CS325H: Analysis of Algorithms, Fall 2020
 Practice Problems 4

Problem 1. For each of the following statements, respond Ture, False, or Unknown.
(a) If a problem is decidable then it is in P.
(b) For any decision problem there exists an algorithm with exponential running time.
(c) $P=N P$.
(d) All NP-complete problems can be solved in polynomial time.
(e) If there is a reduction from a problem A to Circuit SAT then A is NP-hard.
(f) If problem A can be solved in polynomial time then A is in NP.
(g) If problem A is in NP then it is NP-complete.
(h) If problem A is in NP then there is no polynomial time algorithm for solving A.

Problem 2. A k-CNF formula is a conjunction (AND) of a set of clauses, where each clause is a disjunction (OR) of a set of exactly k literals. For example,

$$
(a \vee b \vee c \vee \neg d \vee \neg e) \wedge(\neg a \vee b \vee c \vee \neg x \vee \neg y) \wedge(\neg x \vee y \vee c \vee d \vee a)
$$

is a 5 -CNF. The k-SAT problem asks if a k-CNF formula is satisfiable. In class we saw that 3 -SAT is NP-hard. In contrast, 2-SAT is polynomially solvable, as it is mentioned in GA4.
(a) Show that 4-SAT is NP-Complete (For partial credit, specify all the statements you need to conclude that 4-SAT is NP-complete even if you cannot prove them).
(b) Describe a polynomial time algorithm to solve 1-SAT.

Problem 3. Consider the following problem, called BoxDepth: Given a set of n axis-aligned rectangles in the plane, how big is the largest subset of these rectangles that contain a common point?
(a) Describe a polynomial-time reduction from BoxDepth to MaxClique.
(b) Describe and analyze a polynomial-time algorithm for BoxDepth. [Hint: $O\left(n^{3}\right)$ time should be easy, but $O(n \log n)$ time is possible.]
(c) Why don?t these two results imply that $\mathrm{P}=\mathrm{NP}$?

Problem 4. Suppose you are given a magic black box that can determine in polynomial time, given an arbitrary graph G, whether G is 3 -colorable. Describe and analyze a polynomial-time algorithm that either computes a proper 3-coloring of a given graph or correctly reports that no such coloring exists, using the magic black box as a subroutine. [Hint: The input to the magic black box is a graph. Only a graph. Vertices and edges. Nothing else.]

Problem 5. The problem 12 -coloring is defined as follows: Given an undirected graph G, determine whether we can color each vertex with one of twelve colors, so that every edge touches two different colors. Prove that 12-coloring is NP-hard. [Hint: Reduce from 3-coloring.]

