

ECE 423/523 – CMOS Integrated Circuits II

Problem Set #4

Design a differential input singled-ended output *folded-cascode* operational amplifier meeting the following specifications. Use one ideal current source tied to ground for bias and one ideal voltage source for V_{DD} . Simulations should be performed using $0.18\mu\text{m}$ CMOS models (on class web page) with $ad=as=W\cdot(0.5\mu\text{m})$ and $pd=ps=2\cdot W+1\mu\text{m}$. If you have some other working Cadence setup for $0.18\mu\text{m}$ CMOS (e.g. ECE 4/522 setup), you may use that instead (probably the path of least resistance). Simulations are to be completed for three “cases/corners” including *typical* ($\text{temp}=27^\circ\text{C}$), *slow* ($\text{temp}=100^\circ\text{C}$), and *fast* ($\text{temp}=-40^\circ\text{C}$). Temperature is specified using the *.TEMP* command (in the netlist). Use ideal resistors and capacitors for simulation, but $+20\%$ values for *slow* case and -20% for *fast* case. Your goal should be to meet the specifications for all three cases. If you do not meet specifications for all cases/corners, comment why you could not meet certain specs. In the test bench use any fixed ideal input common-mode voltage for all cases.

Specifications

Power supply	$V_{DD}=1.8\text{V}$
Load	$C_{load}=6\text{pF}\pm1.2\text{pF}$
DC gain	$> 50 \text{ dB}$
Unity-gain BW	$> 200 \text{ MHz}$
Phase Margin	$> 60^\circ$
Output swing	$> 0.5 \text{ Vpp}$
Power consumption	$< 12 \text{ mW}$
Input-referred systematic offset	$< 3\text{mV}$

There are some useful reading materials in Gray/Hurst/Lewis/Meyer text:

e.g. MOS current mirrors & MOS opamps with cascodes