CDADIC

center for design of analog-digital integrated circuits

Adaptive Digital Compensation of Analog Circuit
Imperfections for Cascaded Delta-Sigma
Analog-to-Digital Converters

Technical Report

MWWWW”WWWWWM Ll

MWM W

Oregon State University

August 20, 1999 Peéter Kiss
Revised Dec. 31, 1999 kpeter@ece.orst.edu






Abstract

Cascaded delta-sigma (MASH) analog-to-digital converters offer a good compro-
mise between high accuracy, robust stability and speed. However, they are very
sensitive to analog circuit imperfections.

In this thesis, a cascaded 2-0 delta-sigma ADC architecture with 1-1.5-bit first
stage and 10-12-bit second stage was investigated. It uses an adaptive digital FIR
filter to reduce the noise leakage due to the imperfect error cancellation. For on-
line adaptation, a pseudo-random test signal was injected into the first stage and
a simplified block-LMS algorithm, the sign-sign-block-least-mean-square algo-
rithm, was used to update the coefficients of the adaptation filter.

The basic theory and some design considerations were developed under a pre-
vious work. However, the reported effective results (signal-to-noise+distortion
ratio SNDR=75 dB @ fp=62.5-kHz signal bandwidth) validated only the prin-
ciple of adaptive noise-leakage compensation, leaving open the question of how
to improve this initial performance.

The current thesis deals with the improvements to this technique, and its ap-
plication to a very fast (sampling frequeng¢y=100 MHz, oversampling ratio
OS R=8-16, signal bandwidtliz=3-6 MHz) and high-accuracy (signal-to-noise
ratio SN R=13-15-bit) implementation. Such converters have wide applications
in high-speed instrumentation, high-definition video, imaging, radar and digital
communications. Available behavioral and circuit-level simulation results have
confirmed an achievable 13-bit @ 6-MHz ADC, which is a useful performance
for a state-of-the-art data converter.
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Chapter 1

Introduction

The title of the thesis is explained first.

This thesis presents an efficient method to design high-resolution and large-
bandwidthanalog-to-digital convertersin order to achieve this goal, the popular
delta-sigmaarchitecture was used, which provides a high accurac3(bits)
even in the basic digital CMOS technology implementation, because it features
lower sensitivity to the nonidealities of the analog circuitry than “classical” (Nyquist-
rate) converters do — a consequence of the time averaging and filtering inher-
ent to the oversampled converter operation. Achieving high resolution and large
bandwidth can be accomplished by using higher-order delta-sigma modulators.
In addition, to guarantee stable operation even for a higher-order architecture for
any input signal and/or initial conditions, the higher-order noise-shaping function
was realized usingascadedopology. However, cascaded delta-sigma modula-
tors are sensitive tanalog circuit imperfectiondecause they rely on the perfect
matching between an analog filter (affected by analog circuit imperfections) and
its digital counterpart (which can be built with very high accuracy). Even small
mismatch causes significant performance degradation. However, this mismatch,
which has a random nature, can be estimated ydaptivealgorithm, and it can
be corrected by digital compensatioadaptive filter. In this thesis it is shown that
the adaptive digital compensation of analog circuit imperfectisan effective
method by which the performance of a practicatcaded delta-sigma analog-to-
digital converterclosely approaches its ideal value.

1.1 State-of-the-Art Nyquist-Rate and Delta-Sigma
ADCs

Nowadays, the trend in designing analog-to-digital data converters is to obtain
high-resolution and large-bandwidth quantization with low-cost fabrication pro-
cess, which requires low power consumption from a low-voltage supply. For ex-
ample, a sub-, or deep sub-micran26 ... 0.5 um) standard CMOS technology
with a single3.0...3.3 V power supply is widely used in designing ADCs for

the above mentioned reasons. However, it is a great challenge to maintain, and

1
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Figure 1.1: State-of-the-art ADCs (August, 1999)

even to improve, the performance level in this low-voltage environment. Due to
the trade-off between resolution and signal bandwidth in (mainly) standard CMOS
technology there is a large variety of ADCs available, as is illustrated by a selected
sample of reported circuits in Tab. 1.1 and Fig1.1

Although the power consumption and the chip area of integrated circuits are
important characteristics, if these do not have values beyond reasonable limits
(e.g.~500 mW and~50 mnt), than one can define a figure of méri© M as the
exclusive product of the signal-to-noise rati&V R and the signal bandwidtfi
of the ADC:

FOM =SNR x fg [VIV x Hz]. (1.2)

Therefore, Fig. 1.2 provides a one-dimensional, so a more simple-to-read but a
more subjective (given by the definition of t#&) M by (1.1)) comparison be-
tween the selected ADCs.

The medium £1-MHz) and high $100-MHz) frequencies are populated by
“classical”, Nyquist-rate high-speed converters. The achievable accuracy of these
converters is limited by the analog circuit imperfections as offset, gain, capacitor-
ratio and apperture mismatches. To overcome these nonidealities, especially at

1The definition of the effective number of bilsN OB is given by (2.14) on page 15.
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Figure 1.2: Figure of merit for state-of-the-art ADCs

higher resolution than 10 bits, calibrating circuits are often used. Recently, a
6-bit 500-MSamples/s full-flash ADC was reported, which was implemented in
0.4-um CMOS technology and dissipated 400-mW from a 3.3-V supply [1]. For
better resolution but less bandwidth (8-b @ 85-MS/s), a time-interleaved (or par-
allel) pipelined ADC was built [2]. A digital background calibration was used in
another time-interleaved pipelined ADC to trade higher resolution for lower band-
width (10-b @ 40-MS/s) [3]. Also, a 5-V, 12-b @ 20-MS/s, digital background
calibrated [4], and a 3-V, 12-b @ 10-MS/s, analog continuously calibrated [5]
pipelined ADCs were reported.

The 12-bit resolution seems to be the upper limit for Nyquist-rate convert-
ers implemented in low-cost process even if analog or digital correction circuitry
is used. However, a number of high-speed pipelined converter implementations
have been reported with resolutions in excess of 12 bits, e.g. [6], [19], [20].
A low-power digital-calibrated pipelined ADC with 13-bits @ 2.5-MHz perfor-
mance is presented in [6]. In order to achieve a resolution of 16 bits at 500-
kHz signal bandwidth a 32-bits on-chip microcontroller was used for self cal-
ibrating a pipelined ADC [19]. Laser-trimming techniques can also adjust the
accuracy of the pipelined ADCs, e.g. for a 13-bit @ 1.25-MHz performance [20].
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Unfortunately, on-chip calibration tends to significantly increase the complex-
ity of pipelined converters. Moreover, one-time calibration schemes (usually at
power-up) cannot compensate for the effects of supply and temperature varia-
tions. Especially the last two cited circuits [19], [20] require large chip area (e.g.
150 x 240 mm? in [19]) and expensive fabrication costs, so they could not be
included into the list of selected ADC samples from Tab. 1.1 and Fig. 1.1.

Above 13-bit linearity essentially different converters, the so-called delta-sigma
data converters can satisfy the high-accuracy and low-cost need in many applica-
tions, by using oversampling and noise-shaping techniques to suppress the out-of-
band quantization noise. The first and most obvious applications of delta-sigma
converters are in instrumentation, e.g. 122.5dB @ 400 Hz [7]and 118 dB @ 492 Hz
[8], and in digital audio, e.g. 96 dB @ 20.5 kHz [9]. In the last few years, success-
ful attempts have been made to use the delta-sigma architecture for medium fre-
guencies ¥1-MHz) as well, and recently published papers (Tab.1.1 and Fig. 1.1)
sustain the trend of extending the signal bandwidth while preserving the high ac-
curacy (13 bits).

For such a large signal bandwidth it seems that the cascaded delta-sigma
(MASH?) topology is suitable, and, therefore is preferred by the researchers.
However, it is well-known that this architecture, as in general every cancellation-
based architecture, is sensitive to analog circuit imperfections, because they rely
on the perfect matching of the transfer functions of the two internal signal paths,
one predominantly analog, and the other predominantly digital. This causes quan-
tization noise leakage, and in turn performance degradation. To prevent this,
in [12] a multibit (5-bit) quantizer was used in the first stage, which reduces
the power of the noise leakage, but which needs a mismatch-shaping digital-to-
analog converter in the feedback path. In addition, the second stage was built
from a multibit (12-bit) pipelined ADC. Therefore, this high-performance con-
verter (89 dB @ 1.25 MHz!) ended up with a relatively high power consumption
(550 mW). Another approach was analyzed and implemented, but which did not
necessitate digital correction by using (claimed) optimized architecture and co-
efficients for a fourth-order cascaded (2-1-1 topology) modulator instead [13].
Therefore, very low power consumption (55-mW) was achieved. Two similar 2-
1-1 cascaded but single-bit topologies with (claimed) optimized coefficients were
successfully implemented with 5-V [14] and 3-V [15] power supplies. A remark-
able design and implementation of 2-1 cascaded delta-sigma ADC was published
in 1991 [16] which achieved an impressive (considering the year of publication
also) 74-dB @ 10.5-MHz performance.

In the previous cascaded delta-sigma ADC designs [10], [11], [12], [13], [14],
[15], [16], the quantization noise leakage was considered as an intrinsic drawback
of the topology. Indeed, the noise leakage can be reduced in the analog domain
by careful analog circuit design [13], [14], [15], [16] or by the use of multibit

°The notationn;-ns-ns-. .. used in Tab. 1.1 indicates the number of cascaded stageés,
the order of theth delta-sigma loop, and; + n» + ns is the effective order of the MASH. For
example, 2-1-1 [14] was built from 3 stages, a second-order modulator is followed by 2 first-order
loops, so the effective order of the MASH ADC is 4.
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first stage [12], but only to a limited degree, especially if low-cost fabrication
must be used. However, if the noise leakage was handled somehow, the perfor-
mance would be further increased. On the other hand, several digital domain
solutions have been developed including off-line calibration [21] and on-line cor-
rection [22], [23], [24], [25].

A robust cascaded delta-sigma structure to analog circuit imperfections was
proposed in [26]. The so-called indirectly residue-compensated delta-sigma quan-
tizers estimate differently the quantization error of the first stage, which is quan-
tized by a multibit second stage. If the residue quantizer (second stage) has 10-bit
resolution and linearity, and the first stage has also a 5-bit quantizer, than an over-
sampling ratio o) SR = 10 provides a5’ N R performance of 105 dB. However,
this modulator also requires mismatch-shaping digital-to-analog converter in the
first stage, which means larger chip-area and bigger power consumption.

1.2 The Proposed ADC

An on-line digital-correction method is presented in this thesis. Based on the
present work, one can use simple structure and avoid mismatch-shaping digital-
to-analog converter in the first stage, and one can allow noise leakage in the out-
put using more relaxed requirements for the integrators, because a simple and
effective method can digitally compensate for the analog circuit imperfections in
cascaded delta-sigma ADCs.

In this thesis a cascaded 2-0 delta-sigma ADC architecture with 1-1.5-bit first
stage and 10-12-bit second stage was investigated, which uses an adaptive dig-
ital FIR filter to reduce the noise leakage due to the imperfect error cancella-
tion. For adaptation, a pseudo-random test signal was injected into the first stage
and a simplified block-LMS algorithm, the sign-sign-BLMS, was used to update
the coefficients of the adaptation filter. The basic theory and some design con-
siderations were developed under a previous work [27], [28], [29], [30]; also, a
working prototype of the integrated ADC was successfully fabricated and tested
[17], [31]. However, the reported effective results (signal-to-noise+distortion ratio
SNDR=75dB @ fz=62.5-kHz signal bandwidth [17]) validated only the princi-
ple of adaptive noise-leakage compensation, leaving a considerably large room to
improve this initial performance.

The current thesis deals with the optimization to this technique, and its ap-
plication in a very fast (sampling frequengy¥=100 MHz, oversampling ratio
0OS R=8-16, signal bandwidtliz=3—6 MHz) and high-accuracy (signal-to-noise
ratio SN R=13-15-bit) implementation [18], [32], [33], [34]. Such converters
may have wide applications in high-speed instrumentation, high-definition video,
imaging, radar and digital communications. Available behavioral and circuit-level
simulation results has confirmed an achievable 13-bit @ 6-MHz ADC, which is
a useful performance for a state-of-the-art data converter (Tab. 1.1 and Fig. 1.1).
Moreover, Fig. 1.2 shows that the proposed ADC has the highest figure of merit
FOM, (1.1), among these high-performance data converters.
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1.3 Thesis Structure

This thesis tries to guide the reader gradually through the main issues of the adap-
tive cascaded delta-sigma modulators. Many figures and selected simulation re-
sults show, explain and illustrate the presented topic.

Following this Introduction, Chapter 2 begins by presenting the basics of quan-
tization, and two key features of delta-sigma modulators: oversampling and quan-
tization noise shaping. To keep a logical and progressive order, the first-order
delta-sigma ADCs are briefly described next. Because the first stage of our cas-
caded delta-sigma ADC was chosen to be a second-order delta-sigma modulator,
this subject is detailed in the next section. The possibility of using a tri-level
guantizer is also investigated, which is a key element in optimizing the cascaded
delta-sigma structure. Detailed design clues are presented for the second-order
delta-sigma ADC, supported by simulation results, which are only briefly marked
in the available bibliography (e.g. coefficient calculus, internal voltage swing, the
gain of a single-bit/multibit quantizer). Higher-order delta-sigma modulators are
briefly described next. A short selection guide of single-loop delta-sigma modu-
lators concludes this chapter.

Chapter 3 first presents a comparative analysis between cascaded 2-0 delta-
sigma ADC structures. In order to achieve maximum p&akk performance,
the use of bi-level and tri-level first-stage quantizer, and different interstage coef-
ficients are investigated. The high sensitivity of the cascaded structure to analog
circuit imperfections is studied next. Simulation results are coherent with the the-
oretical assumptions about the quantization noise leakage.

Chapter 4 deals with the adaptive digital correction of the noise leakage. The
possibility of using a test signal for on-line compensation is investigated first. The
hardware complexity of the adaptive digital compensation filter is studied in order
to being reduced. Next, the optimization of the adaptation process is presented.
In order to improve the performance of the adaptive MASH, the parameters of the
adaptive compensation process, and the properties of the test signal are analyzed.

Chapter 5 presents a high-frequency (sampling frequgncy 100 -MHz)
switched-capacitor implementatioof the cascaded 2-0 delta-sigma modulator
designed at system level in the previous chapters.

Finally, Chapter 6 summarizes the original achievements and conclusions, and
gives a few suggestion for future work.

3The prototype chip design, as well Chapter 5, were contributed by my colleague at Oregon
State University, JasSilva i | va@ce. or st . edu).
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Chapter 2
Single-Loop Delta-Sigma ADCs

Delta-sigma data converters have been known for nearly fifty years, since 1954
[35, Introduction], but only in the last two decades has the technology, namely the
high-density digital VLSI, matured sufficiently to manufacture them as inexpen-
sive monolithic integrated circuits. They are now used in many applications where
a low-cost, low to medium signal bandwidth, low-power and high-resolution data
converters are required.

The heart of any analog-to-digital converter (ADC) is a quantizer. Therefore,
we begin our discussion by describing some basic principles of the quantization.
Next, two key features of delta-sigma data modulators: oversampling and noise
shaping are presented, which are followed by a detailed system-level analysis of
first-order and second-order delta-sigma analog-to-digital converters. Also, some
properties of higher-order modulators are presented in the end of this chapter.

2.1 Quantization

Analog-to-digital conversion of a signal is traditionally described in terms of two
separate operations: uniform sampling (or quantization, discretization) in time,
and quantization (or discretization) in amplitude [36, Section 3.0], [37].

Ideal periodic sampling of a continuous-time signé) at ratesfs more than
twice the signal bandwidtliz need not introduce distortion. In other words, the
discretization or quantization in time, as a result of sampling, is completely invert-
ible operation, because according to the Nyquist sampling theorefi for2 [z,
the original continuous-time signal¢) can be perfectly reconstructed from its
discrete-time samples|n| = u(nTs), without any loss of signal information.

In practice, to assure that the Nyquist sampling theorem is indeed satisfied, and
to avoid aliasing, the continuous-time input signg|(¢) is filtered by an anti-
aliasing filter before sampling, and, therefore, its bandwjigtts surely limited to

fQi (Fig. 2.1). If f¢ > 2 fp, than the spectrur@( f) of the sampled discrete-time
sequence[n] is a periodic replica of the initial, continuous-time input signal’s
uin(t) spectruml, (f) with a period ofTs = +- (Fig. 2.1).

On the other hand, quantization is non-invertible process, since an infinite
number of input amplitude values of the discrete-time analog sighdl are

9
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mapped into a finite number of output amplitude values of the (discrete-time) dig-
ital signalv[n] (Fig. 2.1) [36, Section 3.2.0], [37]. In other words, even an ideal
guantization process inherently introduces distortion, and our primary objective in
designing analog-to-digital converters is to limit this distortion [38, Section 1.2.1].

analog digital

] fs
uin(t) Anti-Aliasing u(t) : iu[n] v[n]
4 Filter A 4 ;HJJI

Sampler Quantizer
Lu[n]=u(nTs) ;| N-hits

‘ % |
fB fs/2 fB fs 2f

Figure 2.1: General analog-to-digital converter

A N-bit ideal quantizer is presented in Fig. 2.2.a, where v[n] is the digital
output word stream while u[n| and V,.; are the sampled analog input signal and
the reference voltage, respectively. If the digital output v[n] is converted back
into an analog discrete-time signal v,[n| from which the sampled analog input
signal u[n] is subtracted, the result will be the quantization error sequence ¢[n]
(Fig. 2.2.b):

q[n] = v4[n] — uln]. (2.1)

In addition, if the sampled analog input u[n] is aramp signal, than the quantized
output v,[n| appears as a staircase, and the quantization error sequence ¢[n] has
a sawtooth form (Fig. 2.3.8). In Fig. 2.3.a the resolution of the quantizer is N =
3 bits, the full-scale range of theinput is F'SR = 2 A,,..., and, therefore, its step
size A, orits1 LSB (least significant bit), is given by

o 2 Amam 2

A=1LSB =—-=0.28V. 2.2
S SN _1 -7 0.28 (2.2

Note that the amplitude of the quantization error ¢[n] is limited to i% asfar as
the analog input signal satisfies the condition:

A A
|u[n]| S Amam + 5 = |q[n]| S 5 (23)
Under these circumstances the quantizer is said to be not overloaded or saturated.
On the other hand, for |u[no]| > Ae + 5, and hence |g[no]| > 5, the quantizer
issaid to be overloaded [37]. Note that this statement is true for al input signals,

not just for ramps.
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A/D
u[n] Irrrrr v[n] u[n] AID v[n] /A va[n]
‘ N bits ‘ ‘
+
Vref @ Vref Vref A
&V
ALD j\q[n] (b)
un v[n] un] + valn|
_ &V
— N=1 bit
Vref (d) ()

Figure 2.2: (a) Ideal N-bit quantizer; (b) quantization error generation: ¢[n] =
va[n] — u[n]; (c) discrete-time domain modeling of the quantization process:
va[n] = u[n] + ¢[n]; (d) ideal single-bit quantizer
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Figure 2.3: Transfer function of an ideal N-bit quantizer for (a) N = 3 bitsand
(b) N =1 bit

2.1.1 Quantization Error

According to (2.1), the quantization error ¢[n] is completely defined by the input
signa u[n]. However, if the input signa u[n| changes rapidly from sample to
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sample by amounts comparable with or greater than A without causing saturation,
then the quantization error ¢[n| is largely uncorrelated from sample to sample
and has equal probability of lying anywhere in the range [—-£; +5]. Therefore,
it seems to be plausible to assume that the quantization error ¢[n| has statistical
propertiesthat are independent of theinput signal «[n], so it can be represented by
arandom variable, which behaves as a noise, namely, as a “quantization noise”’*
[38, Section 1.2.1].
The equation (2.1) can be rearranged [39] as

valn] = uln] + qln). (2.4)

Although the equation (2.4) is exact for every timeinstance, it can express also an
intuitive link between the statistical properties of the sampled analog input w[n],
the quantized output v,[n] and the quantization error ¢[n].

A rigorous analysis of a nonlinear system, such a quantizer, is a difficult and
complicated task. To further simplify the analysis of the quantization noise, the
following assumptions about the noise process and its statistics are traditionally
made, which are called the “input-independent additive white-noise approxima-
tion” (weak version) [38, Section 2.3], [37]:

Property 1. The quantization error sequence ¢[n| is a sample sequence of a sta-
tionary random process.

Property 2. The quantization error sequence ¢[n] is uncorrelated with the input
sequence u[n)].

Property 3. The probability density function of the quantization error process
PDF (¢[n]) isuniform over therange [ £; +45] (Fig. 2.4.3).

Property 4. The power spectral density of the quantization error process P.S Dy (w)
isflat (Fig. 2.4.b). (The quantization error is awhite noise process.)

These approximations simplify the system analysis because they replace a deter-
ministic nonlinearity by a stochastic linear system, thereby permitting the use of
linear system methods to analyze a nonlinear system containing a quantizer [38,
Section 2.3]. Also, under certain conditions, namely the Bennett’s conditions:

Condition 1. Theinput signal «[n] isnot in the overloaded region.
Condition 2. Theresolution N of the quantizer isasymptotically large.
Condition 3. The step size A of the quantizer is asymptotically small.

Condition 4. The joint probability density function of the input signa u[n] at
different sample timesis smooth.

N this thesis the concepts of “ quantization error” and “ quantization noise” will be used inter-
changeably. However, “quantization error” is a more descriptive and precise term, and it specifi-
cally refersto thetime-domainsignal ¢[n] = v,[n]—u[n], and “ quantization noise” will emphasize
its assumed white noise properties — detailed later in this section [38, Section 3.1.0].
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these assumptions (Properties 1-4) are reasonable [ 38, Section 2.3], [37].

In conclusion, under these certain conditions (Conditions 1-4) the quantizer
can be modeled as an input-independent additive white-noise source, so the equa-
tion (2.4) isvalid in the frequency domain also, that is, the digital output V(=) (or
the quantized output V,(z) — if the gain of the DAC is assumed to be equa to
unity) can be calculated as the sum of the analog input U (=) and the quantization
noise Q(z):

Vi(z) = Va(z) = U(2) + Q(2). (2.5)

Therelation (2.5) can beintuitively verified on Fig. 2.5, where the spectrum of the
guantization error seems to be flat (white noise) and completely uncorrelated with
the input signal. In this example a full-scale analog input sinewave A, = A, .
with a frequency of f = 0.03fs was applied to a N = 10-bit quantizer, so the
Bennett’s conditions were satisfied with a good approximation. Note, however,
that the probability density function of the quantization error isnot quite uniformly
distributed over the range [—£; +45]. If the input was a more “busy” signal, for
example asum of sinewaves, than P D F'(¢) would be more uniform.

A mathematical analysis of the quantization process is given in [36, Sec-
tion 3.2]. It has been demonstrated that as the step size A of the quantizer de-
creases, the quantization error sequence ¢[n] can be considered less correlated
(the autocorrelation of ¢[n] islow) even if the input sequence u[n] is highly cor-
related (the autocorrelation of u[n] ishigh) [36, Section 3.2.3]. In addition, it was
shown that for small values of the step size A, the quantization error sequence
q[n] isinfact uncorrelated with the input sequence u[n|, although the quantization
error ¢[n] is completely determined by the input sequence u[n], shown by (2.1)
[36, Section 3.2.4].

PDF(q) (@ PSDg(w) (b)
1/A

-A/2 A2 ¢ 7r w

Figure 2.4: Statistical propertiesof the quantization error asinput-independent ad-
ditive white noise: (&) probability density function PDF'(¢) and (b) power spec-
tral density PSDg(w)

2.1.2 Performance Modeling

Next, based on the input-independent additive white-noise approximation for the
guantization error, one can derive the signal-to-noise ratio SN R performance of
a N-hit ideal analog-to-digital converter or quantizer. According to this approxi-
mation (Properties 1 and 3), the quantization error ¢[n] isauniformly distributed
random variable (PDF(q[n]) = constant) over the range [—5; +2] (Fig. 2.4.8).
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Figure 2.5: The spectrum of a quantized sinewave for N=10 bits

Therefore,

/_Z PDF(q[n])dg=1= PDF(q[n]) = %,Vq[n] € {—%; +§] (2.6)

For a zero mean ¢[n|

2 1 2
672/_APDF(Q[?‘L])qdqzK/_é qdg =0, (2.7)
its variance or power is[40, Section 4.4]
2 % 2 1 % 2 AQ
UqZPqZ/%PDF(q[n])q dq:g/%qdqzﬁ. (2.8)

According to Property 4, the spectrum of the quantization error is uniformly dis-
tributed (P.SDg(w) = constant) over thedigital frequency domain [0; 7] (Fig. 2.4.b),
so its power spectral density can be calculated by

(2.9)

A

P, = /07r PSDg(w)dw =02 = PSDg(w) =

q
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In conclusion, the signal-to-noise ratio SN Ry yquis: Of @ Nyquist-rate converter
for asinewave input with amplitude A, is given by

P, A? 12
SNRyyquist = 10log;, — = 10log (—“ —> (2.10)

yq 10 Pq 10 2 AQ
= 10log,, | 6 A2 2" - 1y° (2.11)

= 810 w\9A, .
Ay
= 20log —— +6.02N +1.76 [dB], (2.12)
and for afull-scale sinewave input

Notethat for each extrabit of resolutioninthe ADC, i.e. for every incrementin N,
thereisabout a6 dB improvement inthe SN R. Thus, thereisadirect relationship
between the resolution of an ADC in bits and its SNV R performance in dB-s, and
it iscommon to equate differencesin SN R in dB to bits, by dividing the dB value
by 6 [37]. More precisely, one can define the effective number of bits ENO B of
aconverter fromits SN R performance by [41, Section 6.2], [42]:

SNR[dB] — 1.76 dB
6.02dB
For example, a N = 10-bit converter hasan SNR = 61.86 dB based on (2.13).

This theoretical value matches well with the SNR = 62.0 dB obtained by simu-
lations (Fig. 2.5).

ENOB = [bits)]. (2.14)

2.2 QOversampling Converters

Consider first a band-limited signal with a spectrum which lies in the frequency-
band [0; fz], or equivalently in [0; wp]. Oversampling isatechnique that improves
the resolution obtained from a conventional Nyquist-rate converter by sampling
the signal at a rate considerably faster (fs,. = 20SR fg, OSR > 1) than
the required Nyquist rate (fsy,,.... = 2.fp) (Fig. 2.6). Typica values for the
oversampling ratio (for normalized sampling frequency fs = 25 = 1)

2w
OSR =15 - (2.15)

2fB fe=1 B wp

are between 8 and 512, and usually it can be represented as a power of 2, i.e.
OSR = 2", to facilitate the digital decimating filter.

Because the maximum available sampling frequency is limited by the state-
of-the art VLSI technology (e.g. for CMOS switched-capacitor circuits is around
fs = 100 MHz), the oversampling technique reduces the available signal band-
width fz. In other words, oversampling converters trade signal bandwidth for
higher resolution.
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By using oversampling, the power spectral density of the quantization error
is stretched over the whole band [0; 7|, so its power in the signal band of interest
[0; wp| will be reduced proportionally with OSR (Fig. 2.7) [36, Section 3.2.7],
[39, Section 14.1]. Therefore, the so-called in-band quantization noise power £
isgiven by:

OSR
Pyo. = / PSDg(w)dw = 24 / 0 o (2.16)

The power of the out-of-band (w > wg) quantization noise will be reduced sig-
nificantly, in ideal case: it will be eliminated, by a digital low-pass filter, and the
oversampled digital sequence will be processed by a decimator, which downsam-
plesit to the Nyquist rate wp (Fig. 2.6). It turns out that the signal-to-noise ratio
SN Rogs for an oversampling converter is given by

P,
Oos

(2.17)

A,
= 20logyy " +6.02N +10logy, OSR + 1.76  [dB].

max

If we consider the oversampling ratio being OSR = 2", than 10log,, OSR =
3.01 r [dB], so every doubling of the oversampling ratio, i.e. for every increment
inr, the SN Rps improves by about 3 dB, or the resolution improves by % bit. In
other words, the oversampling converter has a 3-dB/octave or 0.5-bit/octave SN R
improvement [39, Section 14.1], [37].

analog digital

uin(®) | Anti-Aliasing | U0 § g | ulnl VIl | Low-passFilter | VN
A Filter 4 P Decimator

Sampler iQuantizer
u[n]=u(nTs) : N-hits

42 g fs  2f

B S S

Figure 2.6: General oversampling analog-to-digital converter (OSR = 2)

2.3 Noise-Shaping Converters

The in-band quantization noise power can be further suppressed by using quan-
tization noise shaping in addition to oversampling. Nowadays, the most popular
noise-shaping converters are the so-called delta-sigma converters or delta-sigma
modulators. The general block-structure of a delta-sigma ADC is presented in
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Figure 2.7: The power spectral density of the quantization noise PSDg(w) for
different converters

Fig. 2.8.a, which consists of an analog loop filter H(z) and a coarse N-bit quan-
tizer enclosed in a feedback loop.

Since this system usually contains one integrator or cascade of integrators as
the analog loop filter, itsname is “ delta-sigma’ modulator, where the “delta’ (A)
denotes the difference operation (e[n] = u[n] — v,[n]) madein theinput node, and
where the “sigma’ (X) denotes the summation (accumulation) performed by the
integrators [38, Introduction].

qlr]
u[n]+{> ) Loopitter P ap (UL Hov-passtitier fudin]
D/IA @

| A&Q(Z) ——
U(Z)+f\ 2l P AN T -ow-paestiter V()
Va) (b)

Figure 2.8: (a) General structure of a noise-shaping ADC and (b) its linearized
model (for the DAC a unity gain was assumed)
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2.3.1 Basic Operation

To rigorously analyze this delta-sigma converter in the frequency domain is a
difficult task due to the presence of the nonlinear quantizer. To simplify this anal-
ysis, under certain conditions (Conditions 1-4, Section 2.1.1) one can use the
input-independent additive white-noise approximation for the quantization error
and analyze the delta-sigma modulator as a linear system. The linearized model
is presented in Fig. 2.8.b. Therefore, the cal culations became trivial:

V(z) = (U(2) =V(2)) H(z) + Q(2) (218)
= V(z) = #&;zz) U(z) + %H(z) Q(z) (2.19)

From (2.19) it turnsout that the delta-sigma converter processes independently the
signa and the noise components. Therefore, it can be defined its signal transfer
function ST F(z) and noise transfer function NT'F'(z):

STF(z) U(z) Q=0 LT H(z) (2:20)
V(2 B 1

and one can also write the output signal 1/(z) as the combination of the input
signal U(z) and the quantization noise signal ((z), with each being filtered by
the corresponding transfer function:

V(z) = STF(2)U(z) + NTF(2) Q(z). (2.22)

If one chooses alow-pass |loop filter H(z), which have large magnitude over low
frequencies, i.e. over the frequency-band of interest [0; wg], and small magnitude
over high frequencies, than the magnitude of thesignal transfer function | ST F'(z)|
will approximate unity over the frequency-band of interest [0; wp|, hence it will
not distort the signal, but the magnitude of the noise transfer function | NT F'(z)|
will approximate zero over the same band, hence the quantization noise power
will be reduced accordingly. The power spectral density of a shaped quantization
noise is presented in Fig. 2.7. By doing so, the signal-band spectral composition
of the analog input «[n] and digital output v[n] signals will be linearly related,
but outside the signal band the spectral composition will differ substantially [26].
Therefore, a digital low-pass filter is used to suppress the out-of-band quantiza-
tion noise, and a decimator to downsample the filtered but oversampled digital
sequence to the Nyquist rate wg (Fig. 2.8).

In other words, due to the largeloop gain given by H (z) over low frequencies,
the output sequence v[n] will track with high accuracy the low-frequency input
sequence u[n], and the delta-sigma loop keeps the error e[n] very low over low
frequencies. However, in order to compare the digital output »[n] with the analog
input u[n] and to preserve the high performance of the modulator, it has to be
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converted back into an analog signa v,[n] by a highly linear digital-to-analog
converter.

The linearity of the DAC in the feedback |oop has to be as good as the over-
all linearity of the modulator. Because it is difficult to achieve this high linear-
ity in actualy available DACs due to analog circuit imperfections (e.g. limited
capacitor-ratio accuracy, typical value: 0.1%), inherently linear single-bit DACs
arewidely used in delta-sigma converters. However, multibit delta-sigmamodul a-
tors were successfully implemented by using a so-called mismatch-shaping multi-
bit DAC in the feedback path which providesthe required high linearity [26], [38,
Section 8.3.3]. Moreover, analog [43], [44] and digital [45], [9], [38, Section 8.4]
correction techniques are available for multibit delta-sigma ADCs. Unfortunately,
multibit delta-sigma ADCs require more complex circuitry, larger chip area and
bigger power consumption.

Note that this thesis focuses exclusively on low-passdelta-sigma modulators,
but the delta-sigmatechnique is widely applied for band-passignals also. Band-
pass delta-sigma modul ation allows high-resolution conversion of band-pass sig-
nals, if fs is much greater than the signal bandwidth [z, rather than the highest
signa frequency. Band-pass sigma-delta modulators can be used in AM digital
radios or receiversfor digital cellular mobile radios [37], [38, Chapter 9].

In conclusion, the key-words in delta-sigma converters are: oversampling,
noi se shaping and single-bit? quantization.

2.3.2 Circuit-Level Considerations

According to what was presented so far, a delta-sigmamodulator usually contains
one or severa integrators, a simple comparator and a single-bit DAC included in
a feedback loop. The key points in its functioning are to oversample the input
analog signal and to high-pass shape the quantization noise using a large loop
gain at low frequencies provided by the integrators, and to filter out digitally the
out-of-band noise.

Because of oversampling, both the analog and digital circuits should work at
high speeds, usually near to the state-of-the-art clock frequency. On the other
hand, the requirements for analog continuous-time anti-aliasing filter are relaxed,
which isagreat advantage of oversampling converters over Nyquist-rate convert-
ers.

The analog loop filter should provide a large gain at low frequencies, but this
gain can have large fluctuations once it exceeded the required minimum value.
Generadly speaking, the requirements for the analog circuits are reasonably re-
laxed due to this large gain in the signal band and using a feedback architecture.
On the other hand, the digital signal processing, which includes the low-pass fil-
tering and decimation, raisesthedigital circuit complexity. However, asthe layout

2The key-word single-bitemphasizes on the high-linearity requirement for the feedback DAC,
but it does not exclude the possibility of implementing highly-linear multibit delta-sigma convert-
ers.
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density has increased and the power consumption of digital circuits has been re-
duced over time, this requirement is acceptable nowadays.

In conclusion, delta-sigma converters trade signal bandwidth and very fast
circuit operations for higher resolution, and trade analog circuit accuracy for dig-
ital circuit complexity. Using standard CM OS technology, the achievable perfor-
manceismainly limited by device noise, clock jitter, and other unavoidabl e effects
[26]. Hence, these data converters are the state-of-the art.

2.3.3 Single-Bit Quantizer

One should note that if the delta-sigma modulator uses a single-bit quantizer, that
is, a simple comparator, in itsinternal structure, than Bennett’'s second and third
conditions are not fulfilled (Section 2.1.1), namely the resolution of the quantizer
isnot asymptotically large, but itisonly N = 1 bit, and, in addition, the step size
A isnot asymptotically small, but itisaslargeas A = F'SR. It turns out that the
guantization error of a single-bit quantizer cannot be considered mathematically,
based on the Bennett’'s conditions, as an input-independent white noise. Simu-
lation results are presented on Fig. 2.9 for the same full-scale sinewave with a
frequency 0.03 fs asit was considered in Fig. 2.5. It isclear that the quantization
error can be hardly considered as an input-independent white noise.

In addition, the gain of a single-bit quantizer is not equal to one, as it was
considered correctly for amultibit quantizer. Actually, the gain of acomparator is
input-signal dependent, so it is no longer a constant. This can also be intuitively
verified in Fig. 2.3.b: for every input u[n| > 0V, the quantized output v,[n| = 1V,
and for every u[n| < 0V, the quantized output v,[n] = —1V, so the instantaneous
gain %= depends on the input signal u[n] values.

However, we can still define alinearized model for the single-bit delta-sigma
converter, assuming awhite and uniformly distributed additive noise source model,
preceded by a gain stage with a gain factor of &, even for the comparator. Sur-
prisingly, the simulation results generally match well with those predicted by the
linearized model. The desire for an analytical model to supplement simulations
is, of course, motivated by the design insight such a model provides.

In practice, delta-sigma modulators use one or more cascaded integrators for
building the low-pass loop filter H(z). Depending on the order of the loop fil-
ter one can find first-, second- or higher-order delta-sigmamodulators. In the next
sections single-loop low-order delta-sigma ADCs will be analyzed.

2.4 First-Order Delta-Sigma ADCs

The simplest delta-sigma analog-to-digital converter is the first-order one, whose
block diagram is presented in Fig. 2.10.a. The loop filter is built from a single
integrator, which is usually implemented by a ssmple delayed switched-capacitor
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Figure 2.9: The spectrum of a quantized sinewave for N=1 bit

integrator, so

Z—l

H@ =17

(2.23)

2.4.1 Performance Modeling

Based on the linearized model of the first-order delta-sigma modulator presented
inFig. 2.10.b, (2.22) becomes

V() =2z""U(2) + (1 - 27" Q(z). (2.24)
Hence, the signal transfer function ST Fi;(z) and its magnitude are given by
STFg(z) = 2z (2.25)
ISTFi(2)]? = [z =1 (2.26)
Also, the noise transfer function NT Fi(z) and its magnitude are given by
NTFy(z) = 1—21 (2.27)
INTFi(2)]? = 1—2 = le—1F =z -1 (2.28)

|22
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= |coswTs — 1+ jsinwTs|? (2.29)
fs=1
2
— 4sin?? ~ 4 <5> = (2.30)
OSR>1 2

So, the magnitude of the noise transfer function for normalized frequency fs =
52 = 1 and for high oversampling ratios, eg. OSR > 8, which are usud, is
smply given by |[NTFi4(z)| & w. Therefore, the in-band quantization noise

power is given by

P —/WB|NTF (=) PSDo(w) d ug‘?/ﬁ > — (2.31)
Olst_o 1st\# Q\W w—ﬂ_ . w a)—3OSR3 .
Hence, the signal-to-noiseratio SN R,y can be calculated as
P,
Polst

1

Ay
20l0gjo 4~ +6.02 N +30log;y OSR + 1.76 — 5.17  [dB].

max

If we consider the oversampling ratio being OSR = 27, than 301log,, OSR =
9.03 r [dB], so every doubling of the oversampling ratio, i.e. for every increment
inr, the SN Ry, improves by about 9 dB, or the resolution improves by 1% bits.
In other words, the first-order delta-sigma converter has a 9-dB/octave or 1.5-
bit/octave SN R improvement [39, Section 14.2], [37].

Q)
un] en] yilnl|q vin] u@ E@) 2 Yi(@), A\ V(2
{D Integrator 1 j: ‘ {D 1?2_1 :‘ o
N=1 bit Va(Z) L»,AD,C,,I
valn
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@
Figure 2.10: () First-order deltasigma ADC and (b) its linearized model

2.4.2 Circuit-Level Implementation

(b)

A possible switched-capacitor implementation of the modulator isshowninFig. 2.11.

The analog circuit complexity is clearly quitetrivial: it uses 1 switched-capacitor
integrator, a single-bit quantizer built from a simple comparator and a D flip-flop,
and a single-bit digital-to-analog converter built from 2 reference voltages and 2
switches[17].



2.4 First-Order Delta-Sigma ADCs 23

c2
, Pl Ph1 J—{ o
1 | l ‘A o
Ph2 / Ph2 P —Q 5 v
va i Ph1—p CK
-
viet | vret dlocking: | Ph1 || P2 || Pna || Ph2 |

Figure 2.11: Switched-capacitor first-order delta-sigma ADC

2.4.3 Time-Domain Analysis

In order to get a deeper insight into the operation of the delta-sigma modulator, a
time-domain analysisis required. The time-domain model of a first-order delta-
sigma analog-to-digital converter is presented in Fig. 2.12. Note that thisis an
exact model and there are no underlying assumptions about the statistical proper-
ties of the quantization error. In Fig. 2.12 the single-bit quantizer (comparator) is
modeled as a true nonlinear element. Hence, one can write the following differ-
ence equations:

viln] = yiln—1] +e[n —1]
B 1 ifyln] >0
vln] = { -1 ifyn] <0 (2.33)
eln] = ufn] - vln]
g[n] = v[n] — yi[n]

The exact system-level modeling by using difference equations was used in ssim-
ulations also, which were performed using Matlab 5.3 and Richard Schreier’s
Delta-Sigma Toolbox [46]3, [47].

The evolution in time of the modulator’sinternal and external signalsis exem-
plifiedinFig. 2.13, for ahalf-scale (4, = A% = %V) in-band (f < fp = ZOfﬁz,
OSR = 32) sinewave input. The output v[n] isastream of +1 V (‘0" logic and
‘1’ logic). By averaging this output over a period of time, one can approximate
the input sinewave. This averaging operation represents the low-pass filter block
in Fig. 2.8.a, since averaging is a crude low-pass filtering operation [37].

2.4.4 Performance Limitations

Although the first-order delta-sigma modulator is extremely simple to implement,
it requiresvery high OS R in order to achieve high resolution, e.g. the OS R should

3The scaling between the digital single-bit output v[n] and its analog counterpart v, [n], was
neglected for simplification, so v[n] = v,[n] is considered in the time-domain analysis.
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be over 1000 for 16-hit accuracy. In addition, in the first-order delta-sigma mod-
ulator’s output periodic (tone) components could be present, which make it unus-
able for several applications, such as digital audio.

2.5 Second-Order Delta-Sigma ADCs

A more practical converter can be implemented by using a second-order delta-
sigma converter, which uses 2 cascaded integratorsin the forward path (Fig. 2.14).
In addition, 2 feedback paths are necessary, because otherwise the modulator
would be unstable. The coefficients a,, a,, b; and b, alow to scae the internal
input and output signals of the integrators and, also, to realize a convenient sig-
nal and noise transfer function for the modulator. The second-order delta-sigma
converter is less affected by idle tones and pattern noise, and its signal-to-noise
ratio performance is good enough for a wide range of applications, hence it will
be studied in more detail in this section.

Integrator 1

yi2 q %
Integrator 2 ﬂ:k

N=1 bit
k=4

DACI

Figure 2.14. Second-order single-bit delta-sigma ADC

2.5.1 Performance Modeling

Before calculating the expected SN R performance, one should note that our
delta-sigma modulators use a single-bit quantizer, that is, a ssmple comparator, in
itsinternal structure. However, we still define a linearized model for the second-
order modul ator, assuming awhite and uniformly distributed additive noise source
for the comparator, preceded by a gain stage with a gain factor of k£ (Fig. 2.15)
[48]. Therefore, the output of the modulator based on the linearized model is
given by

V(2) = kYi(z)+Q(2) (2.34)
= ko (—b2 V() +a 7o (-hiV(2) + U(z))> +Q(2)

aaskz 2U(2) + (1 — 2 1)2Q(2)
—V = 2.35
(2) 1+ (azbgk - 2)2_1 + (]. - agbzk + alazblk)z—z ( )

To achieve the desired transfer function for the second-order modul ator, namely

V(z) =2 2U(2) + (1 — 2 1)?Q(2), (2.36)
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the gain factors should satisfy:
1—agbgk+a1agblk =0
a1 Ao k= 1

In conclusion, solving (2.37), one can derive the following relations between the
coefficients of the second-order delta-sigma analog-to-digital converter:

]{7 _ 1

ai a2 by

bg = 2 ay b1 (238)
{ b1 - ]_

Note that a; a £ = 1 and hence b; = 1 in (2.37) and (2.38) respectively, are

sufficient but not necessary conditions (detailsin Section 2.5.6).

Also note that the gain of the single-bit quantizer in the linearized model is
considered an input-signal independent constant given by & = al;) ;- based on the
assumption that the product of the loop-gain factors of the modulator are forced
to be 1 by the feedback loop [48]. In other words, the delta-sigma loop acts
as an automated gain control system over most of the input range (eg. A, =
—120... — 10 dB) maintaining the product of the loop-gain factors at unity [38,
Section 6.2.2], so the condition &£ = al;) ;- to achieve the desired transfer function
is fulfilled for any coefficient values. Its only justification is that the analytical
results subsequently obtained compare well with computer simulations that model

the true quantization function [48].

Figure 2.15: Linearized model of the second-order delta-sigma ADC

Choosing appropriate coefficients for the modulator (a,, as, by and bs), is not
trivial, and it needs a careful analysis. Following the objective to find the com-
bination of coefficients that provides second-order noise shaping: NT Fpnq(z) =
(1 — 271)?, and ensures the maximum dynamic range, it was found that a; = 3,
a = 3, by = 1 and b, = 1 are the optimal values for the second-order single-
bit delta-sigma modulator [49]. (An earlier paper proposes the same coefficient
values[50].)

For the coefficients chosen above, the linearized model indicates the desired
transfer function (2.36), which contains a unity-gain signal transfer function

STFya(z) = 2772 (2.39)
ISTFonq(2))? = |2 22 =1, (2.40)
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and second-order quantization noise shaping with
NT Fpa(2) = (1 — 2712 (2.41)

The freguency response and the z-plane representation of this noise transfer func-
tion are presented in Fig. 2.16. It can be observed that the quantization noise is
filtered (“shaped”) by a second-order high-passfilter, by which the low-frequency
in-band quantization noise is considerably reduced. The magnitude of the noise
transfer function NT F»,4(z) can be calculated as follows

2 BT 1
B (242
= |coswTs — 1+ jsinwTs|* (2.43)
fs=1
= 2(3—4cosw+ cos2w) (2.44)
Therefore, the in-band quantization noise power is given by
Pona = [ INTFya(2)[* PSDg(w) dw (2.45)
0
202 ot
= 1 (3 —4cosw + cos 2w) dw (2.46)
m 0
20 / 371 T 1 27
— — 45si — si 2.47
- (OSR Mosr T2 OSR> (247)

Note that by using the approximation |1 — z!| 2 w, (2.30), for “high” oversam-
pling ratios (2.47) becomes
7T4 O'2
~ q
P02nd - 5 OSR5 (248)

Therefore, the signal-to-noiseratio SN Ra,q 1S given by

Py,
O2nd

Ay
=~ 20 logjg -~ +6.02N + 50 log, OSR + 1.76 — 12.9  [dB]

If we consider the oversampling ratio being OSR = 27, than 50log,, OSR =
15.05 r [dB], so every doubling of the oversampling ratio, i.e. for every increment
inr, the SN R,,4 improves by about 15 dB, or the resolution improves by 2% bits.
In other words, the second-order delta-sigma converter has a 15-dB/octave or 2.5-
bit/octave SN R improvement [39, Section 14.2], [37].

Because the simplified relation (2.48) is widely used, it is interesting to com-
pare it with its exact* version (2.47) for different oversampling ratios. Based
on simulation results presented in Fig. 2.17, ASNRy,q4|losr—4« = 0.3 dB and
ASNRonglosr=s < 0.1 dB (0.2%), so the relation (2.48) provides a good ap-
proximation especialy for OSR > 8.

4The relation (2.47) was obtained by exactcalculation of the integral from (2.45). How-
ever, (2.45) itself was based on the input-independent additive white-noise approximation (Sec-
tion 2.1.1), so (2.45) is not exactin a broad sense.
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2.5.2 Performance Criteria

In order to characterize the performance of the modulators, some performance
criteriaare usualy defined:

Signal-to-noise ratio (SN R), which is defined for a nonoverloading sinusoidal
input signal amplitude as the ratio of the output signal power to the uncor-
related in-band noise, used to observe the performance degradation due to
linear effects only [49]; the SN R accounts only for uncorrelated noise and
not harmonic distortion [50];

Maximum signal-to-noise ratio (SN R4, Of SN Rpeqr Or SM), which is de-
fined as the biggest SN R achievable with the topology; this way, the per-
formance degradation due to nonlinear overload effects can be observed
[49];

Overload level (OL), which is defined as the maximum input signal amplitude
for which the structure still operates correctly; it isconsidered that the struc-
ture still operates well for amplitudes such that the SNV R degrades no more
than 6 dB® from the SN R .., value [49];

Dynamic range (D R)®, whichisdefined astheratio of thermsval ue of the maxi-
mum amplitude input sinusoidal signal, for which the structure still operates
correctly, to thermsvalue of that small input sinusoidal signal for which the
SNR isunity (SNR=0 dB) [39, Section 11.5], [37]; it is considered that
the structure still operates well for amplitudes such that the SN R degrades
no more than 6 dB from the SN R, value [49];

Signal-to-(noise-and-distortion) ratio (SN DR or TSN R), which is defined as
the ratio of the output signal power to the total in-band noise; the SNDR
takes into account the effects of harmonic distortion also [50].

2.5.3 Circuit-Level Implementation

Since delta-sigma modulators are usually sampled-data (discrete-time) systems,
they are readily implemented in CMOS technology with switched-capacitor cir-
cuits. A possible topology is presented in Fig. 2.18 [50]. A fully-differential
configuration has been adopted in order to ensure high power supply rejection, re-
duced clock feedthrough and switched charge injection errors, improved linearity,
and increased dynamic range. The two integrators each consist of an amplifier,
two sampling capacitors C';, and two integrating capacitors C,. The ratio of C}
to C5 is chosen so as to redlize the gains a; = ay; = % that precedes each in-
tegrator in the architecture presented in Fig. 2.14. Note that the coefficients a,

5In this thesis we used this definition for the overload level according to [49], but one might
consider a3-dB SN R degradation amore suitable value.

5Note that in [50] the dynamic range is defined for sinusoidal inputs as the ratio of the output
power at the frequency of the input sinusoid for a full-scale input to the outputsignal power for a
small sinusoidal input for which the T'S N R is unity.
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and a, are equal, and b; and b, are equal to 1 in this particular switched-capacitor
implementation.

The operation of the modulator is controlled by a nonoverlapping 2-phase
clock. During Phase-1 al of the switches labeled S; and S; are open, while
those labeled S, and S, are closed, and the input to each integrator is sampled
onto the capacitors C;. In Phase-2, switches S; and S3 open, while S, and S,
close, and charge stored on C; istransferred to Cs. During this phase, the closing
of switches S, has the effect of subtracting the output of the bi-level D/A network
from the input to each integrator. The comparison of the outputs from the second
integrator is performed during Phase-1, and the comparator reset during Phase-
2. With this clocking arrangement, the time available for the integration and the
time for the comparison are both one-half a clock cycle [50].

More advanced circuit-level design issuesand simulation results are presented
in Chapter 5.
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Figure 2.18: Switched-capacitor second-order delta=sigma ADC

2.5.4 Time-Domain Analysis

The linearized model is based on some weakly-verified assumptions, so thereisa
need to derive the exact model and to verify the second-order modulator’s behav-
ior using extensive simulations.

The time-domain model of a second-order delta-sigma analog-to-digital con-
verter is presented in Fig. 2.19. Note that thisis an exact model and there are no
underlying assumptions about the statistical properties of the quantization error.
In Fig. 2.19 the single-bit quantizer (comparator) is modeled as a true nonlinear
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element. Hence, one can write the following difference equations:

,

vinln] = yaln—1]+aye[n —1]
vie[n] = wia[n — 1]+ agea[n — 1]
vl =V Z1 i) <0 (2.50)
er[n] = wul[n] — by v[n]
ea[n] = yie[n] — by v[n]
[ dln] = win] —yiln]

Obviously, one must take care of the initial conditions, i.e. the integrators output
signals at n=0 time instance also, which usually are all set to zero at power up,
because the capacitors are discharged: 4;1[0] = 0, y;2[0] = 0, e1[0] = 0 and
62[0] = 0.

The evolution in time of the modulator’s internal and external signals are ex-
emplified in Fig. 2.20, for the same conditions as in Fig. 2.13: half-scale (4, =
% = %V) in-band (f < fp = ZOfﬁz, OSR = 32) sinewave input and for
a1 = 3, a5 = 3, b = 1and b, = 1. If one compares the output v[n] from
Fig. 2.20 with v[n] from Fig. 2.13, the key point is that the distribution of ‘1'-s
and ‘—1’-sin the second-order modulator’s output is such their average provides
amore accurate representation of the input than the corresponding average of the
first-order modulator’s output. In other words, for a given block of output sam-
ples, the second-order modulator uses its allocation of samples more efficiently to
represent the input [37].

2.5.5 Linearized Model Limitations

The performance of the specified second-order modulator is usually evaluated us-
ing the signal-to-noiseratio SN R versus the amplitude of the input sinewave A,
[50]. Both simulation and theoretical calculation resultsare presented in Fig. 2.21.
The modulator was simulated at system level, described by itsdifference equations
(2.50), and the quantizer was modeled by an ideal single-bit comparator, that is, a
nonlinear el ement.

In addition, the SN Ra,q, (2.49), predicted by the linearized model (Fig. 2.15)
matched the simulation results to within a few dB-s (Fig. 2.21). However, when
the input signal approaches its full-scale range, the ssimulated SN R drops. One
weakness of the linearized model is that it does not account for this phenomena.
Beyond this, most of the difference between the linearized model and the sim-
ulation is a consequence of the spectral content of the quantization noise Q(z),
that is, the quantization noise is not input signal independent, it is not white and
uniformly distributed [37], [48] asit was assumed for the linearized model.

The SN R drop due to the large input signals can be viewed as a stability
issue of the modulator, that is, for large input signals the second-order delta-sigma
loop becomes unstable. By “unstable” we mean that the modulator exhibitslarge,
although not necessarily unbounded, states and a poor SN R compared with that
predicted by its linearized model [38, Section 4.1], [51]. If the last integrator’s
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band sinewaveinput (a1 = 1,0, = 3,01 =1, b, = 1)
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Figure 2.21: Performance of the second-order single-bit delta-sigma ADC

output signal becomes larger than what the quantizer can normally handle, the
quantizer overloads, and therefore the quantization error becomeslarger than +2,
which causesthe SN R performance to drop. In addition, at larger internal signals
than what the opamps from the integrators can handle, the opamps' outputs will
saturate, so the modulator looses signal information and its performance drops.

Exactly when (for which A, value) does this SNR drop occur? What are
the stability criteria for a delta-sigma modulator? The exact stability analysis of
a nonlinear system, e.g. a delta-sigma loop, is a difficult task. The delta-sigma
design community is still awaiting an effective and general method for proving
the stability of an arbitrary high-order modulator with an arbitrary input [51]. In
the present work only a simplified analysis is presented, but which gives a good
insight into the problem itself.

L et usdefineamore realistic, input-signal dependent gain kg for the quantizer,
by theratio of the root-mean-sgquare (rms) value of its quantized output and anal og
input:

N
ks = M) _ i, [ 2ozt Vel (251)
ms(yiz)  Nooo \| 201, y3[n)]
Note that this definition of the quantizer gain is meaningful only, if the reference
voltages of the feedback DAC are taken into account also, that is, considering the
ratio between rms(v,) and rms(y;»), and not between rms(v) and rms(y;s).
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Using the linearized model (Fig. 2.15) with this simulated gain kg, one can
derive the noise transfer function NT'F(z) of the modulator from (2.34). The
locations of the NT'F'(z) poles determine the stability of the loop. Simulation
results are presented in Fig. 2.22. It can be easily observed that at large input sig-
nals (A, > 0.1 V) thesimulated gain ks gradually decreases and suddenly drops.
In addition, the SN R values are highly correlated with the simulated gain values
and the SN R drop occurs when the simulated gain becomes smaller than a certain
value, e.g. 3. For suchaninput signal amplitude the polesof the NT'F(z) are only
barely inside of the unit circle, what can generate unstable operation. Note how-
ever that the whole concept of noise transfer function is only an approximation
which lies on very weakly verified conditions, especially for a single-bit internal
guantizer, so the above presented method should be used carefully. On the other
hand, there is no doubt about its utility as far as its results match well with the
reality, even if the underlying mathematics does not validate the method itself.

In conclusion, the variability of the simulated gain ks of the quantizer can
be viewed as being a cause of instability of delta-sigma modulators [38, Sec-
tion 4.2.1]. Note that the NTF’s root locus method used above, is a powerful
and arelatively smpletool for analyzing the stability of higher-order modulators
beyond extensive ssmulations[38, Section 4.2.2].

2.5.6 Non-Unity-Gain Signal Transfer Function

So far, the desired signal transfer functions ST F'(z) of the delta-sigmamodul ators
(e0. (2.20), (2.25), (2.39)) were considered with unity gain at low frequencies
[50]. The same underlying assumption gave the relation a; ax £ = 1 in (2.37),
which forced b; = 1 in (2.38). However, if the signa transfer function could
amplify the input signal while maintaining the same quantization noise power,
than the signal-to-noiseratio SN R of the whole system would increase as well.

A signal transfer function with a low-frequency gain of 2 can be achieved by
choosing different coefficients than those proposed in [50], eg. a1 = 1, ay =
1, by = 3, by = 1[52]. Similarly, a gain of 4 results for a; = 1, ap = 1,
by = 1, by = 5. However, simulation results (Fig. 2.23) show very close peak-
SN R vaues for these three different configurations. Although |STF(z)| = 2
(Fig. 2.23.b) and |STF(z)| = 4 (Fig. 2.23.c) amplify the signal and improvesthe
SN R accordingly, the quantizer overloads at very similar peak-S N R values.

In conclusion, there is no significant benefits of using non-unity DC-gain sig-
nal transfer functions [53]. Therefore, (2.38) was correctly derived and we will
design the delta-sigma ADCs accordingly.

2.5.7 Tri-Level Quantizer

It can be observed from (2.49) that the SN R of the second-order delta-sigma
modulator can be increased by increasing the number of bits /V of the quantizer.
However, the nonlinearity errors of a multibit DAC in the feedback loop would
destroy this performance gain, if advanced techniques, such mismatch shaping
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or other correction methods (details in Section 2.3.1) did not take care of this
introduced nonlinearity.

The simplest multibit quantizer is the tri-level quantizer, proposed in [54].
This tri-level quantizer offers a good trade-off between SN R performance and
circuit complexity, especialy if one wants to avoid a multibit mismatch-shaping
DAC [38, Section 8.3.3] in order to reduce the chip area. The linearity of the
tri-level feedback DAC is till critical, but a highly-accurate tri-level DAC was
recently described [55] which used extra switches and simple circuitry to insure
linearity.

Choosing appropriate coefficients for this modified delta-sigmamodul ator will
be presented next. The objectives of the design are: to provide a second-order
noise shaping by an NT Fy,q(2) = (1 — 27")?, while the output signals of the
integrators y;; [n] and y;»[n] remain bounded to avoid the saturation of the opamps
and of the quantizer even for reasonably large input signal amplitudes. In other
words, the coefficients of the modulator should provide the most aggressive noise
suppression (in this specific case) and should also maximize the dynamic range.

A good starting point in this design is to draw the linearized model of the
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modulator (Fig. 2.15) and to follow (2.38). However, the gain of the tri-level
guantizer is not controlled by the negative feedback loop, and the product of the
loop-gain factors cannot be forced to be unity — as it was the case of a bi-level
guantizer —, but the gain of thetri-level quantizer is given by the placement of its
2 threshold voltages. So, the gain £ isindependent of the coefficients, and in order
to obtain NTFy,q4(2) = (1 — 27 1)?, thisgain k£ should match with Zb If one
chooses the threshold voltages at {—0.5; +0.5} V while the reference voltages
of the tri-level DAC are {—1.0;0; +1. 0} V, than the gain of the quantizer will
bek = 1 (Fig. 2.25). In conclusion, if £ = 1, the smplest architecture, which
provides the desired NT'F(z), (2.38), would have a; = 1, a5 = 1, b; = 1 and
b, = 2. Simulation results are presented in Fig. 2.25, where a bi-level (Fig. 2.14)
and atri-level (Fig. 2.24) second-order delta-sigma modulators were compared.
The simulated SN R curves show the expected 6-dB improvement.

However, for this configuration the signal swings at the outputs of the two
integrators are too wide (Fig. 2.27):

yilmaz [n] |Au:_1-4dB = 255V and yizmaz [n] |Au:_1-4dB = 331v
for Bg = 2'* samples. To constrain these voltage swingsto [—1; +1] V, which can
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Figure 2.24: Second-order tri-level deltasigma ADC

be handled by the opamps and the tri-level quantizer, node-voltage scaling should
be applied to the modulator. It turnsout that a; = 1, a» = 3, b, = 1, b, = 5 and
k = 8 provides the same SN R performance, that is, the same NT'F'(z), but the
internal signal swingsare well bounded in [—1; +1] V even for large input signals
(Fig. 2.28). Apparently, the signals are scaled down too drastically, but we do
need additional room for a dither signal, called “test” signal in Chapter 4, which
will be injected before the quantizer. Note, that £ = 8 was obtained by placing the
threshold voltages at {—0.125; +0.125} V. The simulated gain was also ks =~ 8
for A, = —-30... - 10dB.

Findly, it is interesting to analyze the SN R curve for a second-order mod-
ulator which uses a multibit quantizer in a “balanced” (k = Mzbl) and in an
“unbalanced” (k # al(zlzbl) configuration. In Fig. 2.26 some simulation results
are presented for a multibit quantizer with 100 levels (N = 6.64 bits, midriser
quantizer [37]) and different coefficients which satisfy bz = 2aby and b; = 1,
but £ = calculated
accordi ng 10 (2 49), is also plotted on the same figure. It can be observed that if
the modulator is balanced, than the simul ation results closely approximate the the-
oretical SN Ry,q curve. If the modulator is unbalanced, than there is a significant
performance drop around A, = —40 dB. However, in both cases, for input signals
smaller than about A, = —40 dB, the theoretical and the simulated performances
run together, so the unbalanced modulator behaved similarly with the balanced
one. So, what happened at about A, = —40 dB?

If one analyzes the transfer function of a multi-level quantizer (Fig. 2.3) with
even number of quantization levels, it can be observed that the multilevel quantizer
behaves as a bi-level quantizer for small inputs, that is, for |u[n]| < A. So,
if the input signal range of the multibit quantizer in the second-order delta-sigma
modulator remains bounded |y;2[n]| < A, than the multibit delta-sigmamodul ator
will behave as a bi-level delta-sigma modulator, and it turns out that the gain of
the quantizer will not be anymore k£ = 1, but it will be forced by the feedback
loop to satisfy k = ——— (However, in particular for Fig. 2.26.ait will be still 1!).
Simulations validated that this happensfor input signalsof A4, = —42.3 dB if 100
guantization levels are used. Obviously, for an odd number of quantization levels
(midtread quantizer [37]) thiswill never happen.

In addition, if A, > —40 dB, the output of the multibit quantizer will be truly
multibit word-sequence, so its gain becomes k£ = 1, and, therefore, its noise trans-




38 Single-Loop Delta-Sigma ADCs

Signal-to—noise ratio vs input level Transfer function of two—level quantizer, N=1 bit

50~ ‘peak SNR=49.4dB @ N=1.5 bits T ir
S VY 0.8f
peak SNR=41.8dB @ N=1 bit _ h 06l

04t
E 0.2 L

1LSB=2V @ Nl:l bit

N
5

45+

-0.2t
-0.4t
-0.61

Output, v

351

w
o
T

-1 -0.8-0.6-0.4-0.2 0 0.2 04 06 0.8 1
Input, y,, [V]

Transfer function of three-level quantizer, N=1.5 bits

SNR,  and SNR [dB]
N
[6;]
T

N
o
T

1t ! . —_—

0.8r
0.6
0.4r
0.2f

1LSB=1V @ N=1.5 bits

10

Output, v [V]
o

-0.2r
-0.4r
-0.61
-0.8r

@ OSR=16

-1t —_—

1 1 1 1 1 1 1 1 1 1 L L L L L L L L L L L
-50 -45 -40 -35 -30 -25 -20 -15 -10 -5 O -1 -0.8-0.6-04-0.2 0 0.2 04 0.6 08 1
Input level, ALJ [dB] Input, Yo V]

Figure 2.25: Comparative performance of bi- and tri-level modulators

fer function calculated from (2.34) will be NTF(z) = (1 — 27 %)% only if the
modulator is balanced (Fig. 2.26.a8). Otherwise, if the modulator is unbalanced
(Fig. 2.26.b—d), its noise transfer function calculated from (2.34) will not be any-
more NTF(z) = (1 — 27")?, so its quantization noise suppression will not be so
effective, and its SN R performance will be more modest.

This example illustrated again that the gain of a multibit quantizer is defined
by the position of its threshold voltages if its output is also a digital sequence
of multibit words, and, on the other hand, the gain of a single-bit quantizer is
controlled by the feedback loop in such a way that the product of gain factors
becomes unity (a;a3b;k = 1). These are the rule of thumb what gain should one
use in the linearized model of the delta-sigma converter.

2.5.8 Performance Limitations

The second-order delta-sigma modulator is a more practical converter than its
first-order counterpart. The second integrator randomizes more the output of the
first integrator, and hence the idle tones and pattern noise is considerably reduced,
but it is not completely eliminated. However, adding asmall ((1...10%) Auez)
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dither signal [36, Section 3.2.7] improves more this performance. We did not ana-
lyzeindetail theidle-toneissue, described in detail for examplein [38, Chapter 3],
but the reader can get a good feeling of this by simply comparing the spectra of
Q1 (z) and V,, ., (2) in undithered (Fig. 3.12) and dithered (Fig. 4.7) case. Note
that the output of the (cascaded) delta-sigma modulator got smoother by injecting
asmall white noise with amplitude A, = 0.05 V before the quantizer (Fig. 4.1.b).
Some more details are provided in Sections 3.2.2 and 4.2.1.

Although the second-order modulator provides a good quantization noise sup-
pression in the signal band, it requires high oversampling ratios to achieve high
SN R performance. Therefore, in actual applicationsits performance isimproved
by interconnecting it with one or two extra stages, or by using a multibit quantizer
in the forward path and a linearized multibit DAC in the feedback path.

2.5.9 Adding a Forward Path

So far, we did not consider the influence of the nonidealities introduced by the
real circuits which implement the delta-sigma modulator. It was mentioned in
Section 2.3.2 that the delta-sigma modulator is a very robust structure, and it is
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insensitive to the errors introduced by nonideal analog circuits. However, the
technologies are continuously being scaled and the supply voltage lowered. In
addition, high-speed technol ogies offer high operating rates (e.g. fs=100 MHz in
switched-capacitor circuits). It turns out that due to the low supply voltage and
high sampling frequency, the achievable gain of the opamps from the integrators
might be quite low and nonlinear. These low and nonlinear gains of the opamps
will cause harmonic distortions of the input signal, with errors which may domi-
nate both the total harmonic distortion (7'H D) and the noise performance (SN R)
of the delta-sigma modulator [56].

The basic ideain delta-sigmamodulators (Fig. 2.8) isto keep the error voltage
e[n| as small as possible in the signal band. Therefore, the input node, which
performs the “delta’ operation e[n| = u[n] — v,[n], is the most sensitive node.
In the popular design of delta-sigma converters (Fig. 2.8), the input signal u[n],
which appears in the output v[n], has to go through the loop filter H(z), so the
nonlinearities of the loop filter H(z) might introduce distortion into the output
image v[n] of the input signal. Because the input node is the most sensitive node
in the delta-sigma architecture, the nonlinearity of the first integrator from the
loop filter is the most critical issuein the design.

This problem can be simply balanced by adding a forward path over the loop
filter H(z) [56], as is presented in Fig. 2.29. The improvement is obtained by
directly feeding the input signal «[n] to the quantizer, so that it can be taken into
account immediately [26], and the loop filter will process only the quantization
noise instead [38, Section 5.6].

The second-order delta-sigma ADC was simulated at behavior-level with and
without the forward path. Adding the forward path increased the signal swing of
the output of the integrators y;; and y,» with about 10%, which is critical from
dynamic range point of view. In conclusion, in the prototype chip design (Chap-
ter 5) we included the forward path as an optional choice and we will study its
real effects by measurements as soon as the integrated circuit is available.

l a[n]

un] | 7 eln] | Loopfilter |yi[n] ~~ v[n] | Low-passfilter \vd[n]
PN H() 3 A/D ”

N L/ Decimator
va[n]
D/A

Figure 2.29: General delta-sigma modulator with aforward path

2.6 Higher-Order Delta-Sigma ADCs

Based on the basic operation of adelta-sigmamodul ator presented in Section 2.3.1,
it isobviousthat the quantization noise can be further suppressed in the baseband,
and hence gaining more SN R performance, by simply using a more aggressive



2.6 Higher-Order Delta-Sigma ADCs 43

noise transfer function provided by a higher-order loop filter H(z), which leadsin
turn to a higher-order delta-sigmamodulator. In general, an L™ order delta-sigma
modulator would have NTF(z) = (1 — z=!)¥, and its SN Ry, would be given

by

Ay

2L

~10 logy, #ﬂ +1.76  [dB] (2.52)

which corresponds to a (6 L + 3)-dB/octave or (L + £)-bit/octave improvement.
Unfortunately, using a higher-order delta-sigmamodulator with NTF(z) = (1 —
2z YL L > 2, would lead to unstable operation for large input signals. However,
there has been found, and first stated by Lee, an empirical rulefor designing stable
higher-order single-bit modulators [38, Section 4.4.1]. Lee claimed that a single-
bit delta-sigma modulator will remain stable even for large input signals, if its
noise transfer function has a maximum gain of lessthan 1.5:

max{|NTF(z)|} < 1.5 (2.53)

Based on this empirical rule severa stable high-order single-bit modulators has
been designed e.g. [7], [8], but the rule should be used only with caution [26].

In general, to improve the performance of a single-loop delta-sigma modula-
tor, one would have several choices based on (2.52), which can be applied sepa-
rately or simultaneously, depending on the application:

1. IncreaseOS R (to use a higher oversampling ratio)
o performance gain:(6 L + 3)-dB improvement for every doubling of
the OSR;
o limitation: the signal bandwidth will be reduced;
© solution: increasing L, or increasing N, or choosing different archi-
tecture.
2. Increase L (to use a higher-order modulator)
o performance gains6-dB improvement for every increment in L and,
in addition, (6 L+ 3)-dB improvement for every doubling of the OSR;
o limitation: the modulator can become unstable;
o solution: reducing max{|NTF(z)|} according to Lee'srule and veri-
fying the stability by extensive simulations.
3. Increase N (to use amultibit modulator)

¢ performance gain6-dB improvement for every increment in N;

o limitation: the nonlinearity of the multibit DAC in the feedback path
iscritical;
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¢ solution: using mismatch-shaping, or analog or digital correction meth-
odsfor highly-linear DACs.

4. Looking for other architecture, such as cascaded modulators. ..

In the following chapters cascaded 2-0 delta-sigma analog-to-digital converters
will be studied in detail.

2.7 Conclusions

In this chapter we presented alarge spectrum of basic and more advanced i ssues of
the analysis and the design of single-loop delta-sigma ADCs. Delta-sigma modu-
latorstrade signal bandwidth and very fast circuit operationsfor higher resolution,
and trade analog circuit accuracy for digital circuit complexity.

The basic operation of a delta-sigma modulator is usually described by its
linearized model, and by the concepts of signal transfer function and noise transfer
function. The linearized model, which replace a deterministic nonlinearity by
a stochastic linear system, however, lies on weakly verified assumptions, so it
should be used only as afirst-order approximation, and the final conclusions must
be validated by extensive simulations.

In the linearized model, the gain of a single-bit quantizer is controlled by the
feedback loop in such away that the product of loop-gain factors becomes unity,
but the gain of a multibit quantizer is given by the position of its threshold volt-
ages, if itsoutput isaso adigital sequence of multibit words.

A detailed design of a second-order delta-sigma ADC was presented also. The
designed converter will be used for the first stage of our adaptive compensated
cascaded 2-0 delta-sigma ADC.



Chapter 3
Cascaded Delta-Sigma ADCs

Cascaded delta-sigma converters offer agood compromise between high accuracy,
robust stability and speed. However, their sensitivity to analog circuit imperfec-
tions is much higher than that of their single-loop counterpart, because they rely
on the perfect matching of the transfer functions of two internal signal paths, one
predominantly analog and the other predominantly digital [34].

The genera structure of a cascaded delta-sigmaor Multi-stAge noi Se-sHaping
(MASH)?! [57], [58], [59] modulator is presented in Fig. 3.1 [29]. The cascaded
modulator can be obtained by interconnecting two delta-sigma modulators with
signal transfer functions ST F; and ST F3, and noise transfer functions NT F;
and NT F5. The digital outputs of the two delta-sigma modulators v, and v,, are
filtered by two digital filters ST F5, and NT'F1,, respectively. The quantization
error ¢, of the first-stage quantizer is estimated by w5, is quantized by the second
stage, isfiltered by adigital compensationfilter NT F}, which imitatesthe NT F},
and the result is subtracted from ST F»,(2)V1(z) [26]. The quantization error of
the second stage is ¢». One can write the following equations:

Vi(z) = STFi(2)Ui(2) + NTF(2) Q1(2) (3.1
Va(z) = STFy(z)Us(z) + NTFy(2) Qa(2) (3.2)
Ua(z) = @Qui(2) (3.3)
Vi(2) = STFpu(2) Vi(2) — NTFia(2) Va(2) (3.4)

= Vu(2) STF(2) STFy(2) Ui(2) — NTFi4(z) NTFy(2) Q2(2)
+(NTFi(2) — NTFi4(2)) Q1(2) (3.5

Because intheideal case NT'Fi(z) = NT Fi4(2), the output of the modulator is
given by

Vin(2) = STF(2) STFy(2) Uy(2) — NTF14(2) NTFy(2) Qa(2) (3.6)
which means that one can obtain a noise transfer function of an ideal (n; + n»)

order single-loop modulator, which remains stable as long as the individual mod-
ulators are stable, so it is desirable to design for n;, < 2, where n; and n,

1The name “MASH” was probably chosen from a popular Robert Altman movie (1970), and
its following TV-show version, both called also MASH, where the title stands for “Mobile Army
Surgical Hospital

45
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are the orders of the first and second stage, respectively. However, the condi-
tion NTF,(z) = NTF4(%) cannot be exactly fulfilled due to the analog circuit
imperfections. In other words, the analog noise transfer function N7 F; does not
match exactly its digital counterpart NT'Fi,4, so the quantization noise ), (z) of
the first stage is not eliminated completely from the cascaded modulator output
Vin(2), (3.5), which leads to significant performance deterioration [29].

In the present work 2-stage 2-0 modulators[60], [61], [38, Section 8.5.1] were
investigated, which are built from a second-order delta-sigma modulator and a
multibit “plain” (zero-order) analog-to-digital converter with N, bits of resolution
(see the footnote 2 on page 5).

ql vl
Loop Filter JJ_rrrr ’ STF2d [
ul N1
STF1
DAC vm
- + o—

NTF1
g2 v2
u2 Loop Filter JJ_rrrr ’ NTFld[—
N2

STF2

NTF2 @

Figure 3.1: General structure of a cascaded delta-sigma modulator

3.1 Cascaded 2-0 Delta-Sigma ADC Structures

A 2-stage 2-0 delta-sigma ADC is built from a second-order delta-sigma /V; -bit
ADC and amultibit ADC with NV, bits of resolution [60], [61], [38, Section 8.5.1].
The standard structure is presented in Fig. 3.2. However, the second stage over-
loads, that is, |g2| > 35w>2, even for small input values of u;, so this modulator
isimpractical [32].

The improved standard structure, presented in Fig. 3.3, uses a supplementary
gain stage? in front of the second stage with a subunity gain factor m, which
provides an extra degree of freedom to trade peak-S N R value for usable input
signal range. In order to simplify the analog circuit, the subtraction branch with
the gain factor 3 can be shifted into the digital domain (Fig. 3.4). Thissimplified
structure was investigated in the previous work [17], [31], [32]. However, by
simply combining the last two cascaded modulators discussed above, one can
design a general cascaded 2-0 delta=sigma ADC (Fig. 3.5), which can lead to
better performance with a6-dB SN R improvement [33].

°Note that the improved standard structure (Fig. 3.3) is equivalent with the standard structure
(Fig. 32) witha' = -2 and ' = 2

~ mo’
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Integrator 1

yi2 L vl
Integrator 2 j:
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Figure 3.2: Standard structure of the cascaded 2-0 deltasigma ADC
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F p e

Figure 3.3: Improved standard structure of the cascaded 2-0 A ADC

Integrator 1

3.1.1 Performance Modeling

In order to present a comparative analysis of these structures, the transfer function
of the general architecture (Fig. 3.5) will be derived. The two quantizers were
modeled as input signal independent additive white-noise sources (Section 2.1.1)
preceded by two gain stages with constant (input signal independent) gain factors
ki = gogr (M0 = 1bityorky = 1 (N, > 1bit), and k, = 1 (N, > 1 bit).

The resulting linearized model is presented in Fig. 3.6. The desired output of the
cascaded ADC isgiven by

Vin(2) = 2 2 Ui(2) + m2 (1 — 2 1)* Q2(2) # f(Qu(2)), 3.7)

yi2 qlr vl
Integrator 1 Integrator 2
= = g
vm
DACr— E%
£ \&/
T,
i NTF1d(2)
u2 (g2 v2 + vq vC
s m2 1-z)2
N2

Figure 3.4: Simplified structure of the cascaded 2-0 delta-sigma ADC
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yi2 L vl
Integrator 2 j: '
N1j

Integrator 1

mI}

NTF1d(z)

u2 v2 + A ovg vC
d m2 12?2

Figure 3.5: General structure of the cascaded 2-0 deltaesigma ADC

which can be obtained from

Vin(2) = Vi(z) +Ve(z) (3.8)
Vi(z) = 2 2U1(2) + (1 — 2 12 Qi(2) (3.9)
Vo(z) = —(1—2"92Qu(2) +my (1 — 2712 Qa(2). (3.10)
Therefore, the desired residue voltage V,(z) should be given by
Vy(2) = =Qi(2) +ma Qa(2), (3.12)

but, in general, with my = mio assumed,

Vi(2) = (@ = k1 B — kymy) Yia(2) — (B + my) Qi1(2) + ma Qa(2). (312

In conclusion, from (3.11) and (3.12) the interstage coefficients should satisfy:

ﬂ +m; = 1
o = ]{71 (ﬂ + ml) = ]{71 (313)
meo = mLO

The expected theoretical performance can be calculated by using the linearized
model and equation (3.7), so the theoretical signal-to-noiseratio SN Ry, is given

by

Ay
SN Rin(Vin) = 20 logyg -——+6.02 Ny-50 logyy OSR—20 logy my—11.14[dB]

e (3.14)
Simulations demonstrated (e.g. Fig. 3.9) that the theoretical SN Ry, (V},,) and the
simulated SN R(V,,,) are close until the overloading of the second stage occurs,

that is, |qz| > 5 vors.

3.1.2 Interstage Coefficients

When m; = 0, the input to the second stage is simply attenuated by a subunity
factor my, but thisis necessary to keep the second stage from overloading (cf. the
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f o
{ADC2 5 NTFLd(2)

: k2 B ‘ (1-z%)? —

Figure 3.6: Linearized model of the general cascaded 2-0 deltaesigma ADC

improved standard MASH, Fig. 3.2). To compensate for this attenuation, the digi-
tal output of the second stage must be scaled by m, = mio before being processed
by the first-stage quantization error ¢, [n| cancellation logic to make this cancel-
lation effective. Note that by doing so the effect of the second-stage quantization
error ¢o[n] is increased by a factor of m,. Therefore, the most convenient peak
SN R (which can be increased by choosing m, large and m, small) versus usable
input signal range (which can be increased by choosing m, small and m, large)
should be selected by giving different values for my.

In addition, the trade-off between small-signal and large-signal performance
can beimproved by adjusting 5 and m;, to achieve a better weighting of the input
and the output of the first-stage quantizer in the formation of the second-stage
input [38, Section 7.3.1]. When m, isnhonzero, and hence 3 # 1, acomponent of
the analog representation of v;[n] is introduced into the second-stage input, that
is, ug[n] will not be only formed by the first-stage quantization noise ¢, [n]. This
supplementary component of v, [n] must be digitally subtracted from the output of
the second stage before performing the error cancellation. In this way, under the
constrains 3 + m; = 1 and o = k, the value of /3 does not affect the final output
vm[n] of the cascaded ADC, given in (3.7). However, the value of 5 does affect
the probability density function (P D F’) of the input to the second stage u,[n|, and
3 may be optimized in order to constrain the signal range at the input to the second
stage, and thereby allow the largest possible value for m, [38, Section 7.3.1].

It isimportant to note that a delayed version of the analog input signal u,[n] is
introduced into the second-stage input u,[n] when the coefficient 5 # 1. There-
fore, the nonlinearities of the second stage may affect the linearity of the overall
system. However, the harmonics of «; [n] introduced by the second-stage ADC are
attenuated by NT'Fy4(z), e.g. by 18 dB for an oversampling ratio of OSR = 8.
For example, if the second-stage ADC has 10-bit linearity than a 13-hbit linear-
ity is still easily achievable for the overall 2-0 MASH ADC which works at an
oversampling ratio at least of OSR = 8 [34].

Simulation results are presented in Fig. 3.7 illustrating the impact of different
values of m, = - on different cascaded 2-0 delta-sigma ADCs. The simplified
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structure (6 = 1, my = 0, Fig. 3.4 and Fig. 3.7.8) [29], the improved standard
structure (3 = 0, my = 1, Fig. 3.3 and Fig. 3.7.b), and the general structure
(Fig. 3.5) [38, Section 7.3.1] for § = 2 and m; = —1 (Fig. 3.7.c) [49] and
for 3 = 4 and m; = —3 (Fig. 3.7.d) were investigated. In these simulations
OSR = 16, N; = 1 bit, N, = 12 bitsand ideal analog circuits were considered.
The L-noise was also neglected.

Finally, the probability density function of the second-stageinput signal PD F'(us),
correlated with the achieved SN R performance, is presented in Fig. 3.8. The be-
havior of the general cascaded 2-0 delta-sigma ADC wasinvestigated for different
pairsof (3, my), where 3 + m; = 1, and the largest possible m, was selected for
each pair of (3, m,) based on similar resultswith those presented in Fig. 3.7. Note
that the tails of PDF'(uy) for § = —1, § = 0 and 3 = 2 exceeded the available
input range +1 V to the second stage, and therefore the corresponding SN R per-
formance already had dropped. On the other hand, for § = 4 theinput range u, is
well bounded even for large input signals.

In conclusion, (8 = 2, m; = —1, mg = % my = 2) produces the best small-
signal performance, but for the best large-signal performance (5 = 4, m; = —3,
my = i my = 4) should be used. These conclusionsare similar to those presented

in [38, Section 7.3.1] which were derived for a2-1 MASH ADC.

3.1.3 Tri-Level Quantizer

From (3.7) and (3.14) it can be observed that if the first-stage quantization noise
Q1 (z) getscancelled dueto the equality NTFy(z) = NT Fi4(z), and, in addition,
second-order noise shaping is provided by NT Fi(z) = (1 — 2z 1)?, then the first-
stage SN R performance does not play any role in the total performance of the
cascaded ADC. However, a more careful analysis reveals that m, and, therefore
ms, definitely depend on the first stage, because they rely on the scaled proba-
bility density function of wu.,[n], which is determined by the probability density
functions of y;»[n] and ¢;[n]. Therefore, the usable input signal range u;[n] can
be manipulated from the first stage also, not only be changing the interstage co-
efficients. In conclusion, using a tri-level quantizer in the first-stage (details in
Section 2.5.7), would extend the usable input signal range u,[n], and, therefore, it
would improve the peak SN R(V},,) with about 2-6 dB, depending on the MASH
structure.

There are other issues, such as the sensitivity of the cascaded ADC on the test
signal injection, but some details will be provided in Sections 4.2.1 and 4.2.2.
Finally, the general structure (Fig. 3.5) with 3 = 2, m; = —1,mg = 3, my = 2
interstage coefficients, and a tri-level quantizer N; = 1.5 bits in the first stage
(@ = ;.00 = 5, b = 1,b, = 5 and k; = 8) was chosen, having the best
peak SN R [18]. Simulation results are presented in Fig. 3.9. In these simulations
OSR = 16, N, = 12 bitsand ideal analog circuitswere considered. The%T-noise
was also neglected.
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Figure 3.7: Comparative performance analysis between different ideal 2-0 MASH
structuresfor OSR = 16, N; = 1 bit and N, = 12 bits: (a) simplified structure,
B=1,m; =0,my = 2,4,8,16 (top to bottom); (b) improved standard structure,
B=0,m =1, my =1,2,4,8; (c) genera structure, § = 2, m; = —1, my =
1,2,4,8; (d) genera structure, 5 = 4, m; = —3, mo = 2,4, 8, 16.
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Signal to noise ratio vs input level
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Figure 3.8: SN R performance and P D F (us[n]) for different 5 and m,, assuming
ideal MASH, OSR = 16, N; = 1 bitand N, = 12 bits

3.1.4 Performance Specifications and Limitations

The theoretical, expected performance of an ideal cascaded 2-0 delta-sigma mod-
ulator is given by (3.14) which shows the effect of the oversampling ratio OSR
[15-dB/octave], of the second-stage resolution N, [12-dB/octave], of the inter-
stage coefficient m, [—6-dB/octave] and the usableinput range A, [6-dB/octave].
In practical design the achievable ideal performance (“ideal”: there were no ana-
log circuit imperfections assumed) is limited by the signal bandwidth require-
ments, hardware complexity and chip area.

In the presented work we are aiming for alarge-bandwidth and high-resolution
ADC. Therefore, fs = 100 MHz sampling frequency and switched-capacitor im-
plementation were chosen and the modulator will operate at a low oversampling
ratio of OSR = 8-16. For the second stage a N, = 10-bit pipelined ADC was
chosen, but in the future work this will be hopefully changed with a N, = 12-bit
ADC. The ideal MASH performance is also limited by the thermal noise of the
switched capacitors, which is usually called as %T-noise [39, Section 4.3]. With
afairly large input sampling capacitor of 6 pF this noise floor can be limited to
—92 dB (15 bits). Therefore, the achievable performanceis presented in Fig. 3.10
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Figure 3.9: Comparative performance of the general MASH (6 = 2, m; = —1,
my = % my = 2) for bi-level (N; = 1 bit, k£, = 1) and tri-level (/V; = 1.5 bits,
ki = 8)firststage (a1 = 1, a2 = 5,01 = 1,0 = 3)

and apeak SN R of 86 dB was obtained, for the same general 2-0 cascaded delta-
sigma ADC architecture which was considered in Fig. 3.9. Unfortunately, due
to the analog circuit imperfections this performance drops drastically (details in
Section 3.2), but an effective compensation method will be shown, which loses
less than 1 bit from the ideal performance (details in Chapter 4). Note that the
first stage, that is, a ssmple second-order deltasigma ADC, is amost completely
insensitiveto the analog circuit imperfections and its S NV R-curve sneaks between
the variations of itsideal counterpart.

In conclusion, we are aiming for a 13-bit converter with 6 MHz of bandwidth.
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Signal to noise ratio vs input level
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3.2 Analog Circuit Imperfections in Switched-Capacitor
Cascaded Delta-Sigma ADCs

The main drawback of cascaded delta-sigma modulators is their significant per-
formance drop due to the analog circuit nonidealities, namely finite DC opamp
gain, mismatch between capacitors, nonzero opamp DC offset voltage, and off-
set and gain errors of the internal ADCs and the feedback DAC [23]. The most
serious sources of difficulty are the finite DC opamp gain and the capacitor mis-
match. For ideal compensation, the digital compensation filter NT'F7, should
match perfectly the analog noise transfer function of the first stage NTF,. In
practical implementations, the imperfect matching of the analog transfer function
NTF; and its digital counterpart N'T'F}4, leads to noise leakage and significant
(—10...— 30 dB) performance degradation. The noise leakage can be defined as
the residual part of the first quantizer’s quantization noise which is not eliminated
from the output of the MASH modulator due to the analog circuit imperfections.
In other words, due to analog circuit imperfections and, the resulting mismatch
between the analog and digital noise transfer functions, the first-stage quantiza-



3.2 Analog Circuit Imperfections in SC CascadedAX. ADCs 55

tion noise will not be perfectly cancelled, but it will appear in the MASH output
as quantization noise leakage.

3.2.1 Nonidealities in Switched-Capacitor Integrators

In the switched-capacitor filter implementation of a digital filter, in particular of
an integrator, the deviation from the ideal transfer function is mainly determined
by the finite opamp gain and the capacitor accuracy [62]. The ideal and the real
transfer functions of a switched-capacitor integrator (Fig. 3.11) are given by

Vout (2 —az"!
Fa®) = 0 = T (3,19
Vout(2) —a(l —da)zt

= = A
Vin(z) 1 —=p(1 = dp)z~! (319
wherep = 1, 0p = DC opamp gain), a = % (capacitor ratio),

da = Ac + 414, Ac AC@ — S5 (relative capacitor error). Therefore:

—a(l o AC 1+a )Z—l

Hreal(z) - 1_ ( )2_1
DC

(3.17)

Redlistic values for the opamp gain are Apc = 500...10,000 (54...80 dB) and
for the relative capacitor error, for which a uniformly error distribution was as-
sumed, £ = 0.4%, which leads to A = 0.8% [27]. According to simulation
results (Flg 3.10), the zero and pole dislocations of the nonideal transfer function
lead to significant performance degradation of the cascaded delta-sigma modu-
lator, about -26 dB for Aps = 54 dB and A = 0.8%. This was simulated
assuming the general cascaded 2-0 delta-sigma ADC (Fig. 3.5).

In addition, it isworth mentioning that a more accurate and complete analysis
of the analog circuit imperfections would take into account the errors due to im-
perfect circuit settling, charge injection and clock feedthrough, and % aswell as

%T-noi se. However, these effects are ignored in the present analysis because its
main goaJ isto study and, later, to compensate the major imperfections[17]. Note
that the £---noise isignored in the theoretical analysis, but it is taken into account
inthe performed simulations.

o ! [ J > Vout Vin(z) ,1 Vout(z)
[ A o b Tpzt [

Figure 3.11: Switched-capacitor integrator and its linear model




56 Cascaded Delta-Sigma ADCs

3.2.2 Noise Leakage in Cascaded Delta-Sigma ADCs

Taking into account the main analog circuit imperfections, which introduce a par-
asitic leakage path for the first-stage quantization error ¢ [n] to the output v,,,[n],
theideal and the real output of the cascaded delta-sigma ADC are, respectively:

Vinigea (2) = 272U1(2) + ma(1 — 271)%Qa(2), (3.18)
Vinyeut (2) = 2720(2) + ma(1 = 271)2Qs(2) + Hicaage (2)Q1(2)(3.19)
Assuming small relative errors due to the finite opamp gain and capacitor mis-

match, the noise leakage transfer function can be approximated accurately by a
finite Taylor series expansion
Vin(2)
Hea age\? = 3.20

= A0+A1(1—Z_l)+A2(1—Z_l)2+...+AM(1—Z_1)M

o o

where the coefficients Ay ... A,, are afunction of the DC opamp gain Ap¢ and
therelative capacitor error A.. Thefiltering effect of the (1—z~')* dependson the
oversampling ratio O S R. To estimate the order of magnitude of the noiseleakage,
its first five coefficients A4, ... A, were calculated for the standard cascaded 2-0
delta-sigma ADC (Fig. 3.2) based on the real integrator model described by (3.17)
[29]:

a1a
Ay = Opidps = % (3.21)
DC
a; +a
A1 = —(Spl — (5]92 = IA 2 (322)
DC
A2 = —(5@1 — (5@2 - (Sbl + 3(5]91 + 5p2 —du
-2 4
_ 4AC—|— a1+bl—|—a+ (323)
ADC
A3 = 2(5(11 + 2(5[)1 — 2(5[)2 - 3(5])1 + (Spg
—ag — 2by + 2by — 2
YN Sl Bk skl (3.24)
Apc
A4 = —(5&1 + (5&2 — (5()1 + 25172 + (5p1 — 5]?2 + oo — (55
102
1 1
= < ﬂ —2>Ac+<b1—2b2+a+ﬁ( +ﬁ)—2> (325)
Q100 a1 000 Apc

Assuming Apc = 54 dB and Ax = 0.8%, the order of magnitude of A; is10°
andof A;...A;is1073...102. It can be observed from (3.21)—(3.25) that the
first two terms (A, and A;) depend only on the finite opamp gain and, in addition,
Ay seemsto be negligibly small.

The noise leakage for the general cascaded 2-0 deltasigma ADC (Fig. 3.5)
could be calculated in the same way, but we did not perform these calculations. A
symbolic calculator provided by Mathematica or Maple should be invoked to per-
form this analysis. In Section 4.1 will be demonstrated that even a very accurate
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estimation of Ay ... Ay, haslow significance because of the random nature of the
VariableSADC and Ac.
However, we did analyze the noise leakage by simulations and some results
are presented in Fig. 3.12. The spectrum @, (z) of thefirst-stage quantization error
¢1[n] isnot awhite noise, but it is strongly correlated with the input signal, and it
is affected by pattern noise as well, as it was expected for V; = 1.5 bits. After
this quantization error ¢;[n] is quantized by the second stage, which randomizes
it, v,[n] looks whiter than ¢, [n], but the pattern noise is still present. The second
stage is a multibit quantizer with N, = 10 bits, so the spectrum @, (z) of the
second-stage quantization error ¢»[n] can be considered a nearly white noise, asit
was presented in Fig. 2.5 also.
The performance of an ideal switched-capacitor cascaded delta-sigma ADC,
for which no analog circuit imperfectionswere assumed, isonly limited by the %T
noise and the power of the shaped second-stage quantization noise (1—271)2? Q»(z),
if certain OSR was assumed (V,,,,,..,(2) in Fig. 3.12). Unfortunately, this noise
curve degrades significantly due to the analog circuit imperfections. Thisisillus-
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trated by the spectrumV;,, _ () of the output v,,,[n] of areal MASH. It can be ob-
served that V,,,, ., (2) is mainly composed by the noise |eakage which has a much
bigger power than the shaped second-stage quantization noise (1 — 27')2 Q1 (2),
so the noise leakage limits the performance of the circuit. In addition, V,, _,(2)
lookslike a shaped version of 9 (z), and even the pattern noiseis preserved. This
demonstrates that the output of the real MASH is highly correlated with the first-
stage quantization noise @, (z), that is, the origin of the noise leakage is clearly
the first-stage quantization noise ; (z). In other words, (3.19) isintuitively veri-
fied by Fig. 3.12. In addition, one should note that theideal output V;,,., .. (-) of the
MASH is smooth and free of this pattern noise, which is another great advantage
of cascaded delta-sigma modulators.

The only question which remained open: how to change a practical MASH
to reach, or at least to get close to, its ideal performance? One possible answer,
an effective adaptive digital compensation method, will be presented in the next
chapter.

3.3 Conclusions

Cascaded delta-sigma ADCs are suitable for high-resolution and large-bandwidth
applications so their analysis presents a high interest in the ADC-design com-
munity. Two main issues in dealing with cascaded delta-sigma modulators are to
choose an appropriate structure, and to handle the side-effects of the analog circuit
imperfections.

First, cascaded delta-sigma ADCswith 1-1.5-bit first stage and 10-12-bit sec-
ond stage were investigated from structural point of view. The most critical point
in this structure is to prevent the second stage from overloading without drasti-
cally scaling down its input signal. It was found that by carefully adjusting the
interstage coefficients of the MASH, an optimal weighting of the input and the
output of the first-stage quantizer in the formation of the second-stage input can
be achieved. In addition, using a tri-level quantizer in the first stage extends the
dynamic range of the MASH. In conclusion, based on acomparative analysis, itis
believed that the cascaded 2-0 delta-sigma structure was optimized for peak-S N R
performance, if Ny = 1.5 bits, a1 = 1,00 = 3,01 =1, b, = 1, 3 =2,my = —1,
my = % and my, = 2 were used. The ideal peak-S N R performance of the opti-
mized structure [18] (without considering the %-noise and, in addition, assuming
ideally matched coefficients) showed a 2-bit improvement compared the previous
results[17], [31].

It was also shown that the obtained peak SN R of the ideal MASH istoo sen-
sitive, and the actual MASH implemented by practical analog circuits, with their
natural imperfections, would have a much worse SN R performance. These non-
idealities cause quantization noise leakage and performance degradation. There-
fore, the nature of the noise leakage was analyzed analytically and by simulations.
Based on these results, an effective adaptive noise-leakage digital compensation
method was devel oped, which will be presented in the next chapter.



Chapter 4

Adaptive Digital Compensation for
Cascaded 2-0 Delta-Sigma ADCs

The main drawback of cascaded delta-sigma modulators is their high sensitivity
to analog circuit imperfections which leads to noise leakage, and significant loss
of SNR performance. To reduce the influence of the noise leakage in cascaded
delta-sigma modulators, three measures can be applied:

1. Highly accurate analog circuits(NT Fi(z) — NT Fi4(z))

o method:to reduce the mismatch between the analog and digital cir-
cuits (especially between the analog noise transfer function NT'Fi (z)
and itsdigital counterpart N7 Fy,4(2)), and, in turn, to reduce the noise
leakage by increasing the analog circuit accuracy by using special
technology (for example, correlated double sampling and laser trim-
ming);

o limitation: thisis possible only to alimited degree, and, in addition, it
increases the production costs.

2. Multibit quantizer (|PSD(Q1)| )

¢ method:to reduce the power of the first-stage quantization noise, and,
in turn, to reduce the noise leakage by using multibit quantizer in the
first stage;

o limitation: thisis effective only to a limited degree, and, in addition,
the linearity of the multibit DAC in the feedback pathis critical;

o solution: either trimming the multibit feedback DAC (high production
costs), or using mismatch-shaping DAC (low production costs, but it
requires arather big chip ared), or using other analog or digital correc-
tion methods for the DAC (still under development).

3. Digital noise-leakage compensatioQNT Fi (2)=NTFi4(2)+ Lc(2))

59
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o method:to adjust the digital compensation filter N7 Fy,(z) to match
exactly its analog counterpart N7 Fi(z), and thus eliminate the noise
leakage;

o limitation: the required robustness and hardware complexity of the
digital compensation;

¢ solution: using adaptive noise-leakage cancellation.

In the present work, the last method was chosen and has been explored. The ad-
justment between the digital and analog filters should happen automatically and
preferably on-line, such that variations due to changes in production process pa-
rameters as well as effects of drift and aging are eliminated also. In conclusion,
adaptive on-line digital compensation was chosen, which offers a potentially pow-
erful solution to reduce the noise-leakage problem. Using thistechnique, it will be
demonstrated in this chapter that a practical MASH can approach the performance
of an ideal MASH modulator.

4.1 Adaptive Digital Compensation of the Noise
Leakage

In the expression (3.20) for the noise-leakage transfer function Heskage(2), the
output errors introduced by the terms A;(1 — 2 1)* decrease rapidly with the or-
der 7 of the term. This shows that the effect of the analog imperfections can be
suppressed by incorporating in the structure a smple low-order digital correction
path for the quantization error ¢; [n] which cancels the quantization-noise |eakage
signal.

Thisdigital correction can be provided by an adaptive noise-leakage compen-
sation digital FIR filter Lo (z) (Fig. 4.1), which adds a digital correction term
vr,[n] to the output ve[n] of the digital compensation filter NT Fi4(z). There-
fore, the digital correction term v, [n], which is the output of the digital FIR filter
L¢(2), should be a negative estimate of the noise leakage [29]. Note that we call
NTF\,(z) a“digital compensation filter”, which cancels the first-stage quantiza-
tion noise ) (z) in the global output V;,,(z) of the cascaded delta-sigma ADC if
perfect analog circuits are assumed, and we call L (z) as* adaptive noise-leakage
digital compensation filter” or, shortly, “adaptive (compensation) filter”, which is
needed to compensate for the noise leakage present in the global output V;,,(z) of
the MASH due to the analog circuit imperfections.

To understand how this noise-leakage compensation scheme works, first one
should analyze the origin of itsinput signal V,(z). Based on the linearized model
of the cascaded ADC one can recall (3.11) here for convenience:

Ve(2) = =Q1(2) + m2 Q2(2) = —Qu(2), (4.1)

that is, V,(z) is mainly composed by the negative of the first-stage quantization
noise (;(z), because the power of 2(z) is negligibly small compared to the
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Figure 4.1: Adaptive digital noise-leakage compensation (a) without and (b) with
atest signal test|n]
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power of Q;(z) in the frequency band of interest. Therefore, for a FIR filter
Lc(2) (Fig. 4.1),

Vi(2) = Vy(2) Lo (2) 2 —Q1(2) (lo+ 12 Y loz 2 4. A ly 2 MDY (4.2)

where the noise-leakage compensation digital FIR filter Lo (z) has M coeffi-
cients 7 = = [lo, 11, ---lar—1])". Therelation (4.2) compared with (3.19) and (3.20)
demonstrates that 17,(z) can be a negative estimate of the noise leakage, if the
coefficients [ of the FIR filter Lo(z) are chosen properly. The coefficients
Ap ... Ay of the noise leakage transfer function Hiqpqge () Can be calculated
with good accuracy as functions of Ap- and A, so the coefficients 7 could in
principle be determined also [63], [64]. However, an accurate a priori estimation
of Agy... Ay isnot possible, because of the random nature of the variables Ap¢-
and A, so the calculated Hieqkq4¢ (2) Would be only a coarse estimate of the real
one. An accurate evaluation is necessary, because of the high sensitivity of the
SN R performance to the&e_) values, so arelatively small error in the coefficients
Ag... Ay, andinturn of ", would cause significant performance degradation.
This observation was the main reason why only the nature and the order of mag-
nitude of the noise leakage was derived |n Section 3.2.2. In conclusion, a FIR
filter, with adaptively tuned coefficients l offers a good solution to cancel the
noise leakage.

4.1.1 Adaptive Digital Compensation Algorithms

As mentioned in the previous sections, the coefficients of the noise-leakage com-
pensation digital filter L (z) are adjusted through an adaptive algorithm. There
arevarious algorithms available for adaptive FIR digital filtering. One of the well-
known adaptive algorithm developed using the stochastic gradient technique, the
Widrow-Hoff least-mean-square (LMS) algorithm, is being widely used because
of its relatively simple realization [65]. Several block FIR adaptive algorithms
have been introduced, including the bl ock-least-mean-square (BLMYS) algorithms,
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where the system signals are processed in blocks [66]. Various applications of
adaptive techniques in data converters can be found in [67], [68], [69], [70]. Ac-
tive noise control also uses adaptive digital signal processing in order to generate
anoise of equal amplitude but opposite phase (also called as “antinoise”) to can-
cel out the unwanted noise [71] — amethod somewhat similar to that used in this
thesis to reduce the quantization noise |eakage.

For random input signalsthe LM S a gorithm minimizesthe functional J[n] =
E{e?[n]}, wheree[n] isthe error signal itself or an appropriate function of the error
signal. Minimization of 7[n] isachieved in the LM S algorithm by estimating the
gradient of 7[n] and updating the coefficients 7 of the adaptive filter according
to this estimate. In our case, the error is the unwanted presence of the first-stage
quantization noise ¢;[n] in the output v,,[n] of the cascaded delta-sigma ADC.
Therefore, the output v,,,[n] is an appropriate function of the effective error signal
q1[n], so it can be considered ¢ = v, = f.{¢:}. Note that v,,[n] contains the
input signal u;[n] as well as the second-stage quantization noise ¢[n|, S0 v, =
fm{u1,q1, 42}, but for afunctional description of the system, let us first assume
uy[n] = 0 and gz[n] = 0. The gradient of J[n] at the time instance n can be
calculated as
_0&{e’ln]} _ 9&{vn[nl}

Zy— = 2&{vn[n] @7 [n]} (4.3)

v
Jnl ol 91

where ¢7[n] = [qi[n], u[n — 1],...q:[n — (M — 1)]]T. Because it is necessary
to calculate actually this estimate of V. 7[n|, one has to get an estimate of the
first-stage quantization noise ¢; [n]. Thisisnot adifficult task, because from (4.1),
V,(2) = —Q1(2), s0 in the multiplication from (4.3), —v,[n| should be used in-
stead of ¢;[n| (Fig. 4.1.8). However, we will keep using ¢;[n| in the equations
in order to illustrate the principle of first-stage quantization noise ¢, [n] cancella-
tion. In addition, since we cannot only simply calculate the expectation in (4.3),
the LMS algorithm uses an approximation for the gradient of 7[n], the so-called
noisy gradient estimate:

VJn] = 2vm[n] @ [n]. (4.9)
This estimate leads to the update equation of the LM S algorithm
Tln+1] = T [n] + vears vmln] T, (45)

where 2 multiplications and ) additions are needed for each update, and the
convergenceiscontrolled be the LM S adaptation constant ;5,5 [29]. Becausethe
noisy gradient estimate is not an accurate estimate of thereal gradient of 7[n], the
adaptation coefficient ;5,5 has to be very small in order to keep the steady-state
error low. Low values for the adaptation coefficient -y, 5, require alengthy adap-
tation process, and a high resolution for the noise-leakage compensation filter
L¢(z) coefficients _l> resulting in increased hardware complexity. It is advanta-
geous to change the algorithm in order to keep reasonably low resolution for the
coefficients [ .
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This can be achieved without significant increase in complexity by using the
block-least-mean-square (BLMS) algorithm instead [66]. The BLMS agorithm
operates similarly, except that the gradient of 7 [n| isestimated by an average over
K samples, resulting in amore accurate gradient estimate than the noise gradient,
so it alows larger values for vzr1r5. The BLMS gradient estimate for the time
instancen = jK is

0e{e’[j K1}
01

IIZ

VILiK] =

and the update equation of the BLMS agorithm is given by

K-1

TG+ VK] = THE] + sus S vmliK — K@K —k,  (@7)

k=0

requiring a convolution over K samples for each filter coefficient update. The
complexity seems to be much higher than it was for the LM S algorithm, but as
will be shown in Section 4.1.3, it can be drastically reduced.

4.1.2 Test-Signal Approach

As presented in the previous section, the coeffici ents 7’ of thenoise-| eakage com-
pensation digital FIR filter L~ (2) should be tuned by the adaptive algorithm in
such away that the first-stage quantization noise ¢; ] gets cancelled in the global
output v,,,[n] of the MASH. An estimate of the first-stage quantization error ¢, [n]
is provided by —v,[n], as shown in (4.1), so the result of the correlation between
vm[n] and v,[n] could give the required information on how to tune the coeffi-
cients [" in order to reduce, and finally minimize, the power of ¢ [n] in v,,[n]
(Fig. 4.1.8). However, in area cascaded delta-sigma ADC, v,[n] provides only
a coarse estimate of the first-stage quantization noise ¢;[n], and due to the ana-
log circuit imperfections, v,[n| always contains an attenuated component of the
input signal u, [n] in addition to the second-stage quantization noise ¢»[n], that is,
v = fola1, g2, w1 }. As mentioned earlier, the global output of the MASH isalso
a function of the same variables: v,, = fn.{u1,q1,¢}. Therefore, the compen-
sation algorithm, which tries to reduce the power of ¢;[n] from v,,[n] based on
the correlation result between v,[n] and v,,[n], would reduce not only the quanti-
zation noise ¢ [n], but also the input signa u4[n] from v,,[n]. This property, the
so-called signal-to-noise inversion principle, unfortunately, isalimiting factor for
the adaptation algorithm discussed so far, if on-line adaptation is applied.

This problem, however, can be solved if atest signa test[n] is entered into
the modulator at its most insensitive node, that is, before the first-stage quantizer
(Fig. 4.1.b) [27], [28]. The test signal test[n] chosen is a pseudo-random, uni-
formly distributed, zero-mean white noise, which is added where the quantization
noise is generated, and which behaves similarly to the quantization noise ¢ [n]
itself. In addition, the test signal is uncorrelated with the input signal u;[n], or
with the quantization noises ¢, [n] and ¢»[n]. Since the test signal test[n] follows
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the same parasitic |eakage path toward the output v,,[n] as the quantization noise
¢1[n], removing the test signal test[n| from the output v,,, [n] requires the same op-
eration as removing the remainder of the first quantizer’s quantization error ¢ [n]
from the output v,,[n]. In other words, the minimization of the test signal test[n|
in the output v,,[n] is equivalent to the minimization of the quantization noise
leakage.

Note that a pseudo-noise or a pseudo-random sequence, is a binary sequence
with an autocorrelation that resembles, over a period, the autocorrelation of aran-
dom binary sequence. It also resembles the autocorrelation of band-limited white
noise. Although deterministic, so it can be reproduced, a pseudo-noise sequence
has many characteristics that are similar to those of random binary sequences,
such as having a nearly equal number of zeros and ones ('O’ logic and ‘1’ logic),
very low correlation between shifted versions of the sequence, very low cross-
correlation between any two sequences, etc. A pseudo-random sequence is usu-
ally generated using sequential logic circuits and it is also called maximal-length
sequence [72, Section 5.10.1].

When injecting the test signal test[n] into the modulator, based on the lin-
earized model of the general cascaded delta-sigma ADC (Fig. 3.6), (3.19) changes
to

Vinyea (2) = 27201 (2) +ma(1 = 271)?Qa(2) + Hieakage (2) (k1 Test(z) + Q1(2)),

(4.8)
S0 vy, = fm{u, qi, test, g2 }. Even though the test signal test[n] has statistical
properties similar to those of band-limited white noise, it isdeterministic and fully
known. Therefore, it can be detected in the output v,,[n] by using a correlation
process between the output v,,[n] and the digital replica of the test signal test[n]
(Fig. 4.1.b) which generates an error signal. This error signal is then used to up-
date the coefficient vector (" by a gradient method such as the BLM S agorithm.
The update equation of the BLM S algorithm (4.7) using the test signal test[n| for
adaptation becomes

K—-1
GK] = vaims Y. vmliK — k] festjK — k), (4.9)
k=0

TG +1)K] =T

where ¢[n] (in fact, —v,[n]!) was replaced by the negated test signal —test[n).
The detailed form of the update equation of the BLM S adaptation algorithm (4.9)
isgiven by

K-1

k=0

LI+ 1D)K] = L[IK]—vBrLus Z om[i K — k| test[jK — k — 1]

K-1

bral(G+D)K] = iy [iK] - ’YBLMSZ [ K — k]test[jK —k — (M — 1)]
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The detailed structure of an adaptive digital compensated general cascaded 2-0
delta-sigma ADC is presented in Fig. 4.2. It implements (4.9) and (4.10).

Note that the error correction using the test signal test[n] takes place on-line,
in the background during the actual data conversion, so it can follow any drift in-
troduced e.g. by aging or temperature changes. Also, thetest signal actsasadither
signal for thefirst stage of the cascaded delta-sigmamodulator, thusimproving its
performance [ 38, Chapter 3].

A minor drawback of using test-signal injection isadlight lossin the dynamic
range DR due to the earlier overflow of the first-stage quantizer (details in Sec-
tions 4.2.0 and 4.2.2). Findly, note that the proposed test-signal approach is a
linear correction method, so it can be used for correcting linear errors only, but
not any harmonic distortion introduced by the nonlinear implementation of the
analog circuitry [21].

Integrator 1

yi2 ql; vl
Integrator 2 ] 1 j%‘ .

vm

e

Figure 4.2: Adaptive digital noise-leakage compensation scheme using atest sig-
nal test[n] for the general cascaded 2-0 delta-sigma ADC (M = 6)

4.1.3 Hardware Implementation of the Adaptive Filter

The adaptive digital compensation method shown so far presents a practical pos-
sibility for designing high-performance ADCs only if the adaptive noise-leakage
compensation digital filter L (z) can beimplemented with reasonably smple dig-
ital circuitry, which can be integrated in the same chip with the modul ator without
significantly increasing its complexity. Usually besides large bandwidth and high
resolution, low power and small chip area are also desired. In other words, the
complexity of the adaptive filter is an important issue, and we are trying to reduce
its complexity without significant performance loss.
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First of al, one can reduce the complexity of the convolution operationsif the
test signal is chosen to be a binary sequence [29]. The additional advantage of
using a binary test signa is that the analog test signal, which is injected before
the quantizer, can be reproduced with a very high accuracy by its digital coun-
terpart, which is used at the input of the correlator (Figs. 4.1.b and 4.2). Hence
the convolution operation is reduced to a simple summation of K samples of the
output signal, where the sign of the summation is changed according to the sign
of the test signal test[n]. The resulting sign-block-least-mean-square (SBLMS)
algorithm updates the coefficients 7 accordi ng to

K-1

K] —yspras Y vml[iK — k] sign{fest[jK — k]}. (4.11)
k=0

TG+1)K) =T

The adaptation requires K additions, and M multiplications with the adaptation
constant vszrars. The cost of using this simplified algorithm is a much longer
convergence time. However, the convergence speed does not matter much in on-
line adaptation if the converged performance is accurate enough.

In order to reduce the hardware complexity further, the coefficient update can
be performed as a simple addition with a constant step size vssz1.1r5, Which sign
is controlled by the sign of the gradient estimate [31]:

TI(j+1)K] = T K]~ ssnas Sgn { S vl — K] sgn {esiljK k]}} |

(4.12)
so the M multiplicationswith the adaptation constant vss g7, 175 Can be replaced by
up-down counting operations instead, which are easy to implement, if vssgrars
igchosen to be equal with the step size (1 LSB) of the adaptive filter’s coefficients

[". Thisalgorithm, which update equation was expressed by (4.12), can be called
as sign-sign-block-least-mean-square (SSBLMS). In conclusion, every update re-
quires K M additions. Since the update is performed after each K samples, only
M additions per sample are required.

The hardware implementation of such an adaptive compensation filter is pre-
sented in Fig. 4.3 [17]. The estimated die size of this adaptive digital logic is
0.57 mm? in a0.25 ;um standard CMOS process. It allows high-speed operation.

4.2 Adaptive Digital Compensation Process

Thefunctionality of the adaptive general cascaded 2-0 delta-sigmaADC (Fig. 4.2)
was verified by extensive simulations. The analog circuit imperfectionswere mod-
eled by (3.17). The same nonidealities were considered for the analog gain fac-
tors «, # and my. First, the adaptive noise-leakage compensation digital filter
Lc(z) was built from an M — 1 = 5™ order FIR filter [17]. For adaptively
controlling its coefficients _l> a binary, pseudo-random, uniformly-distributed,
zero-mean and white test signal test[n| was used with amplitude A, = 0.05 V. In
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vm

Figure 4.3: Simplified hardware implementation of the correlator using a binary
test signal test[n] to update the coefficients /; of the adaptive noise-leskage com-
pensation dlgltal filter Lc(Z) (g = YSSBLMS and M —1= 5)

addition, the SSBLMS algorithm, (4.12), with ablock size of K = 2'* and with
vssprms = 4107°, was used to update the coefficients .

Some simulation results are presented in Fig. 4.4 which demonstrate the adap-
tive noise-leakage cancellation, because the compensated output has reached the
ideal performance at several time instances j, so the noise_l>eakage was effec-
tively suppressed. Due to the fluctuations in the coefficients [* (not presented in
Fig. 4.4) the compensated performance, that is, the overall MASH performance
also fluctuates with aripple of about 10 dB, which is unacceptably large. In ad-
dition, the dynamic range of the compensated output is reduced with about 3 dB
in comparison with the dynamic range of the ideal output. To improve the per-
formance presented in Fig. 4.4, the parameters of the adaptive digital filter and
of the adaptive noise-leakage cancellation algorithm were carefully studied and
optimized. In addition, the properties of the test signal test[n] were studied.

The simulation results presented in Fig. 4.4 can be improved. In on-line adap-
tation one can tolerate alonger convergence time, but the ripple of the adaptation
noise (steady-state error) should definitely be reduced, and the dynamic range
should be extended as much as possible. In addition, the hardware complexity
of the digital circuitry should be kept reasonable. In conclusion, one can trade
lower adaptation speed for higher accuracy, and a very small performance drop
for significantly lower digital hardware complexity.

4.2.1 Parameters for the Adaptive Digital Compensation
Process

In general, the steady-state error of the adaptation processis directly proportional
with the adaptation constant vz;ars, €0. Vsspryms Used in (4.12), so avery low
value is desirable for vsspras. However, the smallest value of the adaptation
constant vssrrars 1Slimited by the maximum affordable resolution for the coeffi-
cients [". A reasonably high resolution of N, = 16 bits was chosen, which leads
t0vssprms = 1 LSBy, = 537 = 1.510° (for T limited between (-0.5;+0.5)).
Choosing a suitable block size K for the BLMS algorithm, or its SBLMS and
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Figure 4.4: Adaptive compensation process and achieved SN R performance

SSBLMS derivatives, needs careful analysis. The gradient of the functiona 7 [n]
is calculated based on the correl ation results between the test signal test[n] and the
global output v,,,[n] of the MASH, whichisafunction of v,,, = f{u1, ¢, test, ¢ }.
|dedlly, the signals u,[n], ¢ [n] and ¢»[n] are uncorrelated with test[n], and the in-
fluence is negligible when one correlates them. However, in BLM S algorithm, the
correlation is performed only over a finite number of samples K. Hence, the cor-
relation of test[n] with each of the perturbing signalsis not zero, and contributes
a noise term to the result of the correlation [29]. These noise terms, should be
small enough not to alter the sign of the correlation (in SSBLMYS), or at least do
it only rarely. Theinfluence of u;[n], ¢;[n] and ¢,[n] is determined mainly by the
length of the block size K, and it decreases with using a larger block size K. On
the other hand, a larger block size K necessitates a larger accumulator (Fig. 4.3)
to perform a long-term correlation. Based on simulation results, we have chosen
for the block size K = 2', which provides a good estimate of V 7[n| with a
good suppression of the unwanted, perturbing correlation terms, and, in addition,
it requires only a moderately large accumulator.

In conclusion, with properly chosen adaptation constant vssprars = 1.5107°
and block size K = 2%, much better SN R performances were obtai ned than those
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presented in Fig. 4.4: theripple of the adaptation noise was reduced by about 4 dB
with the acceptable price of alonger conversion time (j ~ 6000 adaptation steps
instead of j ~ 2000), and a bigger accumulator (K = 2' instead of K = 2').
The improved results are presented in Figs. 4.5, 4.6 and 4.7.

The progress of the adaptive compensation processis shownin Fig. 4.5, which
demonstrates that the adaptive FIR filter L (z) has reached its steady-state after
J =~ 6000 adaptation steps. However, the coeffici ents 7 till fluctuate around their
optimal values, which causes the 6-dB ripple of the compensated performance
of V... (z). The adaptation process was performed assuming a single in-band
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Figure 4.5: Adaptive compensation process (K = 2%, vssprms = 1.5107°)

Next, the output of the first stage v;[n] and the globa output of the MASH
vm[n] were analyzed in ideal and real, uncompensated and compensated situa-
tions (Fig. 4.6). Theideal curvesfor SNR(V;(z)) and SNR(V,,,,..,(2)) match
well those from Fig. 3.10. (Note that in genera a resolution of 0.5 dB should
be considered in these comparison.) However, thereal curvesfor SNR(V;,_,(2))
and SNR(Vin,...(2)) = SNR(Vinyeom, (2)) Significantly differ dueto the test sig-

nal test[n] injection. From (3.19) and (4.8) it follows that the test signal test[n]
will be present in the real and uncompensated output V;,, _,(z) due to the noise
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leakage, modeled by its transfer function Hj.,rq4e(2), and therefore it degrades
the real and uncompensated SN R performance (Fig. 4.5) compared with the real
SN R performance obtained when no test signal was applied (Fig. 3.10). Note
that the SN R performance degradation of the real and uncompensated output
Vin,...(2) due to the test-signal injection does not matter at all, because the adap-
tive algorithm cancels from the output V;,, (=) the presence of the first-stage quan-
tization noise ¢, [n] as well asthe test signal test[n]. However, area undesirable
effect of injecting the test signal test[n| is the dynamic range degradation by 2-
3dB, when A, = 0.05 V, because the first and the second stages overload earlier.
This degradation can be reduced by decreasing the amplitude of the test signal A;
(Section 4.2.2).

. Noise Power Density Signal to noise ratio vs input level
@ 0 T T T
ko] T T T T T T T T T T T
= | 90 - ideal, real and compensated MASH ADC Performance
E 5 | @ OSR=8, N1:1.5 bits; N2:lO bits, N(kT/C)=-92dB
I \ -—- ideal, 85.60B @ -1.4dB
> | —-x— real, uncompensated, 50.1dB @ -3.7dB £
5)3 -40r | 1 80 >~ best compensated; - 81.5dB @ —4:4dB « B
k=] | —<- worst compensated, 76.4dB @ -3.7dB Y S
& -60 | _ N
i | First stage (A‘:0.0S V):
8 _gol 70— ideal; no test; - 35.6dB @ -1.4dB - £, .
2 —*— real with test, 27.0dB @ -3.1dB  / _
£ /
5-100
>E 60
2-120 _
= o)
= kA
*g ~140 (] i i i i i i i i —~
b 005 071-015 0.2 0.25 0.3 0.35 0.4 045 0.5 250
! Normalized frequency [f/f] X
I IS °
’ oo 5
_ | Inband Noise Power Density ~ ~ _ A0
o -40 ‘ ‘ ‘ ‘ ‘ —_ 2
o, o
& 50} ! &
s uncompensated output ‘
£ ~60 [ theoretical output " : 30
= compensated output '\ \ ‘
S -70f N NN [
5 80 AREENEEN
2 _aol
8 20 | -
T 90t
a
—E—loo r
2110} iy 10
? il
>5120 I
E"—130 I
g L ‘ L J 4
S ~140 QR / ; ; il 0 | | | | | |
N 0 0.01 0.02 0.03 0.04 0.05 0.06 -90 -80 -70 -60 -50 -40 -30 -20 -10 0
Normalized frequency [f/fs] Input level, Au [dB]

Figure 4.6: Achieved SN R performance (K = 2'° and vssprars = 1.5107°)

Finally, the results of the adaptation process were presented. In Fig. 4.6 (left)
the compensated and uncompensated outputs were compared, and, asit is shown,
the spectrum of the compensated output is pressed down near to the theoretical
output. The resulting SN R performance is presented in Fig. 4.6 (right). In addi-
tion, Fig. 4.7 answers the question raised by Fig. 3.12, namely, what the compen-
sation term looks like. The compensation term V7, (z) is provided by the output
of the adaptive noise-leskage compensation filter L (z), whose input was V,(z).
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Also, the shape of V() looksvery similar to that of V7,,,......., (2), whichismainly
composed by the first-stage quantization noise leakage, so it can be concluded that
V1 (%) isthe negative estimate of the quantization noise leakage indeed. It can be
observed that the compensated output V;,,.,...(2) (Fig. 4.7) and the ideal output
Vinisea (2) (Fig. 3.12) are almost the same, which demonstrates the effectiveness
of the compensation.

In addition, the dithering effect of the test signal test[n| on the first stage
quantization noise ¢ [n] is shown, i.e. the spectrum @), (z) after applying the test
signa (Fig. 4.7) is smoother than without it (Fig. 3.12). However, with this small
dither signal provided by the test[n]|, some idle tones and pattern noise are still
present in ) (z), and inturnin V,(z) and V;,,,,....., (%), but these spurious noise

components are eliminated by the compensation, and a smooth spectrum results
for Vineom, (2) (Fig. 4.7).
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Figure4.7: Spectral analysisof someinternal / external signalsof the MASH after
a successful adaptive compensation process

4.2.2 Adaptation Process Optimization

An important observation was made in Section 3.2.2, when the order of magni-
tude of A, was claimed to be much smaller than the rest of the noise-leakage
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coefficients A, ... A,. Based on this observation, the input of the adaptive digital
filter L (%) can be better provided using a V,(z) prefiltered with a simple digital
differentiator (Fig. 4.8)

Vaa(z) = (1= 271) Vy(2). (4.13)

By applying v,q[n], a first-order filtered v,[n], the effective order of the adap-
tive noise-leakage digital correction block (with input v,[n] and output v, [n]) in-
creases with one, and the coefficients [ . . . [, are shifted up to cancel the higher-
order noise-leakage terms A; ... A,,. This very ssimple operation does not need
additional hardware, because v,4[n| can be obtained from thefirst stage of NT'F},(z)
(Fig. 4.8).

Integrator 1

yi2 qy vl
Integrator 2 ] 1 :FN .

Figure 4.8: Improved adaptive digital noise-leakage compensation scheme using
atest signal test[n] for the general cascaded 2-0 deltasigma ADC

Simulation results for the improved scheme are presented in Fig. 4.9.a, where
an M — 1 = 5" order adaptive FIR filter L (z) was used to calculate the nega-
tive estimate v, [n] of the noise leakage, having a first-order filtered input v,4[n]
(Fig. 4.8). By comparing Figs. 4.9.aand 4.5, it can be observed that the simu-
lation results were improved significantly, and the ripple of the adaptation noise
was reduced to the very comfortable value of 1 dB. This performance improve-
ment was achieved due to the use of the extra differentiator at the input of L¢(z)
and not due to the increase of the effective order of noise-leakage digital correc-
tion block with one order. To support this last statement, an adaptation process
was performed with an M — 1 = 6" order adaptive FIR filter L (z), but without
the differentiator (similar with Fig. 4.2), which results are presented in Fig. 4.9.b.
Even if the effective orders of the noise leakage digital correction blocks are the
same in Figs. 4.9.a and 4.9.b, adding the differentiator to the front of L~ (z) has
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significant performance benefitsin addition of simplifying the hardware complex-
ity of L (z) with one order. Why is adding a differentiator such a good idea?

The coefficients 7 of the adaptive FIR filter Lo(z) are estimated and up-
dated on-line by the SSBLMS algorithm (4.12). Due to the finite res_o}l ution
(N, = 16 bits) of the adaptive FIR filter L (z), the estimated coefficients (" fluc-
tuate around the optimal solution loj (global minima of the error surface [J[n|)
with an error proportional with vssprars (Section 4.2.1). Fig. 4.9 and Tab. 4.1
show that the effective coefficients [* of the adaptive cancellation block, using
L¢(z) with and without the differentiator, both converged to the optimal solu-
tion [,,;. However, the fluctuations in the transfer function of (1 — 27') L¢(2)
(M = 6, Fig. 4.9.a) were much smaller than the fluctuations in the transfer func-
tion of Lo(2) (M = 7, Fig. 4.9.b). (Note that the fluctuations of the equivalent
coefficients [ are the same in both cases, asis presented in Tab. 4.1.) In the first
case, the differentiator performs an explicit and exact first-order shaping of v,[n],
which is necessary in order to estimate the noise leakage —vy[n]. In the second
case, this first-order shaping isimplicitly realized by Lq(z), but this differentia-
tion is affected by the adaptation noise of the SSBLMS algorithm.

On the other hand, the benefit of the differentiator can be explained by an-
alyzing the spectrum of the noise leakage, which should be compensated. In
Fig. 4.7 it is shown that the noise leakage transfer function Hjeqpage(2), (3.20),
isonly slightly different from afirst-order differentiation (compare V;,,......, With
(1 — 271 Q1(2)). Therefore, the differentiator performs a coarse filtering, let-
ting the adaptive FIR filter L (=) to perform afine correction only, which can be
done with more accuracy, that is, smaler ripple. Finaly, by using the additional
differentiation the ripple of the adaptation noise was reduced by 6 dB [18].

‘ Filter Block ‘ M H l() ‘ I ‘ ly ‘ l3 ‘ ly ‘ l5 ‘ l6 ‘
Mean coefficient values, mean{ [’} (x1073)
(1—2"YLe(2) | 6 | 52.29 | —86.65 | 21.84 | 8.81 | 3.60 | 0.08 | 0.02
Le(z) 7 || 52.29 | —86.64 | 21.85 | 8.81 | 3.60 | 0.09 | 0.00
Fluctuation of coefficients, max{ [’} — min{ '} (x1073)
(1—2zYLc(z) | 6 [[0.244 [ 0.274 | 0.305 | 0.305 | 0.305 | 0.274 | 0.289
Lc(z) 7 11 0.244 | 0.274 | 0.289 | 0.274 | 0.289 | 0.274 | 0.244

Table 4.1: Coefficients of the adaptive digital compensation filter block

The update of the coefficientsis based on the result of correlation between the
leaked test signal test[n] components present in the output v,,[n], and the digital
replica of the originally injected test signal test[n], (4.12). Therefore, to estimate
correctly the noise leakage a large test signal is required. On the other hand, a
small test signal is preferred to avoid the premature saturation of the first stage
and in turn of the whole MASH, due to the test-signal injection. Since the test
signal test[n] is uncorrelated with other components of the output signal v,,,[n]
such asuy [n], ¢1[n] and ¢2[n], its power can be measured selectively. Simulations
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Figure 4.9: (a) Reducing the ripple of the adaptation noise using a differentiator,
M = 6; (b) adaptation process without differentiator, M = 7

show that even if the test-signal power is much lower than the power of other
components of the output signa v,,,[n] (e.g. the amplitude of the test signal can
beaslow as A; = 0.01 V), its power can till be_d>etermi ned with high accuracy,
and hence the update of the coefficient vector [° can be done accurately, and
the adaptive compensation process works correctly. In addition, this simulation
was performed in fixed-point with 16 bit of accuracy. The concluding results are
presented in Figs. 4.10 and 4.11.

After about j ~ 6000 adaptation steps (which takes about 3.9 seconds for
a sampling frequency of f¢ = 100 MHz), the adaptive process has converged.
After convergence, the coefficient vector ' still fluctuates dightly around its
steady-state value, due to the inherent error of the SSBLMS update. The ripple
of this fluctuation is approximately 0.3 x 10~3 shown for [, for Aj = 100 steps
in Fig. 4.10, and numerically for the whole coefficient vector /' in Tab. 4.1. This
fluctuation in 7 causes approximately 1-dB adaptation noise in the corrected
SN R, shown in detail for Aj = 100 stepsin Fig. 4.10. Findly, Fig. 4.11 shows
an SN R performance drop of only 1-2 dB from theideal SN R curve, and the dy-
namic rangeisreduced by only 0.5 dB dueto thesmall test signal. Clearly, the per-
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formance of the compensated practical circuit (peak SN R of 84 dB) approaches
closely that of the ideal MASH ADC [18], [34]. Note that the performance of
SN R=84 dB was obtained by simulations and not by measurements. However, at
least a performance of SN R=80 dB should be achievable by the well-designed in-
tegrated circuit also (detailsin Chapter 5). Therefore, 80-dB peak SN R isclaimed
to be the accuracy of the designed ADC whichisused e.g. inFig. 1.1 and Tab. 1.1.

The last important issue discussed in this section is the order M — 1 of the
adaptive noise-leakage compensation digital FIR filter Lo (z) from adaptation and
hardware complexity considerations. So far, we used M — 1 = 5" order adaptive
filter with M = 6 coefficients [, . . . [5. However, it can be observed on Fig. 4.10
that the higher-order coefficientsl, and [5 convergeto zero, or at least to very small
values, so a M — 1 = 3" order adaptive filter should be enough, which means
lower hardware complexity requirements. Simulations confirmed this statement,
but we will keep using M = 6 at least for the first prototype chip, because the
noise sources are more complex in areal integrated circuit than our present noise-
leakage model, and it is good to keep a small room for the adaptive filter to track
the higher-order components of the real noise leakage also. Tab. 4.2 summarizes
the final configuration of the adaptive filter Lo (z) for M = 4, 6 and 10.

, OSSBLMS @ ?SRZS, le‘1.5 bits, Nz‘:lo bits, Au‘:O.lv,A:O.B‘%, ADc:54‘dB, N(kT/C)‘:—92dB, MTG, K:6657536, YospLms=1-58-05, A=0.01V
| 66.9
66.8
- 66.7
~~56.6
1 665
| 66.4
66.3

66.2
1.2

SNR

! ! ! !
10000 12000 14000 16000

! ! ! !
2000 4000 6000 8000 1.21

x 10"

Noise Leakage Digital Compensation Adaptive FIR Filter, Lc(z)
T

T T T T T

|(0)
0

T YssBLMS

0.0523

!
6000 10000 12000 14000 16000 12

L Number of adaptation steps, j
Poles and zeros of (1-z )Lc(z) for j=16384

1 1
2000 4000 8000
4
Frequency response of (1—z’l) LC(z) for j:16384x 10

1F
S 20
0.5 : k1
‘ =
O T -40
of od ol v
O = -60
. j=2]
-0.5 R
Q -80
i) SR SN LR S RN A S -100 : :
-2 -15 -1 -05 0 05 1 15 2 107 1072 107"
Real part Normalized frequency [f/fs]

Figure 4.10: Adaptive compensation process (differentiated v,[n])
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Figure 4.11: Achieved SN R performance (differentiated v, [n])

In conclusion, by using the optimized adaptive noise-leakage digital compen-
sation, the practical MASH approached closely theideal MASH performance.

Order of Coefficient values 1 of Lo (z)  (x1073)
Le(2) L | L | b | & | L | I
M—1=3]5235] —3437 | —1258 | —3.73] — | —
M —1=5]5233| —34.42 | —12.60 | —3.72 | —0.03 | +0.00
M—1=915229 | —34.34 | —12.52 | —3.73 | —0.10 | —0.01
— — ls 7 ls lo
— — [=00.01 | —0.01 | +0.04 | +0.04

Table 4.2: Coefficients of the adaptive digital compensation filter

4.2.3 Shaped or Unshaped Test Signal

The adaptive filtering method described in the previous sections minimizes the
mean-square error of the output v,,[n] using the LMS agorithm, or more pre-
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cisely, the SSBLMS algorithm. The algorithm tries to reduce the total power of
the test signal present in the output signal v,,,[n], and thus also the power of the
leaked first quantizer's quantization noise in the same output v,,[n]. Hence, it
gives uniform weighting of errors over the whole spectrum, that is, it decreases
the high-frequency noise leakage as much as the low-frequency noise leakage.
The high-frequency noise leakage is eliminated anyway by the following decima-
tion filter, so there is no extra need to reduce the high-frequency components of
the noise leakage by adaptation.

In order to eliminate this undesirable effect, one needs to reduce the sensi-
tivity of the adaptation algorithm to out-of-band (high-frequency) noise leakage
[29]. This can be achieved by changing the power spectral distribution of the test
signal, that is, to produce a frequency-shaped test signal which still has a uniform
amplitude distribution, but whose energy is concentrated in-band. The reduction
of the out-of-band energy of the test signal is equivalent to assuming that no out-
of-band noise leakage is present in the system for the adaptation algorithm, and
the adaptation algorithm needs to reduce only the in-band noise leakage. There-
fore, one expects that using a low-pass-filtered test signal should lead to a better
performance [32].

A shaped, that is, low-pass-filtered test signal can be produced by low-pass
filtering a broadband test signal. Using this method would however lead to a
multibit test signal, and then unfortunately, the correlator in the adaptation hard-
ware would need multipliers. A simple method of generating a low-pass-filtered
test signal, which is still binary, is by upsampling the initial broadband test signal
in the time domain [73]. Upsampling is accomplished by inserting L — 1 replica
values between samples, that is, stretching the signal L timesin the time domain,
which results in a low-pass effect in the frequency domain, or more exactly, in a
filtering with the sinc function.

However, the convergence is much noisier for a shaped test signal compared
with the convergence with an unshaped, broadband test signal (Fig. 4.12) [33].
Therefore, unfortunately, these resultsdid not validate the shaped test signal method
presented above, even if its reasoning seems to be good.

The failure of the shaped test signal method can be explained based on the
theory of the so-called spread spectrum modulation techniques used in modern
communication systems [72, Section 5.10]. When one performs the on-line cor-
relation over afinite block of samples K between the test signal test[n] and the
output of the MASH v,,, = f{uy, ¢, test, ¢, }, the signas u,[n], ¢;[n] and ¢z[n]
act as perturbations in measuring the power of the test signal test[n] in v,,[n]
(Section 4.2.1). Among these perturbations, u,[n| has the biggest power, so its
effect affects most this measurement. In [72, Section 5.10.2] is demonstrated that
the perturbation rejection capability is given by the ratio between the bandwidth,
in our case, of the test signal test[n] (which is broadband for an unshaped test
signal, or narrow-band for alow-pass shaped test signal) and the bandwidth of the
“perturbation” u,[n| (which is obviously narrow-band: fp = 25%%). In conclu-
sion, a broadband or white test signal provides the best performances, because its
bandwidth is OS R times larger than that of the low-frequency signal band, and
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Figure 4.12: Convergence using unshaped or shaped test signal

therefore it has the highest perturbation (u;[n]) rejection capability. Note that the
same conclusion was found in [24], that is, larger bandwidth for the calibration
signal (which had the samerolein[24] asthetest signal in the presented approach)
led to better performed digital correction.

Extensive simulations showed that using a shaped test signal increased more
the unwanted effects of «,[n] on the correlation result than it would improve the
performance based on the reasoning given above (Fig. 4.12). Therefore, we have
concluded that a broadband (white) test signal should be used instead [18], [34].

4.3 2-0 MASH ADC with 5-Bit First-Stage
Quantization

Finally, to improve further the accuracy of the 2-0 MASH ADC, while preserving
its bandwidth, a multibit quantizer can be used in the first-stage delta-sigma ADC
[12], [26], [74], [75]. However, the linearity of the multibit DAC in the feedback
path is critical, so it needs to be improved by using mismatch shaping or other
correction methods (detailsin Section 2.3.1).
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Figure 4.13: High-performance 2-0 MASH ADC

For amultibit first stage, the reduced quantization noise ¢ [n] alows the scal-
ing of the input of the second stage u,[n| by using mg > 1 and my = m% < 1.
This will reduce the power of ¢[n], and hence improve the SN R performance
of the MASH, as expressed by (3.18). In addition, the multibit first stage leads
to decreased sensitivity to analog circuit imperfections [12], because the noise
leakage is proportional to the power of ¢[n], as indicated in (3.19). However,
the mismatch between NT'F(z) and NT Fy4(z) is still critical, especially when
high sampling rates (e.g. fs = 100 MHz) alow only modest DC opamp gains
(Apc = 40-50 dB). Therefore, our adaptive on-line error correction technique is
needed to cancel the negative effect of analog imperfections even for a multibit
first stage.

An adaptively corrected 2-0 MASH architecture, similar to the one presented
in Fig. 3.3, but with a multibit first stage (N, = 5 bit) and dlightly different
coefficients [9], [74] was investigated at behavioral level (Fig. 4.13). Extensive
system-level simulation results (with ideal quantizers and ideal DAC) indicated
that by using a 5-bit quantizer in the first stage, and alowered oversampling ratio
of OSR = 4, it may achieve 16-bit accuracy with a 12-MHz signal bandwidth
(Fig. 4.14).

To implement thisadaptively-corrected multibit 2-0 cascaded delta-sigma ADC
needs further investigations. Especially the feedback DAC needs to meet high
(16-bit) linearity requirements at low oversampling ratios (OSR = 4). Also,
the second-order loop gain at low oversampling ratios provides only a reduced
shaping of the nonlinearities of the multibit quantizer (e.g. [NT F(z)| ‘ —

—5 dB), so thisissue should be studied as well. Moreover, the %T-noisefloor of
the switched capacitors must be set to a lower value than the overall resolution
(16-hit), which would require large sampling capacitors due to the targeted high
speed of operation (fs = 100 MHZz) and low oversampling ratio (OSR = 4). The
effective implementation of this high-performance converter is beyond the scope
of thisthesis. However, even this brief analysis shows that the adaptive correction
method can significantly improve such a multibit first-stage quantization MASH
ADC.
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Signal to noise ratio vs input level

Ideal, real and compensated MASH ADC Performance
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Figure 4.14: Simulated SN R performance of the high-performance 2-0 MASH

ADC (fs = 100 MHz, OSR = 4, N; = 5 bit, N, = 10 bit, Ap = 54 dB, and

Ac = 0.4 %)

4.4 Conclusions

In this chapter, an effective digital error correction method for cascaded delta-
sigma converters was presented. Due to the imperfect analog circuits, quantiza-
tion noise leakage is present in the output, which degrades the performance of the
real MASH. This noise leakage can be estimated and cancelled by an adaptive
digital FIR filter. In order to perform this estimation on-line, the coefficients of
this adaptive filter were updated by the sign-sign-block-least-mean-sgquare algo-
rithm, using a pseudo-random test signal. After a careful design of the adaptive
noise-leakage compensation digital FIR filter, it turns out that the required digital
hardware for error corrections is quite simple, and also it provides robust opera-
tion. Extensive simulations showed an achievable S N R=13-bit @ 6-MHz signal
bandwidth analog-to-digital converter, which is a useful performance for a state-
of-the-art data converter. The adaptive correction method was extended for 2-0
MASH ADCs with 5-bit first-stage quantization (with ideal quantizers and ideal
DAC) in order to gain higher accuracy (SN R = 16 bits) and larger bandwidth
(fB = 12 MHz). Thislast circuit needs further investigations before being imple-
mented.



Chapter 5

Prototype Chip Design

This chapter discusses the details of the circuit-level implementation of the adap-
tive compensated cascaded 2-0 delta-sigma ADC, which was discussed at the be-
havioral level in the previous chapters. Here, the detailed transistor-level design
of the component circuit blocks will be presented. The correct operation isillus-
trated by selected simulation results. The layout of the prototype chip! will be
sent out for fabrication soon, so measurement results are not available yet.

The performance specifications for the circuit design were described in Sec-
tion 3.1.4. The most relevant parameters, from which all the circuit parameters
were calculated, are repeated for conveniencein Tab. 5.1.

a1 bl (05} b2 OSR N(%) (6] ﬂ my
TT1[ 1[I 8 [92dB|8]2] &

Table 5.1: Parameters for the prototype chip design

5.1 First Stage of the MASH ADC

Thefirst stage of the adaptive digital compensated cascaded 2-0 delta-sigma ADC
is a 1.5-bit second-order delta-sigma modulator. Hence, it is composed by 2 in-
tegrators, a tri-level quantizer in the feedforward path, and a tri-level digital-to-
analog converter in the feedback path (Fig. 2.24).

The circuit-level implementation offers some special challenges due to the
targeted speed of operation. In the second-order delta-sigma ADC, all blocks
are to be operated with a clock frequency of fs = 100 MHz. The traditional
implementations, for example with folded-cascode opamps in a simple integrator
structure, are not suitable. The main limitation comes from the gain-bandwidth
product of the operational amplifiers, which will be described in more detail in
Section 5.1.2.

1The prototype chip design, as well this chapter, was contributed by my colleague at Oregon
State University, José Silva(si | va@ce. or st . edu).
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5.1.1 Integrators

The integrator structure shown in Fig. 3.11 has been used for low-speed imple-
mentations (e.g. fs =1 MHz to 10 MHz). However, for operation at the targeted
speed of 100 MHz, it is very difficult to design an operational amplifier with suf-
ficiently large gain-bandwidth product. Hence, the traditional implementations,
for example with folded-cascode opamps, are not suitable. One was to solve this
problemisto use of correlated double-sampling integrators[76], which greatly re-
duce the gain requirements for the operational amplifiers. Figs. 5.1 and 5.2 show
the schematic of the first and second integrators, respectively. They are shown
in single-ended version, for simplicity. The actual implementation uses a fully-
differential topology.

Cn
[

Vin1 Ve
© Voutl
|l | Vou
01

Veer+ - %
H o,

VrEF- - |
L ®,

M P,

Figure 5.1: First integrator from the first stage of the MASH ADC

The structure is similar to the one shown in Fig. 3.11, except for the addition
of the holding capacitor C'y;, and a switch connecting the inverting input to the in-
tegrating capacitor during phase ®;. During this phase, the holding capacitor C'y;
samples the offset voltage Vo5 and the gain error voltage —v,,;/Apc introduced
by the operational amplifier. During phase ®,, the stored error is used to create
an enhanced virtual ground node at V,.. One of the resultsis that the effective DC
gain of the integrator becomes the square of the opamp DC gain. For example,
for an opamp with a very small DC gain of, say, 40 dB, the effective gain of the
integrator is nearly 80 dB.

Both the first (: = 1) and the second (i = 2) integrators of the second-order
delta-sigma ADC implement the same transfer function:

Z_l

Vvouti (Z) = (G/Z' ‘/;nl (Z) + a; bz %(Z)) 1_72/_1, for 7 = 1, 2, (51)
where v,[n] is the output voltage of the feedback tri-level digital-to-analog con-
verter, 0 v,[n] € {—Vrer;0;+Vrer}, accordingly to the state of the digital
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Figure 5.2: Second integrator from the first stage of the MASH ADC

signals H (high), L (low) and M (middle or zero), respectively.

The feedback capacitors Cy;, the integrating capacitors C; and the holding
capacitors C'y; are all calculated from the sampling capacitors Cs;, in order to
implement the coefficients of the delta-sigma structure:

CFi = bz CSi) C]i = aiCSia CHZ = C]i, for = 1, 2. (52)
1

The feedback capacitor Cr; isnot needed in Fig. 5.1. Since b; = 1, the value of
Cr isthe same as C'sy, so these capacitors were merged, ssimplifying the circuit
and saving chip area. Thevalue of the sampling capacitor C's; isdetermined by the
%-noise power level, which imposes alimit on the maximum achievable signal-
to-noiseratio SN R for the whole system, given a certain input signa rangeto the
second-order delta-sigma ADC. The performance of thefirst integrator isthe most
critical in the modulator (see the discussionsin Section 2.5.9), with the minimum
size of the sampling capacitor C's; given by

2(L+b)kT
Cs % R SNR, (5.3)
where ;.4 1S the maximum amplitude of v;,[n]. FOr V.. = 1V and SNR =
92 dB, (5.3) sets the minimum capacitor size to 6.7 pF. This value was rounded
up to Cs; = 7 pF. For the second integrator, this requirement is not so important
because every error introduced after the first integrator will be reduced by the
large low-frequency gain of the first integrator, when it is referred back to the
input. Thus, for the second integrator, the noise power is allowed to be twice of
the noise power in the first integrator, resulting in C'so = 2.5 pF.
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In relation to the switches, the following considerations were taken into ac-
count. Most nodes have a low potential, and so all switches connected to those
nodes are N-type transistors. The exception is the input signal, which needs a
CMOS switch. Theinput switch, controlled by ®,,, isturned off after the switches
controlled by ®,. This preventsitssignal dependent clock feedthrough and charge
injection from affecting the rest of the circuit. The size of the switches was cho-
sen to allow settling for at least T = 77, where T' is half of the clock period
QT =1Ts = fis = 10 ns), and 7 is the time constant defined by the switch
resistance and the sampling capacitor.

5.1.2 Operational Amplifiers

Before selecting the opamp topology and the corresponding transistor sizes, it
is necessary to calculate the specifications that it will have to meet. The most
important are the unity-gain frequency f;, and the sew rate SR, but the load
capacitance C;, and the power consumption are calculated as well. The required
unity-gain frequency f;, isgiven by

_ln m

fta - ﬂfbﬂ'

fs, (5.4)

where fs = 100 MHz is the sampling frequency, 3y, is the feedback loop gain,
and n is the settling accuracy in bits, which is set to 10 bits, or 0.1% of every
voltage step from sample to sample. The feedback 1oop gain 3y, is obtained from
return ratio calculations as described in [77]. For the first integrator, the worst
case occurs during phase ®,, and it is given by

Cn

——— =10.8, 55
Cs1 +Cn (55)

By =

and for the second integrator the worst case is also during ®,, when

Cro
= =0.571. 5.6
Bren Cs2 +Cpa2+ Cho (56)

Substituting these values in (5.4), the unity-gain frequency f;, is calculated to be
fra1 = 275.8 MHz for the first integrator, and f,.. =2 386.1 MHz for the second
integrator.

The necessary slew rate S R can be cal culated from the maximum voltage step
Vsrep,,, @ the output of each integrator. For the first integrator, the maximum
voltage step Vsrep,,,.. 1Sdiven by

VSTEPpue = @1 (1 +b1) Vepr. (5.7)

It should be noted that this calculation does not contain any assumptions about
the nature of the quantization noise, and therefore it gives a very reliable (in fact,
pessimistic) estimate. However, for the second integrator, this parameter is much
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more difficult to predict, and so it was obtained from Matlab simulation results.
The slew rate SR isthen calculated from

SR — %, (5.8)
IL’TS

wherex = 25% isthefraction of the clock phase allowed for slewing. For thefirst
integrator, the slew rate is calculated to be SR, = 400 V/us, and for the second
integrator, SRy = 320 V/us.

The bias current of the differential pair can be calculated from

Ipras = SR - Cy, (5.9

where ', is the maximum load capacitance seen by each operational amplifier.
For thefirst integrator, during phase &,

CIICHI

Cr,o~Cgg+ —mM—MM——
f 52 Cn+Cm

= 16.6 pF, (5.10)

and for the second integrator, during phase @,

Cra (Csg2 4+ Cra + Ci2)
Cra+Cso 4+ Cpo + Cho

Substituting these capacitance valuesin (5.9), the bias current is determined to be
Ipras, = 6.64 mA for the first integrator, and /45, = 1.08 mA for the second
integrator. Finally, the opamp transconductances were calculated from

Im =27 f1a CrL. (5.12)

The calculated values are summarized in Tab. 5.2.

In order to achieve the calculated requirements, it is important to use a sim-
ple opamp structure. Single-stage opamps have been used frequently in high-
frequency SC applications [78], [79], [80]. They give essentially a first-order
response, with the non-dominant pole caused by the small parasitic capacitances
between the gates and drains of the output transistors. Since this type of amplifier
hasavery poor DC gain, several technigues have been used to improvethis param-
eter. In[78], the gain isimproved by using cascoded transistors, which increases
the output impedance by afactor of 100. In [79], the gain isimproved by using a
dual input telescopic circuit, effectively doubling the input transconductance, and
also by cascoding thetransistors. In [80], asimple stage with differential regulated
cascode transistorsis presented.

In this project, we implemented a simple single-stage opamp, with no spe-
cial features other than cascode transistors, as shown in Fig. 5.3. This structure
provides the highest unity-gain bandwidth f;,. Using the opamp in a correlated
double sampling integrator further compensates for the effects of the poor DC
gain. When comparing the popular folded-cascode implementation with the se-
lected tel escopic implementation, one can find that for the same specifications, the
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| First Integrator | Second Integrator| Units |

Capacitors
Cs 7.00 2.50 pF
Cr — 1.25 pF
Cy 28.0 5.00 pF
C 28.0 5.00 pF
Opamp parameters
fta 275.8 386.1 MHz
SR 400 320 Vius
Cr 16.8 34 pF
Igras 6.64 1.08 mA
Gm 28.8 8.2 mA/V
| Loop Gain | 0.800 | 0.571 | VIV |

Table 5.2: Circuit parameters for the first stage of the MASH ADC

former has about twice the power consumption, and a much lower phase margin
than the | atter.

A common-mode feedback stage is needed to keep the output voltages within
the proper region of the operation. The implemented circuit is shown in Fig. 5.4
[81]. The capacitors C~, and C_ generate the average of the output voltages,
which is obtained at the node V.. The capacitors C's, and C's aong with the
switches, also implement a low-pass filter and help the common-mode voltage
converge to Vgy,. The differential pair shown in the common-mode feedback
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Figure 5.3: Telescopic opamp schematic used in the integrators
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circuit, connected in a unity-gain configuration, has a buffering and decoupling
function. It reduces the magnitude of glitches, and other non-desirable spurious
signals, in the common-mode voltage Vi rs.
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Figure 5.4: Common-mode feedback circuit for the opamps

The bias voltages used in the operational amplifier are generated by the circuit
shown in Fig. 5.5. The main part of this circuit is a constant transconductance
bias loop [82], which generates V3, and Vgs;. To a first-order approximation,
these voltages are dependent only on the ratio between the sizes of each transistor
and Ms. The current through the loop is determined from the off-chip resistor
Rpras. By making (W/L),y = 4 (W/L)s, the transconductance of M; becomes
gms = 1/Rpras. The cascode voltages V3 and Vi, are generated by the two
wide-swing cascode bias circuit branches. For V34 it isrequired that

W _ (W/L)s _ (W/L)s

(W/L)15 = (n+1)2 and (W/L)s = T2 (5.13)
and, for Vs

W _ (W/L)s _ (W/L)s

When these conditions are met, each of these branches will set a voltage n V.,
above saturation.

Finally, the startup circuit makes sure that during power-up, the circuit volt-
ages are not stuck at the ground potential. If this happens, the inverter formed by
M3 and M, turns on the transistors M, and M-, which pull the voltages V3 and
Vo to the supply rail. Once the currents approach the correct values, V4 will be
high enough and the inverter will turn off A/; and M,. Note that M, operates as
an activeload, and so it should belong: (W/L)4 = 0.5/27.8.

5.1.3 Tri-Level Quantizer

In order to implement a quantizer with 3 levels, it isnecessary to use two compara-
tors and a decoder, as shown in Fig. 5.6. The outputs H, M and L are generated
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Figure 5.5: Generation of the bias voltages for the opamps
from Qy and ), accordingly to the following logic expressions:
H=QuQr, M = Qu Qr, L=QuQr. (5.15)

The decoder implementsthese relations with two invertersand three AND or NOR
gates.

As all other elements in the modulator, the comparators also have to satisfy
stringent speed requirements. However, their accuracy has little influence on the
overall performance of the modulator [50]. The literature reports on many differ-
ent types of comparators, with the fastest ones usually operating in current mode.
The typical approach combines the charging of parasitic capacitances with some
type of positive feedback.

The implemented comparator, adapted from [83], isshown on Fig. 5.7. It uses
simple differential pairs as voltage-to-current converters. The main pair, imple-
mented with M3 and M,, is used for the input voltages V;,,. and V;,,_. The other
two, with lower gains, are used for the threshold voltages Vrp, and Vrp , and
for the test signals V.., and V,.,; . The resulting current is used to charge the
parasitic capacitances of asimple CMOS inverter. An additional source-follower
stage (M, and M), operating in class AB, provides low input impedance and
also positive feedback, resulting in a considerable speed improvement.

The comparator uses a flip-flop. Its schematic is presented in Fig. 5.8. This
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Figure 5.6: Tri-level quantizer for the first stage of the MASH ADC
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Figure 5.7: Comparator used in the tri-level quantizer
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type of configuration, called TSPC (True Single Phase Clock), has been used suc-
cessfully for various high-speed applications [84]. Although the propagation time
is considerably faster than the required for this application, this type of circuit
combines both simplicity and low area with very high speed. The circuit uses
the internal parasitic capacitances to store the logic state. The input signal D is
propagated from the first inverter to the second inverter during the negative edge
of the clock signal C'K, and from the second inverter to the third inverter during
the positive edge of the clock signal C K.
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Figure 5.8: TSPC flip-flop used in the comparator
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The output of the second integrator is available during ®,. During this phase,
the comparator decides if the signal level is below or above the threshold. The
flip-flop stores this state at the falling edge of @, right before it is needed, since
the integrators only useit during phase ®, of the MASH ADC.

Fig. 5.9 shows adetailed diagram of the first stage. The cal cul ations described
above are summarized in Tab. 5.2 on page 86. The total chip capacitance for the
first integrator is 76 pF, which for the selected process consumes an area of about
0.125 mm?. The estimated power consumption for the two integratorsis 25 mW.

5.2 Second Stage of the MASH ADC

The second stage of the cascaded 2-0 delta-sigma ADC is a multibit quantizer,
which mainly processes the quantization noise of the first-stage quantizer. To
provide the weighted difference between the input and the output of the first-stage
guantizer, an analog subtraction must be implemented. For the multibit quantizer
in this project, a 10-hit pipelined anal og-to-digital converter was chosen.

5.2.1 Analog Subtraction

In order to obtain the quantization noise from the first stage, it is necessary to
subtract the output of thefirst stage, v; [n], from the output of the second integrator,
yi2[n]. The subtraction is performed by the switched-capacitor circuit shown in
Fig. 5.10. Thecircuit isessentially an amplifier with two inputs. Again, correlated
double-sampling techniques are used to improve the performance. Since the %
noise isnot so important in this stage, the capacitors have avalue 16 times smaller
than the calculated for the first integrator. The circuit has the transfer function

Us(2) = mg (a Yia(2) + B Vi) 271 (5.16)
The capacitors implement the coefficients o, 5 and my as

moa = 03/01, and my ﬂ = 03/02. (517)

5.2.2 Multibit Quantizer

The second stageisjust amultibit quantizer. To implement this multibit anal og-to-
digital converter, the best option available for this project is a pre-existing 10-bit,
50-MHz pipelined converter, offered by Lucent. However, this poses a problem:
how to use a 50 MHz converter in a system which is supposed to run at fs =
100 MHZz? There are two possible solutions.

In order to obtain samples at 100 MHz, the system can use two of these
pipelined ADCs to form a time-interleaving converter. The circuit diagram is
shown in Fig. 5.11. One of the problems with time-interleaving converters is
the sensitivity to mismatch, which causes tones at submultiples of the number of
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Figure 5.10: Analog subtraction circuit providing the second-stage input s

channels [39]. It was observed from simulations that offset errors do not cause
any degradation in the SN R, and gain errors cause only negligible effects. This
is because the second-stage ADC is followed by a second-order differentiator
NTFy,4(z) which attenuates the distortions (detailsin Section 3.1.2).

The second solution, is based on a reduced sample-rate scheme, proposed in
[85]. It is more elegant but it needs some structural modifications. The circuit
diagramisshownin Fig. 5.12. The principleisbased on the interchange of blocks
between the modulator structure and the following third-order decimating filter.
The transfer function of the decimating filter is given by

1 /1 —2z7N\3

1) = (=) (-18)
It ispossibleto cancel part of the denominator of thisexpression withthe FIR filter
included after the analog-to-digital converter. Then, the remaining numerator (a

select
» Pipelined ADC
u2 10-bit @ 50-MHz <] V2
—— 3
» Pipelined ADC
10-bit @ 50-MHz

Figure 5.11: Time-interleaved 2 pipelined ADC implementing the second-stage
quantizer
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differentiator which only needs to perform calculations every N clock cycles)
allows a reduction of the clock rate. In particular, if N = 2, the ADC can work
at 50 MHz. If N is equal to the oversampling ratio OSR, the ADC needs to
run only at 12.5 MHz. At this speed, it is easier to get a higher resolution ADC,
and therefore ahigher SN R for the overall converter. The only drawback of this
method is that the quantization noise folds back to the baseband multiplied by a
factor of IV, which correspondsto a degradation of 3 dB (0.5 bit) for every octave.
However, such reduction is acceptable.
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Figure 5.12: MASH structure with reduced sample-rate requirement for the sec-
ond stage

5.3 Noise Leakage Compensation Logic

In order to reduce, and ideally eliminate, the first-stage quantization noise from
the global output v,,,[n] of the cascaded 2-0 delta-sigma ADC, one should process
digitally the weighted combination v,[n| of the output of the first stage v, [n]| and
the output of the second stage v, [n| by the first-stage quantization noise cancella-
tionlogic. Thiscancellation logic is basically formed by the digital compensation
filter NT F14(z) and the adaptive noise leakage digital compensation filter Lo (2)
(Fig. 4.2).

The simplified hardware implementation of the adaptive compensation filter
L¢(z) was aready described in Section 4.1.3. Each accumulator of the correlator
can be implemented as shown in Fig. 5.13. The multibit output signal v,,,[n] of the
MASH is converted to its two’s-complement representation whenever the +/—
lineishigh. The sign bits ﬁ gny;; are the output of the accumulators, and are used
to update the coefficients {* in the adaptive digital FIR filter Lo (z).

5.3.1 Test-Signal Generator

To update the coefficients T of L¢(z) adaptively, atest signa test[n| isinjected
into the first stage, before the first-stage quantizer (Fig. 4.1.b). The test signal
is created by a pseudo-random sequence generator, employing a maximal-length



94 Prototype Chip Design

+/-

Clock Reset

v,
@QD— Carryin I

ADDER

REGISTER

SLgNpit

MSB

Figure 5.13: Accumulator for the adaptive filter

Set

s Q@ s | Qas ] S Qs S, S S Qe test

fffff S| el el Hd P

Figure 5.14: 28-bit maximum-length sequence generator

feedback shift register [86]. The circuit is shown on Fig. 5.14. The generated
sequence repeats itself with period 7' = 2%/ f5, where N is the number of flip-
flops in the generator. This period should be long enough so that it doesn’t affect
the main signal. In order to get a period of at least 1 second at a clock rate of
fs = 100 MHz, it is necessary to have at least 27 flip-flops. The characteristic
equation for a 28-hit sequence generator is simpler than for a 27-bit sequence
generator, so a 28-bit sequence generator was chosen, raising the repetition period
to 2.7 seconds. Its characteristic equation isimplemented by

D;i = Qi1 Dy = Qo ® Q3 (5.19)

Thetest signal test[n] is obtained from Q). It is applied directly to the correlator,
and is used to drive the switches that connect the two analog test signal voltages
to theinput of quantizer in the first stage.

5.4 Circuit-Level Simulation Results

The circuits are being designed in a 0.25 xm CMOS process provided by Lucent,
for a3.3V power supply. The capacitorsareimplemented with astacked structure,
composed of 4 layers of metal and a polysilicon layer. The software package
used for the design is Design Framework-11, from Cadence. The circuits are first
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described and simulated at schematic level, using Analog Artist and SpectreS.
After confirmation of the required performance, the layout for each block isdrawn
and compared with the schematic for errors. The digital blocks are described only
at the schematic level. The operation isverified with adigital simulation tool such
as Verilog-XL. The layout for these blocks is then automatically generated by a
Place-&-Route tool.

Typical results achieved for the operational amplifiers used in the first stage
are summarized in Tab. 5.3. The operational amplifiers were readjusted through
simulation to meet the specifications for slow, nomina and fast process param-
eters. Also, the capacitors used in the design have bottom-plate parasitic values
which increase the capacitive loads by about 30%, and which were accounted for
in the simulations. It is interesting to note the excellent value obtained for the
phase margin. This value can be improved further by reducing the size of the cas-
code transistors, although thiswould have the side effect of reducing the available
signal swing. The simulated frequency response of the operational amplifier is
presented in Fig. 5.15, where most of the information summarized in Tab. 5.3 is
illustrated.

| Parameter | First opamp | Second opamp
Gain, Apc 55.3dB 59.9dB
Dominant pole 631.1 kHz 467.3 kHz
Unity-gain frequency, fi, 387.1 MHz 462.1 MHz
Non-dominant pole 6.42 GHz 3.94 GHz
Phase margin 95.3° 96.3°
Slew-rate, SR 520 V/us 398 V/us
Output swing (differential) 1.149V 1.098 V
Load capacitance, C;, 20 pF 3.6 pF
Power consumptionfor Vpp = 3.3V 26.4 mW 3.3 mw

Table 5.3: Opamp parameters for nominal process case

To simulate the comparator, an input step of 200 mV was applied to its main
differential pair, and compared against a zero threshold voltage. The transient
simulation, illustrated in Fig. 5.16, shows propagation times of 2.39 ns for the
rising edge, and 2.51 nsfor the falling edge. These values are at the output of the
first stage, before the flip-flop, and they are less than the maximum allowed time
of 5 ns. The propagation time of the flip-flop and the decoder logic have effect
only during phase .

Fig. 5.17 shows a Switcap simulation of the first-stage delta-sigma modul ator,
as presented in Fig. 5.9. The input signal was a sinewave with f = 3.125 MHz
and A, = 0.4 V. Thenetlist included an opamp DC gain of 50 dB. The system was
also simulated at the transistor level, but only with a bi-level quantizer, and with
an ideal common-mode feedback. In this case, the input-signal frequency was
f =1MHzanditsamplitude A, = 0.25 V (—12 dB). The resulting output signal
spectrum is shown in Fig. 5.18. The DC component present in the spectrum was
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due to the common-mode output voltage V-, = 1.65 V. Thislast smulation was
performed with low accuracy and isintended to illustrate only the functionality of
thefirst stage at the desired frequencies.

5.5 Conclusions

This chapter presented the design of the prototype chip, with an emphasis on the
issues raised by the target specifications.

For the first stage, it was seen that, to operate at the desired speed, a combi-
nation of correlated double sampling techniques with a simple opamp structure
can solve the problems caused by the limited gain-bandwidth product. Also, the
speed requirements of the quantizer were met by using a current-based approach,
combined with positive feedback, in the comparator.

For the second stage, two techniques were presented to solve the problem of
the limited sampling rate provided by the analog-to-digital converter. Also, the
implementation of the test signal generator, the correlator, and the FIR filter was
discussed near to logic-gate level.

Finally, the functionality of the designed blocks was illustrated with selected
simulations.
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Chapter 6

Conclusions and Future Work

Cascaded (MA SH) delta-sigma converters offer agood compromise between high
accuracy, robust stability and speed. However, they are very sensitive to analog
circuit imperfections.

In thisthesis, a cascaded 2-0 architecture with 1-1.5-bit first stage and 10-12-
bit second stage was investigated. It uses an adaptive digital FIR filter to reduce
the noise leakage due to the imperfect error cancellation. For on-line adapta-
tion, a pseudo-random test signal was injected into the first stage and a ssimplified
block-LM S algorithm, the sign-sign-block-1east-mean-square al gorithm, was used
to update the coefficients of the adaptation filter.

In order to achieve the best peak-S N R performance, both the structure and
the adaptive error correction of the MASH were investigated.

6.1 Improvements to the Previous Work

The basic theory and some design considerations of the adaptive digital correc-
tion method for cascaded delta-sigma analog-to-digital converters presented in
this thesis were developed under previous work [27], [28], [29], [30]; aso, a
working prototype of the integrated ADC was successfully fabricated and tested
[17], [31]. However, the reported effective results (signal-to-noise+distortion ra-
tio SNDR=75dB @ f3=62.5-kHz signal bandwidth) validated only the principle
of adaptive noise-leakage compensation, leaving open the question of how to im-
provethisinitial performance.

The current thesis deals with the improvements to this technique, and its ap-
plication in a very fast (sampling frequency fs=100 MHz, oversampling ratio
OS R=8-16, signa bandwidth f;=3-6 MHz) and high-accuracy (signal-to-noise
ratio SN R=13-15-bit) implementation. Such converters have wide applications
in high-speed instrumentation, high-definition video, imaging, radar and digital
communications.

In order to highlight the improvements made by the author in this thesis [18],
[34] to the previous design of Tao Sun [31], [17], abrief comparison is shown in
Tab. 6.1.
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2-0 MASH ADC structure
interstage coefficients « 3 mg my m; | improvement:
TS| 8 0 1/8 8 +1
PK| 8 2 1/2 2 -1|+46dBinSNR
first-stage resolution Ny improvement:
TS 1 bit
PK 1.5 bits +6dBinSNR
second-stage resolution N, observation:
TS 12 bits clocked at fs=1 MHz
PK 10 bits clocked at ££=50 MHz
Adaptive correction for the 2-0 MASH ADC
adaptation parameters M B T improvements:
TS| 5 215 16 bits
PK | 5 216 16 bits | 2dB lessripplein SNR
differentiator to Lo (2) 6 dB lessripplein SNR
test-signal amplitude Ay improvement:
TS 05V
PK 0.01V +3dBinDR
Implementation of the 2-0 MASH ADC
sampling frequency fs improvements:
TS 1 MHz
PK 100 MHz challenging circuit design;
100x larger B
second stage integration improvements in:
TS off-chip ADC
PK on-chip ADC noise, area, power
adaptive FIR filterL o (2) integration improvement:
TS off-chip adaptation
PK | on-chipadaptive Lo(z) | real-time ADC
Overall performance
accuracy versus speed SNR /B observation:
TS| 75dB 62.5 kHz measured result
PK | 84dB 6.25 MHz simulated result

Legend: TS — Tao Sun [17], [31]; PK —&er Kiss [18], [34]; SN R — signhal-to-noise
ratio; D R — dynamic rangefg — signal bandwidth;fs — sampling frequency;

Table 6.1: Improvementsto the previous design
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6.2 Original Contributions

This section is intended to summarize the original contributions made by the au-
thor in thisthesis.

1. Introduction

o Several high-performance ADCswere analyzed and compared. It turned
out that the ADC proposed in thisthesis has the highest figure of merit
FOM among these state-of-the-art data converters.

2. Single-Loop Delta-Sigma ADCs

o An overview of the basic concepts and operation of the single-loop
delta-sigma ADCs were presented in the first part of this chapter. De-
tailed calculations and original examples (supported by simulation re-
sults) were provided.

¢ Advanced delta-sigmaissues were analyzed in detail in the following
sections. First, the gain of single-bit and multibit quantizers was ana-
lyzed. It was concluded that in the linearized model of a delta-sigma
ADC, the gain of a multibit quantizer is defined by the position of
its threshold voltages if its output is also a digital sequence of multi-
bit words, and, on the other hand, the gain of a single-bit quantizer
is controlled by the feedback loop in such a way that the product of
gain factors becomes unity (a,a-b:k = 1). Second, it was demon-
strated that the DC gain of the signal transfer function ST F'(z) of a
delta-sigma ADC should be chosen to be 1.

o A 1.5-bit second-order delta-sigma ADC was designed at system level
in order to achieve the most aggressive quanti zation noise suppression
by a noise transfer function of NTF(z) = (1 — z~')%. The designed
modulator (N, = 1.5 bits, a; = }, a2 = 3, b = 1, b, = 3, and

ki, = 8) provides well-bounded interna voltages which prevent the

saturation of the opamps used in the integrators even if a small dither

(test) signal isinjected before the quantizer. This modulator serves as

the first stage in the adaptive 2-0 cascaded delta-sigma ADC.
3. Cascaded Delta-Sigma ADCs

¢ The structure of the cascaded delta-sigma modulator was investigated
in order to improve its dynamic range DR and peak-SN R perfor-
mances. The designed interstage coefficients (6 = 2, m; = —1, mg =
%, and m, = 2) provided 6-dB peak-S N R improvement compared
with the previous work. In addition, by using a tri-level quantizer
in the first stage, the usable input signal range was extended, which
in turn improved the achievable peak SN R by an additiona 6 dB.
Note that the tri-level quantizer offers a good trade-off between SN R
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performance and circuit complexity; as far as the author is aware, tri-
level quantizers were not used in other implementations of 2-0 MASH
ADCs.

o It was shown by simulations that the spectrum of the output of areal
cascaded delta-sigma ADC is dominated by a shaped version of the
first-stage quantization noise (called “ quantization noise leakage”) due
to theimperfect anal og circuits used in the implementation of the mod-
ulator.

4. Adaptive Digital Compensation for Cascaded 2-Q\> ADCs

¢ Theoretical analysis and extensive simulations both demonstrated that
the test signal should be a white and uniformly distributed noise in
order to optimize the adaptation process.

o The properties of the noise |eakage were studied in order to determine
the influence of the analog circuit imperfections on the performance
of the cascaded ADC, and to build an effective compensator. The
presented study indicated that a modification of the previously used
adaptive FIR filter can improve the performance. Specifically, a dif-
ferentiator was added to the compensation structure, which reduced
the ripple of the adaptation noise significantly by 6 dB. Also, by care-
fully choosing the parameters of the adaptation process (M — 1 = 5,
K = 2'% ~vo9prms = 1.5107°, and A; = 0.01 V), the ripple of the
adaptation noise was further reduced, to the very comfortable val ue of
1 dB, while the dynamic range dropped only by 0.5 dB from its ideal
value due to the small test signal.

o It was shown that the minimal order of the adaptive FIR filter is 3.
However, a5 order FIR filter has been implemented to accommodate
unforeseen effects.

¢ It was demonstrated that the proposed adaptive compensated 2-0 cas-
caded delta-sigma ADC provides a hardware-efficient and robust op-
eration.

5. Prototype Chip Design

¢ A 1.5-bit second-order switched-capacitor delta-sigma ADC was de-
signed at the transistor level, to be operated at a high speed of f5 =
100 MHz. The functionality of the first stage of the adaptive MASH
ADC was demonstrated by simulations.

¢ The on-chip implementation of the adaptive noise-leakage compensa-
tion digital filter L (z) was shown near to logic-gate level.

As outlined above, the optimization of the proposed adaptive compensated cas-
caded 2-0 delta-sigma architecture at this point is compl ete.

Based on a comparative analysis, it is believed that the cascaded 2-0 delta-
sigma structure was optimized for peak-S N R performance, while maintaining
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low-complexity implementation with a tri-level first stage. In addition, the de-
signed adaptive on-line noise-leakage compensation digital FIR filter requires a
relatively smple digital hardware, and it provides robust operation. Extensive
simulations predicted an achievable S N R=13-bit @ 6-MHz signal bandwidth op-
eration. Such a converter will be faster than any previous high-accuracy delta-
sigma ADC, asdemonstrated in Fig. 1.1.

6.3 Future Work

As afuture work, it would be an interesting project to apply the test-signal based
adaptive correction strategy to different cascaded delta-sigma structures. I1n addi-
tion, one could find other applications of the described method in other important
areas of mixed-mode circuit applications, where the presented on-line correction
technique would be useful. For example, a potential areaisthe digital correction
for DAC nonlinearities, where a digital test signal may be injected, and then the
signal itself, or aharmonic of it, adaptively cancelled in the digital domain.

Also, Section 4.3 can be considered as the outline of a new research project
to gain higher accuracy (16-bit) and larger bandwidth (12-MHz) than this thesis
has shown. Therefore, issues like the analog or digital correction of highly-linear
multibit DACs need to beinvestigated, and such circuits needsto be implemented.
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