Find the input to output transfer function $H(s)$. Ignore all intrinsic capacitances.
For the linear oscillator circuit shown below, find the oscillation frequency and g_m value required to ensure oscillation.
Find the small-signal Norton-equivalent G_m and R_{out} (without the influence of C_1). With C_1, find the small-signal input-to-output transfer function $H(s)$.
Find the small-signal gain and the upper 3dB frequency ω_{BH}.
For the linear oscillator circuit shown below, find the oscillation frequency and resistor value R2 required to ensure oscillation.
For the Schmitt trigger (bistable circuit) shown below, sketch the V_{in} versus V_{out} transfer function. Be sure to note the important data points in the sketch. The opamp is ideal with ± 5V limited output swing.
Ignoring intrinsic capacitances, find the input to output transfer function $H(s)$.
For the Schmitt trigger shown below, sketch V_{in} versus V_{out} transfer function. Be sure to note the important data points in the sketch. The opamp is ideal with $\pm 5V$ limited output swing.