Summary

<table>
<thead>
<tr>
<th>Unit 0</th>
<th>Review as needed to get ready for class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practice</td>
<td>Videos: Course designer video introduction, Binary example, Interactive questions, Doubling search, Doubling search pseudocode, Animation of recursive merge sort, Reading: Section 2.2 of Algorithms by Sedgewick and Wayne, Practice: play Robozzle, after getting used to the game try puzzles 330, 536, 656, and 1033,</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit 1, Week 1 (3/31 - 4/6)</th>
<th>Is it correct? (by induction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assigned P0, D1.1</td>
<td>Reading: JEL "98 Introduction"</td>
</tr>
<tr>
<td>Assigned Coursework:</td>
<td>Project0 (TEACH access) assigned, Discussion-based questions D1.1, Question 1: water-gun induction, Question 2: internal nodes and leaves,</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit 1, Week 2 (4/7 - 4/13)</th>
<th>Is it correct? (by contradiction)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assigned D1.2</td>
<td>Reading: Section 5.1 of DPV, Interactive Tutorial: Contradiction, Video: MST correctness, Video: Boruvka algorithm,</td>
</tr>
<tr>
<td>Assigned Coursework:</td>
<td>Discussion-based practice questions 1.2, Question: unique MST, Question: question 5.9 from DPV (on page 162 of Chapter 5 of DPV),</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Unit 2, Week 3 (4/14 - 4/20)</th>
<th>Run-time Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assigned P1, D2</td>
<td>Project 1: Max Subarray, due: 4/27,</td>
</tr>
</tbody>
</table>
Unit 3, Week 4 (4/21-4/27)
Recurrence Relations and Divide and Conquer

Assigned D3

- **Video:** Plotting in Matlab ? loglogplots,
 File created: loglogplots.m
- **Reading:** Chapter 0 of DPV,
 Khan Academy: Logarithms,
 Interactive Tutorial: Big Oh, Summary of Asymptotic Notation,
 Video: big-Oh vs. big-Theta,
- **Assigned Coursework:**
 - Discussion-based practice questions 2,
 - Question: Show \(\log(n!) = \Theta(n \log n) \),
 - Question: Show \(\sum_{i=1}^{n} \frac{1}{n} = \Theta(\log n) \),

Unit 4, Week 5 (4/28-5/4)
Dynamic Programming

Assigned P2, D4

- **Video:** Make Postage Recurrence,
 Video: Binary Search Recurrence,
 Reading: JEL 1.5-1.8,
 Video: Recursive Multiplication,
 Khan Academy: Computing a Geometric Series,
 Interactive Tutorial: Power Series
 Video: Finishing Up Recursive Multiplication,
 Interactive Tutorial: General Recurrence,
- **Assigned Coursework:**
 - Discussion-based practice questions 3,
 - Question: 2.5 from DPV (on p83 of Chapter 2 of DPV),
 (All of the parts, rather than just parts a and b)
 - Questions related to STOOGESORT,
 - Question about some binary tree orderings,
 - Question related to Tree-ify (pre, post) algorithm,
 - Anything else to say about Project 1?

Exam 1

Be sure to schedule your first exam for sometime during week 5!

Unit 5, Week 6 (5/5-5/11)
Linear Programming

Assigned D5

- **Video:** Introduction to DP Video,
 Interactive Tutorial: Fibonacci DP,
 Read: DPV Chapter 6 (section 6.2),
 Interactive Tutorial: Longest Increasing Sequence,
 Video: LIS Run Time Top Down,
 Read: DPV Chapter 6 (section 6.4),

- **Assigned Coursework:**
 - Discussion-based practice questions 4,
 - Question about longest increasing subsequence,
 - Question about modified knapsack,
 - Question about dynamic programming for a specific task,

Exam 2

Be sure to schedule your second exam for sometime during week 6!
Interactive Tutorial: Simple LP,
Reading: Bicycle-Problem PDF,
Video: Bicycle Problem Setup,
Video: Bicycle Problem Matlab,
Video: Bicycle Problem Polyhedron,
Reading: Section 7.2 of DPV,
Video: Shortest Paths LP,

Assigned Coursework:
Discussion-based practice questions 5,
Consider a couple problems (problems 1 and 2),
Exercise 7.2 in Algorithms (problem 3 on the forums),
Exercise 7.29 in Algorithms (problem 4 on the forums),

<table>
<thead>
<tr>
<th>Unit 6, Week 7 (5/12-5/18)</th>
<th>Computational Complexity: Complexity classes</th>
</tr>
</thead>
</table>
| Assigned P4, D6.1 | Video: Intro to Complexity,
Reading: Undecidable Problems,
Reading: An Undecidable Problem, the Halting Problem,
Reading: Story of Sissa and Moore-Chapter 8 of DPV,
Interactive Tutorial: Polynomial Time and Exponential Time,
Reading: Sorting Lower Bound-Chapter 2 of DPV,
Video: Sorting Lower Bound,
Video: Non-Determinism, Certificates, NP and P vs NP,
Video: Overview of P, NP, computable, TM, etc-Venn diagram,

Assigned Coursework:
Discussion-based practice questions 6.1,
Exercise 2.2 in DPV,
Show that some problems are in NP,

<table>
<thead>
<tr>
<th>Unit 6, Week 8 (5/19-5/25)</th>
<th>Computational Complexity: NP-completeness and reductions</th>
</tr>
</thead>
</table>
| Assigned D6.2 | Video: A working definition of NP-hard,
Reading: Section 29.3 and 29.5 of JEL,
Video: Reduction,
Interactive Tutorial: Decision Search Optimization,
Reading: DPV Chapter 8,
Interactive Tutorial: NP v NP-hard,
Video: TSP is NP-hard,

Assigned Coursework:
Discussion-based practice questions 6.2,
Question about Experimental cuisine,
Exercise 8.10 in DPV,

<table>
<thead>
<tr>
<th>Unit 6, Week 9 (5/26-6/1)</th>
<th>Computational Complexity: Project four: TSP</th>
</tr>
</thead>
</table>
| Assigned Finish TSP | Complete work on unit 6 materials,
Complete TSP project,

Week 10 (6/2-6/8) Review and complete project four (TSP)

Assigned: Study for exam
Discuss topics, discussion questions and projects,
Alterations to TSP might be allowed,

Assigned Finish TSP
Complete work on unit 6 materials,
Complete TSP project,

Week 10 (6/2-6/8) Review and complete project four (TSP)

Assigned: Study for exam
Discuss topics, discussion questions and projects,
Alterations to TSP might be allowed,