNDEFINED or PREINITIALIZED state (you can choose). The latter is useful for populating

an image with data before use, as the UNDEFINED layout has undefined contents - a transition from UNDEFINED to

GENERAL may lose the contents, but PREINITIALIZED to GENERAL won't. Neither initial layout is valid for use by the

GPU, so at minimum after creation an image needs to be transitioned into some appropriate state.

Usually you have to specify the previous and new layouts accurately, but it is always valid to transition from

UNDEFINED to another layout. This basically means 'I don't care what the image was like before, throw it away and

use it like this'.

A VkRenderpass is Vulkan's way of more explicitly denoting how your rendering happens, rather than letting you

render into then sample images at will. More information about how the frame is structured will aid everyone, but

primarily this is to aid tile based renderers so that they have a direct notion of where rendering on a given target

happens and what dependencies there are between passes, to avoid leaving tile memory as much as possible.

N.B. Because I primarily work on desktops (and for brevity & simplicity) I'm not mentioning a couple of optional

things you can do that aren't commonly suited to desktop GPUs like input and transient attachments. As

always, read the spec :).

The first building block is a VkFramebuffer , which is a set of VkImageViews . This is not necessarily the same as

the classic idea of a framebuffer as the particular images you are rendering to at any given point, as it can contain

potentially more images than you ever render to at once.

A VkRenderPass consists of a series of subpasses. In your simple triangle case and possibly in many other cases,

this will just be one subpass. For now, let's just consider that case. The subpass selects some of the framebuffer

attachments as color attachments and maybe one as a depth-stencil attachment. If you have multiple subpasses,

this is where you might have different subsets used in each subpass - sometimes as output and sometimes as input.

Drawing commands can only happen inside a VkRenderPass , and some commands such as copies clears can only

happen outside a VkRenderPass . Some commands such as state binding can happen inside or outside at will.

Consult the spec to see which commands are which.

Subpasses do not inherit state at all, so each time you start a VkRenderPass or move to a new subpass you have to

bind/set all of the state. Subpasses also specify an action both for loading and storing each attachment. This allows

you to say 'the depth should be cleared to 1.0, but the color can be initialised to garbage for all I care - I'm going to

fully overwrite the screen in this pass'. Again, this can provide useful optimisation information that the driver no

longer has to guess.

The last consideration is compatibility between these different objects. When you create a VkRenderPass (and all of

its subpasses) you don't reference anything else, but you do specify both the format and use of all attachments.

Then when you create a VkFramebuffer you must choose a VkRenderPass that it will be used with. This doesn't

have to be the exact instance that you will later use, but it does have to be compatible - the same number and

format of attachments. Similarly when creating a VkPipeline you have to specify the VkRenderPass and subpass

that it will be used with, again not having to be identical but required to be compatible.

There are more complexities to consider if you have multiple subpasses within your render pass, as you have to

declare barriers and dependencies between them, and annotate which attachments must be used for what. Again, if

Vulkan in 30 minutes https://renderdoc.org/vulkan-in-30-minutes.html

7 of 12 1/1/2018, 6:09 AM

you're looking into that read the spec.

I'm only going to talk about this fairly briefly because not only is it platform-specific but it's fairly straightforward.

Note that Vulkan exposes native window system integration via extensions, so you will have to request them

explicitly when you create your VkInstance and VkDevice .

To start with, you create a VkSurfaceKHR from whatever native windowing information is needed.

Once you have a surface you can create a VkSwapchainKHR for that surface. You'll need to query for things like what

formats are supported on that surface, how many backbuffers you can have in the chain, etc.

You can then obtain the actual images in the VkSwapchainKHR via vkGetSwapchainImagesKHR() . These are normal

VkImage handles, but you don't control their creation or memory binding - that's all done for you. You will have to

create an VkImageView each though.

When you want to render to one of the images in the swapchain, you can call vkAcquireNextImageKHR() that will

return to you the index of the next image in the chain. You can render to it and then call vkQueuePresentKHR() with

the same index to have it presented to the display.

There are many more subtleties and details if you want to get really optimal use out of the swapchain, but for the

dead-simple hello world case, the above suffices.

Hopefully you're still with me after that rather break-neck pace.

As promised I've skipped a lot of details and skimmed over some complexities, for example I have completely failed

to mention sparse resources support, primary and secondary command buffers, and I've probably missed some

other cool things.

With any luck though you have the broad-strokes impression of how a simple Vulkan applications is put together,

and you're in a better place to go look at some documentation and figure the rest out for yourself.

Any questions or comments, let me know on twitter (http://twitter.com/baldurk) or email

(mailto:baldurk@baldurk.org). In particular if anything is actually wrong I will correct it, as I don't want to mislead with

this document - just set up a basic understanding that can be expanded on with further reading.

Also just to plug myself a little, if you need a graphics debugger for Vulkan consider giving RenderDoc

(https://github.com/baldurk/renderdoc) a try, and let me know if you have any problems.

Happy hacking!

Vulkan in 30 minutes https://renderdoc.org/vulkan-in-30-minutes.html

8 of 12 1/1/2018, 6:09 AM

#include <vulkan/vulkan.h>

// Pseudocode of what an application looks like. I've omitted most creation structures,

// almost all synchronisation and all error checking. This is not a copy‐paste guide!

void DoVulkanRendering()

{

const char *extensionNames[] = { "VK_KHR_surface", "VK_KHR_win32_surface" };

// future structs will not be detailed, but this one is for illustration.

// Application info is optional (you can specify application/engine name and version)

// Note we activate the WSI instance extensions, provided by the ICD to

// allow us to create a surface (win32 is an example, there's also xcb/xlib/etc)

 VkInstanceCreateInfo instanceCreateInfo = {

 VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO, // VkStructureType sType;

NULL, // const void* pNext;

0, // VkInstanceCreateFlags flags;

NULL, // const VkApplicationInfo* pApplicationInfo;

0, // uint32_t enabledLayerNameCount;

NULL, // const char* const* ppEnabledLayerNames;

2, // uint32_t enabledExtensionNameCount;

 extensionNames, // const char* const* ppEnabledExtensionNames;

};

 VkInstance inst;

vkCreateInstance(&instanceCreateInfo, NULL, &inst);

// The enumeration pattern SHOULD be to call with last parameter NULL to

// get the count, then call again to get the handles. For brevity, omitted

 VkPhysicalDevice phys[4]; uint32_t physCount = 4;

vkEnumeratePhysicalDevices(inst, &physCount, phys);

 VkDeviceCreateInfo deviceCreateInfo = {

// I said I was going to start omitting things!

};

 VkDevice dev;

vkCreateDevice(phys[0], &deviceCreateInfo, NULL, &dev);

// fetch vkCreateWin32SurfaceKHR extension function pointer via vkGetInstanceProcAddr

VkWin32SurfaceCreateInfoKHR surfaceCreateInfo = {

// HINSTANCE, HWND, etc

};

 VkSurfaceKHR surf;

vkCreateWin32SurfaceKHR(inst, &surfaceCreateInfo, NULL, &surf);

 VkSwapchainCreateInfoKHR swapCreateInfo = {

// surf goes in here

};

Vulkan in 30 minutes https://renderdoc.org/vulkan-in-30-minutes.html

9 of 12 1/1/2018, 6:09 AM

 VkSwapchainKHR swap;

vkCreateSwapchainKHR(dev, &swapCreateInfo, NULL, &swap);

// Again this should be properly enumerated

 VkImage images[4]; uint32_t swapCount;

vkGetSwapchainImagesKHR(dev, swap, &swapCount, images);

// Synchronisation is needed here!

 uint32_t currentSwapImage;

vkAcquireNextImageKHR(dev, swap, UINT64_MAX, presentCompleteSemaphore, NULL, ¤tSwapImage);

// pass appropriate creation info to create view of image

 VkImageView backbufferView;

vkCreateImageView(dev, &backbufferViewCreateInfo, NULL, &backbufferView);

 VkQueue queue;

vkGetDeviceQueue(dev, 0, 0, &queue);

 VkRenderPassCreateInfo renderpassCreateInfo = {

// here you will specify the total list of attachments

// (which in this case is just one, that's e.g. R8G8B8A8_UNORM)

// as well as describe a single subpass, using that attachment

// for color and with no depth‐stencil attachment

};

 VkRenderPass renderpass;

vkCreateRenderPass(dev, &renderpassCreateInfo, NULL, &renderpass);

 VkFramebufferCreateInfo framebufferCreateInfo = {

// include backbufferView here to render to, and renderpass to be

// compatible with.

};

 VkFramebuffer framebuffer;

vkCreateFramebuffer(dev, &framebufferCreateInfo, NULL, &framebuffer);

 VkDescriptorSetLayoutCreateInfo descSetLayoutCreateInfo = {

// whatever we want to match our shader. e.g. Binding 0 = UBO for a simple

// case with just a vertex shader UBO with transform data.

};

 VkDescriptorSetLayout descSetLayout;

vkCreateDescriptorSetLayout(dev, &descSetLayoutCreateInfo, NULL, &descSetLayout);

 VkPipelineCreateInfo pipeLayoutCreateInfo = {

// one descriptor set, with layout descSetLayout

};

 VkPipelineLayout pipeLayout;

vkCreatePipelineLayout(dev, &pipeLayoutCreateInfo, NULL, &pipeLayout);

// upload the SPIR‐V shaders

 VkShaderModule vertModule, fragModule;

Vulkan in 30 minutes https://renderdoc.org/vulkan-in-30-minutes.html

10 of 12 1/1/2018, 6:09 AM

vkCreateShaderModule(dev, &vertModuleInfoWithSPIRV, NULL, &vertModule);

vkCreateShaderModule(dev, &fragModuleInfoWithSPIRV, NULL, &fragModule);

 VkGraphicsPipelineCreateInfo pipeCreateInfo = {

// there are a LOT of sub‐structures under here to fully specify

// the PSO state. It will reference vertModule, fragModule and pipeLayout

// as well as renderpass for compatibility

};

 VkPipeline pipeline;

vkCreateGraphicsPipelines(dev, NULL, 1, &pipeCreateInfo, NULL, &pipeline);

 VkDescriptorPoolCreateInfo descPoolCreateInfo = {

// the creation info states how many descriptor sets are in this pool

};

 VkDescriptorPool descPool;

vkCreateDescriptorPool(dev, &descPoolCreateInfo, NULL, &descPool);

 VkDescriptorSetAllocateInfo descAllocInfo = {

// from pool descPool, with layout descSetLayout

};

 VkDescriptorSet descSet;

vkAllocateDescriptorSets(dev, &descAllocInfo, &descSet);

 VkBufferCreateInfo bufferCreateInfo = {

// buffer for uniform usage, of appropriate size

};

 VkMemoryAllocateInfo memAllocInfo = {

// skipping querying for memory requirements. Let's assume the buffer

// can be placed in host visible memory.

};

 VkBuffer buffer;

 VkDeviceMemory memory;

vkCreateBuffer(dev, &bufferCreateInfo, NULL, &buffer);

vkAllocateMemory(dev, &memAllocInfo, NULL, &memory);

vkBindBufferMemory(dev, buffer, memory, 0);

void *data = NULL;

vkMapMemory(dev, memory, 0, VK_WHOLE_SIZE, 0, &data);

// fill data pointer with lovely transform goodness

vkUnmapMemory(dev, memory);

 VkWriteDescriptorSet descriptorWrite = {

// write the details of our UBO buffer into binding 0

};

vkUpdateDescriptorSets(dev, 1, &descriptorWrite, 0, NULL);

// finally we can render something!

// ...

Vulkan in 30 minutes https://renderdoc.org/vulkan-in-30-minutes.html

11 of 12 1/1/2018, 6:09 AM

// Almost.

 VkCommandPoolCreateInfo commandPoolCreateInfo = {

// nothing interesting

};

 VkCommandPool commandPool;

vkCreateCommandPool(dev, &commandPoolCreateInfo, NULL, &commandPool);

 VkCommandBufferAllocateInfo commandAllocInfo = {

// allocate from commandPool

};

 VkCommandBuffer cmd;

vkAllocateCommandBuffers(dev, &commandAllocInfo, &cmd);

// Now we can render!

vkBeginCommandBuffer(cmd, &cmdBeginInfo);

vkCmdBeginRenderPass(cmd, &renderpassBeginInfo, VK_SUBPASS_CONTENTS_INLINE);

// bind the pipeline

vkCmdBindPipeline(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS, pipeline);

// bind the descriptor set

vkCmdBindDescriptorSets(cmd, VK_PIPELINE_BIND_POINT_GRAPHICS,

 descSetLayout, 1, &descSet, 0, NULL);

// set the viewport

vkCmdSetViewport(cmd, 1, &viewport);

// draw the triangle

vkCmdDraw(cmd, 3, 1, 0, 0);

vkCmdEndRenderPass(cmd);

vkEndCommandBuffer(cmd);

 VkSubmitInfo submitInfo = {

// this contains a reference to the above cmd to submit

};

vkQueueSubmit(queue, 1, &submitInfo, NULL);

// now we can present

 VkPresentInfoKHR presentInfo = {

// swap and currentSwapImage are used here

};

vkQueuePresentKHR(queue, &presentInfo);

// Wait for everything to be done, and destroy objects

}

Vulkan in 30 minutes https://renderdoc.org/vulkan-in-30-minutes.html

12 of 12 1/1/2018, 6:09 AM

