
Computational Topology in a Collapsing Universe: Laplacians, Homology,
Cohomology∗

Mitchell Black† William Maxwell† Amir Nayyeri† Eli Winkelman†

Abstract

We consider a variety of topology problems on a d-dimensional simplicial complex K given that K ⊂ X
for X a collapsible simplicial complex embedded in Rd+1 with known collapsing sequence.

Our first result is a solver for the linear system L1x = b, where L1 is the 1-Laplacian of a simplicial
complex K with dimH1(K) = 0 and K ⊂ X for X a collapsible simplicial complex embedded in R3 with
a known collapsing sequence. Our algorithm runs in Õ(n log2(nκ/ε)) time, where n is the total number of
vertices, edges, and triangles in X, κ is the largest condition number of the two parts of the Laplacian, and
ε quantifies the approximation quality. This result is a generalization of Cohen et al. [SODA 2014]. The new
technical piece of our Laplacian solver, in addition to the machinery described by Cohen et al., is an algorithm
to compute a bounding chain of a 1-cycle within K.

In addition, we describe faster algorithms for testing null-homology of (d− 1)-cycles and null-cohomology
of d-cocycles. Our algorithm runs in O(nd) time, where nd is the number of d-simplices in X.

Finally, we describe an algorithm to compute a (d − 1)-cohomology basis from a given (d − 1)-homology
basis for a d-simplicial complex K in O(βd−1nd) time; βd−1 is the rank of the (d− 1)st homology group of K.
In particular, we can obtain a cohomology basis for subcomplexes of a collapsible complex X embedded in R3

in O(nd lognd + βd−1n) time using a homology basis computed by the algorithm of Dey [SODA 2019].
For all of the problems above, if K ⊂ R3 and the collapsible supercomplex X is not provided, we can

expand K into a convex ball of possibly quadratic complexity, which is known to be collapsible, resulting in
nearly quadratic time algorithms.

∗This research was supported in part by NSF grants CCF-1941086, CCF-1816442, and CCF-1617951.
†Oregon State University.

1 Introduction

Efficiently solving a linear system, Ax = b, is the central problem in numerical linear algebra. On one hand, we
have direct solvers built on Gaussian elimination. These solvers are exact, yet with their super-quadratic running
time, they are not sufficiently fast for many applications. On the other hand, we have iterative solvers that produce
approximate solutions but are much faster, especially for sparse matrices. These solvers work through several
iterations, each composed of a constant number of matrix-vector multiplications. Hence, their running time is
bounded by O(m · t), where m is the number of nonzero elements in A, and t is the number of iterations required
to achieve the desired accuracy. Ideally, we want iterative algorithms that converge in polylog(m) iterations to
obtain nearly linear time solvers.

As a result of decades of research [29, 3, 26, 27, 2, 4, 25, 13, 23], we have nearly linear time solvers when A is
the Laplacian of a graph. Based on these Laplacian solvers, we obtain nearly linear time solvers for the broader
class of symmetric diagonally dominant matrices: matrices A where A = AT and the value of every diagonal
entry of A is larger than the sum of the absolute values of all other entries on the same row. Fast graph Laplacian
solvers are applied to solve elliptic partial differential equations (PDEs) [5].

The success of graph Laplacian solvers motivates research towards faster solvers for a similar, yet more general,
classes of matrices: combinatorial Laplacians. Such solvers would pave the way for obtaining more efficient solvers
for more general PDEs like those involving the vector Laplacian. Moreover, they provide insights for solving classes
of matrices that are not diagonally dominant.

Let K be a simplicial complex composed of vertices, edges, triangles, tetrahedra, and higher dimensional
simplices. There is a sequence of matrices associated with K called combinatorial Laplacians. The dth matrix in
this sequence acts on vectors that assign values to the d-dimensional simplices and is defined as

Ld = ∂d+1∂
T
d+1 + ∂Td ∂d,

where ∂d is the dth boundary matrix of K. The first matrix in this sequence, L0, is composed of a constant map
∂T0 ∂0 and the known graph Laplacian ∂1∂

T
1 , with ∂T1 being the incidence matrix of an arbitrary orientation of the

graph. The 1-Laplacian, L1 is the sum of ∂T1 ∂1 and ∂2∂
T
2 . The former is composed of the same matrices of the

graph Laplacian but in different order, and techniques from graph Laplacian solvers can be used to solve systems
involving it. The latter, however, includes a higher dimensional boundary matrix, ∂2, a matrix that captures the
incidence relation between triangles and edges of the complex. Solving a system with this matrix requires more
novel techniques. The Figure below shows two examples of applying ∂1∂

T
1 (the graph Laplacian), and ∂2∂

T
2 , on

the left and right side, respectively.

Laplacian solvers. In this paper, among other problems, we study solvers for 1-Laplacians, the second
matrix in the sequence of combinatorial Laplacians.

Cohen et al. [12] initiated the study of 1-Laplacian solvers by describing a nearly linear time solver provided
that the input complex K is collapsible and embedded in R3. In particular, their solver works for a piecewise
linear triangulation of a convex ball in R3, which is known to be collapsible. Being the first work on this subject,
the algorithm is restrictive as it requires the collapsing sequence of K, which is NP-hard to compute in general.
The algorithm cannot produce any solution if a collapsing sequence of K is not known, even if K is very similar
to a collapsible complex, for example where K is an almost convex ball.

In this paper, we study the case that K is embedded, not necessarily collapsible, but can be extended into a
collapsible complex X. Our solvers work in nearly linear time with respect to the complexity of X.

Theorem 1.1. Let X be a collapsible simplicial complex with a known collapsing sequence embedded in R3, and
let K ⊂ X such that H1(K) = 0. For any ε > 0, there is an operator LaplacianSolver(X,K, ε) such that

(1− ε)(L1[K])+ � LaplacianSolver(X,K, ε) � (L1[K])+.

where (L1[K])+ is the pseudoinverse of the 1-Laplacian L1[K]. Further, for any x ∈ C1,
LaplacianSolver(X,K, ε) · x can be computed in Õ(n log2(nκ/ε)) time, where n = n0 + n1 + n2 is the total
number of vertices, edges and triangles in X, and κ is the condition number of Lup1 [K] within the space of bound-
ary cycles.

In comparison with the work of Cohen et al. [12], the new technical contribution of this paper is a nearly linear
time algorithm for computing a bounding 2-chain of a boundary 1-chain in K (Lemma 3.9). All other pieces work
as described by Cohen et al. We include a slightly modified presentation of some of their results in the Section 4
to be self sufficient.

In principle, K can always be extended to a piecewise linear convex ball, which is known to be collapsible
and whose collapsing sequence can be computed in linear time. The complexity of this ball can be quadratic in
worst case resulting in the following corollary. One can view this corollary as an algorithm whose running time
depends on how non-convex K is; our algorithm is faster if K extends to convex ball by adding fewer simplices.

Corollary 1.1. Let K be a simplicial complex embedded in R3 with H1(K) = 0. For any ε > 0, there is an
operator LaplacianSolver(K, ε) such that

(1− ε)(L1[K])+ � LaplacianSolver(K, ε) � (L1[K])+.

Further, for any x ∈ C1, LaplacianSolver(K, ε) · x can be computed in Õ(n2 log2(nκ/ε)) time, where n =
n0 + n1 + n2 is the total number of vertices, edges and triangles in K, and κ is the maximum of the condition
number of Lup1 [K] within the space of boundary cycles and the condition number of Ldown1 [K] within the space of
coboundary cycles.

Testing homology/cohomology. Laplacian matrices are defined using the boundary matrices, ∂d.
Computation with boundary and coboundary matrices is key in any computational problem about homology.
Perhaps the most basic problem of this kind is to decide whether a cycle is null-homologous or whether a cocycle
is null-cohomologous. To test the null-homology for a cycle γ, one needs to solve ∂dx = γ, or more accurately
decide if this system of equations has a solution. For testing null-cohomology, one needs to solve a similar linear
system. The general algorithm for solving these problems have running times of O(nω). Faster algorithms exists
only for very restrictive families of complexes like surfaces. In this paper, we study testing homology in d-simplicial
complexes K assuming that K is contained in a collapsible (d + 1)-complex X in Rd+1. We obtain linear time
testers with respect to the size of X for testing homology of (d− 1)-cycles and d-cocycles.

Corollary 1.2. Let X be a collapsible (d+ 1)-simplicial complex embedded in Rd+1, and let K ⊂ X. There is
an O(nd) time algorithm for deciding if a (d− 1)-cycle of K is null-homologous (in K), where nd is the number
of d-simplices in X.

Corollary 1.3. Let X be a collapsible (d+ 1)-simplicial complex embedded in Rd+1, and let K ⊂ X. There is
an O(nd) time algorithm for deciding if a d-cocycle of K is null-cohomologous (in K), where nd is the number of
d-simplices in X.

For d = 2, we obtain a quadratic time testers with respect to the size of K, even if X is not provided, by extending
K into a super complex that is convex, thus collapsible.

Computing Cohomology Basis. Computing bases for homology and cohomology is a fundamental problem
in computational topology. In contrast to computing homology ranks, not much is known about computing
homology bases beyond the general linear algebraic algorithm that involves matrix multiplication, so requires
Ω(nω) time [6]. For complexes embedded in R3, Dey [15] describes an algorithm for computing a Z2-homology

basis in O(n log n + k) time, where k is the size of the output. Dey’s algorithm implies that an R-homology
basis can be computed in the same running time. Dey proposes computing a cohomology basis efficiently as an
open problem. Within the setting of this paper, we show that a cohomology basis can be computed within the
same asymptotic time bound as Dey’s algorithm. In fact, we show for any d and within our setting, there is an
algorithm for computing a cohomology basis from a given homology basis. This result holds for both Z2-homology
and R-homology.

Lemma 1.1. Let X be a collapsible (d+ 1)-simplicial complex embedded in Rd+1, and let K ⊂ X. Also, let Γ =
{γ1, . . . , γβd−1

} be a homology basis for Cd−1(K). There is a linear operator C such that CΓ = {Cγ1, . . . , Cγβd−1
}

is a cohomology basis for Cd−1(K). Further, CΓ can be computed in O(βd−1 · nd) time, where nd is the number
of d-simplices in X and βd−1 is the rank of the (d− 1)st homology group of K.

Therefore, by Dey’s result, we obtain the following corollary for the case d = 2.

Corollary 1.4. Let K be a simplicial complex embedded in R3, there is an O(n2 log n) time algorithm to compute
a cohomology basis for K.

Paper Organization. We give a brief overview of the related work in the rest of this section. In Section 2,
we define basic concepts and notations used throughout the paper. In Section 3, we describe our algorithm for
finding a bounding d-chain of a (d− 1)-boundary cycle. In Section 6, we describe our algorithm for computing a
cohomolgy basis, provided a homology basis. Finally, in Section 4, we describe our 1-Laplacian solver.

1.1 Related Work
Laplacian Solvers. The conjugate gradient method can be used to solve a Laplacian linear system in O(mn)

time, where m is the number of nonzero entries of a matrix and n is its size. Vaidya [31] showed that minimum
stretch spanning trees are good preconditioners for graph Laplacians. Following his observation, a long sequence
of significant results resulted in nearly linear time solvers for graph Laplacians [29, 3, 26, 27, 2, 4, 25, 13, 23].
These solvers have been applied to a series of other problems, for example problems in algorithm design [32], and
solving elliptic PDEs [5].

Cohen et al. [12] describe the first nearly linear time solvers for 1-Laplacians of collapsible complexes. In this
paper, we show a similar result for a subcomplex of a collapsible complex.

Homology. Testing whether a cycle is null-homologous, or equivalently whether two cycles are homologous,
is a fundamental problem in computational topology. The problem reduces to solving a linear system, thus can
be solved in O(nω) time in general, where ω is the matrix multiplication constant. For surfaces of constant genus,
testing homology can be done in nearly linear time, for example by constructing a tree cotree structure [18, 19].
Testing homology for a collapsible complexes is a trivial problem, as all cycles are null-homologous. In this
paper, we show linear time algorithms provided a collapsible super complex (with respect to the size of the super
complex). Also, we show nearly quadratic time algorithms for embedded 2-complexes in R3.

From the technical point of view, Delfinalo and Edelsbrunner’s incremental algorithm for computing Betti
numbers [14] is similar to our homology testing algorithm as it iteratively removes edges from the dual graph;
however, the two algorithms have different objectives and use different properties of the dual graph. Dey and
Guha [16] show a topological algorithm for computing Betti numbers. Friedman [20] uses power methods to find
out the multiplicity of the zero eigenvalue of the Laplacian matrices, which are equal to the Betti numbers.

2 Preliminaries

In this section, we review standard concepts from linear algebra and algebraic topology used in this paper. For
further background we refer the reader to references [7, 22, 30, 21].

Linear Maps. A linear map A : Rm → Rn can be represented by an n ×m matrix; we use A to refer to
the linear map and the matrix. The kernel of A, denoted ker(A), is the subset of Rm that A maps to zero. The
image of A, denoted im(A), is the subset of Rn composed of all vectors Ax for x ∈ Rm. Further, ker⊥(A) is
composed of all vectors in Rm that are perpendicular to ker(A). Similarly, im⊥(A) is the set of all vectors in Rn
that are perpendicular to im(A). The Fundamental Theorem of Linear Algebra says that im⊥(A) = ker(AT) and
ker⊥(A) = im(AT) where AT is the transpose of A.

Let W be a vector subspace of Rn, and let W⊥ be the subspace of all vectors perpendicular to W . Any vector
x ∈ Rn can be uniquely decomposed as x = xW + xW⊥ , where xW ∈ W and xW⊥ ∈ W⊥. In this case, we write

Rn = W⊕W⊥. In particular, for any n×m matrix A, we have Rm = ker(A)⊕ker⊥(A), and Rn = im(A)⊕im⊥(A).
The Fundamental Theorem of Linear Algebra implies that the restriction of A to the ker⊥(A) is a one-to-one map
between ker⊥(A) and im(A). We use this basic property many times in this paper.

A projection matrix Π is a matrix such that Π2 = Π. A projection matrix is orthogonal if and only it it
is symmetric, that is ΠT = Π. For a vector subspace W , the projection onto W is the orthogonal projection
ΠW with im(ΠW) = W . For any x = xW + xW⊥ , ΠWx = xW .

For fixed m and n, any vector norm || · || in Rn implies a matrix norm on n × m matrices A defined as
||A|| = sup{||Ax||/||x|| : x ∈ Rm}. In this paper, we only use 2-norm of matrices, arising from the 2-norm of
vectors.

A symmetric matrix A is positive semidefinite if for all x ∈ Rn, we have xTAx ≥ 0. The Loewner order
is a partial order on n × n symmetric matrices. For two such matrices A and B, we say A � B if and only if
B −A is positive semidefinite.

The pseudoinverse of a matrix A, denoted A+, is the unique matrix such that (i) AA+A = A, (ii)
A+AA+ = A+, (iii) (AA+)T = AA+, and (iv) (A+A)T = A+A. One inconvenience with the algebra of the
pseudoinverse matrices is that the relation (AB)+ = B+A+ does not generally hold. However, it holds provided
certain conditions; in particular, (AAT)+ = (AT)+A+. Finally, we find the following standard lemma (see for
example Campbell [7], Theorem 3.1.1) useful in computing the pseudo-inverse of the 1-Laplacian.

Lemma 2.1. For symmetric matrices A,B, if ATB = BTA = 0 then (A+B)+ = A+ +B+.

Simplicial Complexes A simplicial complex is a set K such that (1) each element of K is a finite set
and (2) for each τ ∈ K, if σ ⊂ τ , then σ ∈ K. An element of K is a simplex. For simplices σ ⊂ τ , we say that
σ is a face of τ , and τ is a coface of σ. The simplices σ and τ are incident. Two d-simplices τ1 and τ2 are
adjacent if τ1 ∩ τ2 is a (d− 1)-simplex. The vertices of K are the set ∪σ∈Kσ. We assume there is a fixed but
arbitrary order (v1, . . . , vn) on the vertices of K.

A simplex σ ∈ K of size |σ| = d+1 is a d-simplex. A 0-simplex is a vertex, a 1-simplex an edge, a 2-simplex
a triangle, and a 3-simplex a tetrahedron. The set of all d-simplices of K is denoted Kd. The d-skeleton of
K is Kd = ∪di=0Ki. The dimension of K is the largest d such that K contains a d-simplex; a 1-dimensional
simplicial complex is a graph.

A simplicial complex defines an underlying topological space. We omit the exact construction for space,
but it can be found in most books on algebraic topology, e.g. [17, 21]. The idea is each simplex is a topological
space, and the entire space is all the simplices “glued together.” Let X be a topological space. A triangulation
of X is a simplicial complex T such that the underlying topological space of T is homeomorphic to X.

Homology. The dth chain group Cd(K) is the vector space over R with orthonormal basis Kd. An element
of Cd(K) is a d-chain. The support of a d-chain c is supp(c) = {σ ∈ Kd | c[σ] 6= 0}. Let σ = {vi0 , . . . , vid} be a

d-simplex in K with vij ≤ vik whenever j ≤ k. The boundary of σ is the (d−1)-chain ∂σ =
∑d
j=0(−1)jσ \{vij}.

The dth boundary map is the linear map ∂d[K] : Cd(K) → Cd−1(K) defined ∂d[K]f =
∑
σ∈Kd f(σ)∂σ. An

element in ker(∂d[K]) is a cycle, and an element in im(∂d[K]) is a boundary or a null-homologous cycle.
The dth coboundary map is ∂Td+1[K] : Cd(K)→ Cd+1(K). To simplify the notation, sometimes we denote the

coboundary map by δd; so, δd = ∂Td+1. An element of ker(∂Td+1[K]) is a cocycle, and an element in im(∂Td [K]) is
a coboundary or a null-cohomologous cocycle.

The boundary maps have the property that ∂d[K] ◦ ∂d+1[K] = 0, so im(∂d+1[K]) ⊂ ker(∂d[K]). The dth

homology group is the quotient group Hd(K) = ker(∂d[K])/ im(∂d+1[K]). The dth Betti number βd is the
dimension of Hd(K). The dth cohomology group is the quotient group Hd(K) = ker(∂Td+1[K])/ im(∂Td [K]).

The dth Laplacian is Ld[K] = ∂d+1[K]∂Td+1[K] + ∂Td [K]∂d[K]. The dth up Laplacian is Lupd =

∂d+1[K]∂Td+1[K], and the dth down Laplacian is Ldownd = ∂Td [K]∂d[K].
Collapsibility A simplex σ ∈ K is free if σ is the face of exactly one other simplex τ . A collapse at a

free simplex σ is the removal of σ and τ , resulting in the complex K ′ = K \ {σ, τ}. The complexes K and K ′

are homotopy equivalent. A simplicial complex K collapses to a subcomplex L if there is a nested sequence
of subcomplexes L = K(m) ⊂ K(m−1) ⊂ · · · ⊂ K(0) = K such that each K(i) is obtained from K(i − 1)
by collapsing some free simplex σi; the sequence L = K(m) ⊂ K(m−1) ⊂ · · · ⊂ K(0) = K is a collapsing
sequence. A complex K is collapsible if K collapses to a single vertex. As homology is preserved by homotopy
equivalence, then the homology of a collapsible complex K is the same as a single vertex; namely, H0(K) = R
and Hi(K) = 0 for i > 0.

Embedded Complexes and Dual Graphs Let K be a d-dimensional simplicial complex. The complex K
is embedded if K ⊂ R for a triangulation R of Rd+1. Equivalently, K is embedded if K ⊂ S for a triangulation
S of Sd+1, the (d+ 1)-sphere. A key property of embedded complexes is the dual graph. We first give an informal
geometric definition of the dual graph to provide intuition. We then give a formal algebraic definition of the dual
graph: the Lefschetz set.

The dual graph of K is defined as follows. The vertices of the dual graph are the connected components of
S \ K in the underlying space. The edges of dual graph are in one-to-one correspondence with the d-simplices
of K. The endpoints of the edge corresponding to the d-simplex σ are the two (possibly the same) connected
components incident to σ. In particular, the (d+ 1)-sphere Sd+1 has a dual graph with vertices corresponding to
its (d+ 1)-simplices.

A corollary of the Alexander Duality Theorem [21, Corollary 3.45] is that Hd(K) ⊕ R ∼= H0(S \ K). The
dimension of the 0th homology group counts the number of connected components of a space, so S \K has βd + 1
connected components. The fact that the number of vertices of the dual graph is the number of d-cycles of K
plus one suggests a connection between the dual graph and the d-cycles of K. In fact, we can alternatively define
the dual graph with vertices corresponding to d-cycles of K, rather than connected components of Sd+1 \K. A
Lefschetz set for K is a set of βd + 1 d-cycles V such that (1) V generates Hd(K), (2) each d-simplex is in the
support of zero or two elements of V , and (3) if a d-simplex σ is in the support of two elements v1, v2 ∈ V , then
v1(σ) = −v2(σ) = ±1. 1

A Lefschetz set for an embedded complex K can be found from a dual graph of K by taking V to be the
coboundaries of the dual vertices. Conversely, a Lefschetz set defines a graph. It is easy to verify that the matrix
MV with columns that are a Lefschetz set V is actually the 0-coboundary matrix of a graph. We call this graph a
dual graph, even if the Lefschetz set didn’t arise from an embedding. A dual graph arising from a Lefschetz set is
not necessarily a dual graph that is defined by an embedding of K; yet, the conditions placed on the dual graph
by the definition of a Lefschetz set are sufficient for our purposes. We will overload notation and use elements of
the Lefschetz set to refer to dual vertices and their coboundaries.

3 Solver for boundary cycles

Let X be a (d+1)-dimensional collapsible simplicial complex embedded in Rd+1 with a known collapsing sequence,
and letK be a d-dimensional subcomplex ofX. In this section, we describe an algorithm for computing an operator
U : Cd−1[K] → Cd[K] such that for any boundary x ∈ im(∂d[K]), ∂d[K]Ux = x. That is, U maps a (d − 1)-
dimensional boundary x in K to a d-chain in K whose boundary is x. In particular, this result implies a linear
time algorithm for testing homology provided the collapsing sequence of X. For the case d = 2 we can compute
the operator for any simplicial complex K by extending it to a collapsible simplicial complex in nearly quadratic
time.

Our operator U is the composition of three operators, U = S(X,K) ◦ F (X) ◦N(K,X):

(i) The Include operator N(K,X) : Cd−1[K]→ Cd−1[X]: For a (d− 1)-chain x ∈ Cd−1(K) and for any σ ∈ X,
(N(K,X)x)[σ] = x[σ] if σ ∈ K and (N(K,X)x)[σ] = 0 otherwise.

(ii) The Fill operator F (X) : Cd−1[X]→ Cd[X]: For any (d− 1)-cycle in X, ∂d[X]F (X)y = y. This is basically
a boundary solver within the collapsible complex X.

(iii) The Squeeze operator S(X,K) : Cd[X] → Cd[K]: Given a d-chain in X whose boundary is in K, this
operator returns a d-chain in K with the same boundary if such a chain exists.

The Include operator is trivial to compute. The Squeeze operator is described in Section 3.1. The Fill operator
was found by Cohen et al. [12] and is described in the following Lemma. This is the only operator of the three
that requires collapsibility of X. The running time of the algorithm of Cohen et al. is linear with respect to the
length of the collapsing sequence. Since, we consider embeddable X, we can bound the running time by O(nd).

1Lefschetz originally defined these sets in graphs; the existence of a Lefschetz set is a necessary and sufficient criterion for planarity
in graphs [28]. In higher dimensions, the existence of a Lefschetz set is a necessary but not sufficient condition for embeddability. The

real projective plane RP 2 is a counter example: it can be represented by a 2-dimensional simplicial complex and is not embeddable
in R3. The 2nd homology of RP 2 is H2(RP 2) = 0, so RP 2 has a trivial Lefschetz set containing only the zero vector.

Lemma 3.1. (Cohen et al. [12], Theorem 5.2) Let X be a (d+ 1)-simplicial complex embedded in Rd+1 that
collapses into its (d− 1)-skeleton via a known collapsing sequence. There is an O(nd) time algorithm to compute
the operator F (X) : Cd−1[X] → Cd[X], such that for any y ∈ im(∂d[X]), ∂d[X] · F (X) · y = y, where nd is the
number of d-simplices in X. Further, for any y ∈ Cd−1[X], F (X) · y can be computed in O(nd) time.

Proof. Cohen et al. show that the operator F (X) exists and that the running time of the algorithm is linear with
respect to the length of the collapsing sequence. We show that the length of the collapsing sequence is O(nd) for
an embeddable complex X in Rd+1.

The collapsing sequence is a sequence of nested subcomplex Xd−1 = X(m) ⊂ X(m − 1) ⊂ · · · ⊂ X(0) = X
where each X(i) is the result of an elementary collapse on X(i−1). An elementary collapse is defined the removal
of simplex σi ∈ X(i− 1) \X(i) and one of σi’s face. The simplices σi must always be d- or (d+ 1)-simplices, so
the length of the collapsing sequence is O(nd + nd+1).

On the other hand, each (d+1)-simplex of X is the coface of the (d+2) d-simplices in its boundary. Conversely,
each d-simplex is the face of at most two (d+1)-simplices, as X is embeddable in Rd+1. Hence, (d+2)nd+1 ≤ 1

2nd,
which implies O(nd + nd+1) ∈ O(nd).

3.1 The Squeeze Operator Now we describe the Squeeze operator, which for a d-chain x in X with boundary
in K returns a d-chain in K with the same boundary if possible. Hence, it “squeezes” x into K.

Lemma 3.2. Let X be a (d+ 1)-simplicial complex embedded in Rd+1 such that Hd(X) = 0, and let K ⊂ X. Let
nd be the total number of d-simplices of X. There is an operator S(X,K) : Cd[X] → Cd[K] such that for any
x ∈ Cd[X] with the following properties,

(i) ∂d[X] · x is zero on X\K, and

(ii) ∂d[X] · x is null-homologous in K,

we have ∂d[X]x = ∂d[K]S(X,K)x. Further, for any y ∈ Cd[X], S(X,K)y can be computed in O(nd) time.

Let χ = ∂d[X] ·x. In Section 3.1.1, we describe the Squeeze algorithm that tests whether χ is null-homologous
in K: if it is, the algorithm computes a chain in Cd[K] with boundary χ, otherwise, it rejects. In Section 3.1.2,
we give bounds on the time complexity of this algorithm. In Section 3.1.3, we show that this algorithm (with one
small modification) is the linear operator described in Lemma 3.2.

3.1.1 Algorithm The Squeeze algorithm uses a Lefschetz set for Xd. We prove such a set exists and is easily
computable in Lemma 3.4. To prove this, we need a lemma about (d+ 1)-spheres.

Lemma 3.3. Let S be a simplicial complex homeomorphic to (d+ 1)-sphere. There is a (d+ 1)-cycle c on S such
that c[τ] = ±1 for each τ ∈ Sd+1.

Proof. We begin with two observations. First, the d-skeleton Sd is an embedded complex, and each d-simplex in
S is the face of exactly two (d+ 1)-simplices. Second, because Hd+1(S) = R, there is a non-zero (d+ 1)-cycle c′

for S. We will show that c′ = kc for some k ∈ R.
Consider a (d + 1)-simplex τ ∈ Sd+1 such that c′[τ] = k 6= 0. For each face σ of τ , the value of

∂c′[σ] = 0. There is one other (d + 1)-simplex τ ′ with σ as a face, so we conclude that c[τ ′] = ±k as
∂c′[σ] = c′[τ]∂τ [σ] + c[τ ′]∂τ ′[σ] = 0; the sign is positive if ∂τ [σ] = −∂τ ′[σ] and negative if ∂τ [σ] = ∂τ ′[σ]

The simplices τ and τ ′ are neighbors in the dual graph. We can inductively show that c(τ ′′) = ±k for every
other (d+ 1)-simplex τ ′′ using a breadth-first search traversal of the dual graph.

Lemma 3.4. Let X be an embedded complex in Sd+1 with Hd(X) = 0. There is a Lefschetz set for the d-skeleton
Xd. Moreover, this set can be computed in O(nd) time, where nd is the number of d-simplices of X.

Proof. Let S be a triangulation of Sd+1 with X ⊂ S, and let c ∈ Cd+1(S) be the (d+ 1)-cycle with the properties
listed in the statement of Lemma 3.3. The set of cycles V = {c[τ]∂τ | τ ∈ Xd+1} is a generating set for Hd(X

d)
as the homology of the entire complex is Hd(X) = 0, but this set has one too few cycles to be a Lefschetz set. To

β(i)

v1

σi+1

β(i+1)

Figure 1: The Squeeze algorithm tries to replace a simplex σi+1 in the chain β(i) with another chain with boundary
∂σi+1. In this example, σi+1 is in the support of a d-cycle v1. The algorithm replaces σi+1 with the rest of the
cycle v1 in β(i+ 1).

remedy this, we add an additional cycle v∞ :=
∑
τ∈Xd+1

−c[τ]∂τ . It is straightforward to verify this is a Lefschetz
set.

To calculate c[τ], we first calculate c[τ] for each (d + 1)-simplex τ using a BFS traversal of the dual graph.
Start with an arbitrary (d + 1)-simplex τ . WLOG we can assume that c[τ] = 1. A neighbor of τ in the dual
graph is a (d + 1)-simplex τ ′ that shares d-dimensional face σ with τ . We can determine the sign of c[τ ′] based
on the signs of ∂τ [σ] and ∂τ ′[σ]; the sign is positive if ∂τ [σ] = −∂τ ′[σ] and negative if ∂τ [σ] = ∂τ ′[σ]. This
traversal takes O(nd), as there are O(nd) edges in the dual graph. We can then use the entries c[τ] to compute
V in O(dnd+1) ∈ O(nd) time by iterating through the boundaries of the d-simplices.

Recall that we are given a d-chain x whose boundary χ is in K, and we are after a d-chain in K with the same
boundary. The Squeeze algorithm iteratively removes the d-simplices {σ1, . . . , σm} = Xd \Kd in any order while
maintaining a chain with boundary χ. We say X(i) = Xd \ {σ1, . . . , σi} and β(i) is a chain with boundary χ in
X(i).2 Initially, we set β(0) = x. If there is no chain β(i) in X(i) that has boundary χ, our algorithm returns a
failure. Otherwise, the final chain computed by our algorithm β(m) has boundary χ in K. We also maintain a
Lefschetz set of X(i) called V(i). We can compute V(0) using the algorithm in the proof of Lemma 3.4.

We compute β(i+ 1) from β(i) as follows. If σi+1 is contained in the support of two elements in v1, v2 ∈ V(i),
we set β(i+1) = β(i)− (β(i)[σi+1]v1[σi+1]) v1. If σi+1 is not contained in the support of two elements in V(i) and
σi+1 ∈ suppβ(i), we reject. If σi+1 is not contained in the support of two elements in V(i) and σi+1 /∈ suppβ(i),
we set β(i + 1) = β(i). Intuitively, we want to replace σi+1 in β(i) with another chain with boundary ∂σi+1. If
σi+1 ∈ supp v1 ∈ V(i), as v1 is a cycle, we can replace σi+1 with “the rest” of v1, namely v1 − v1[σi+1]σi+1. See
Figure 1. Alternatively, if ∂σi+1 is not in the support of any elements of V(i), then we can show there is no chain
in X(i+ 1) with boundary ∂σi+1.

We compute V(i + 1) from V(i) as follows. If there are distinct elements v1, v2 ∈ V(i) such that σi+1 is in
the support of v1 and v2, then we set V(i + 1) = (V(i) \ {v1, v2}) ∪ {v1 + v2}. Intuitively, the simplex σi+1 is
incident to two connected components of Rd+1 \ X(i). If we remove σi+1 from X(i), then these two connected
components are combined into one component in Rd+1 \X(i+ 1). If σi is in the support of no elements of V(i),
we set V(i+ 1) = V(i)

To prove this algorithm is correct, we first prove the set V(i) is a Lefschetz set for X(i).

Lemma 3.5. At the ith iteration of the algorithm, the set V(i) is a Lefschetz set for X(i).

Proof. It is simple to prove that each simplex σ ∈ (X(i))d is supported by zero or two elements of V(i), and if σ is
supported by v1, v2 ∈ V(i), then v1(σ) = −v2(σ) = ±1. It is less obvious to prove that V(i) generates Hd(X(i)).
We prove this by induction on the iteration.

This is true by assumption for V(0), so assume that V(k) generates Hd(X(k)). There are two cases: either
σk+1 is supported by two elements v1, v2 ∈ V(k), or σk+1 is supported by no elements of V(k). We claim these
two cases correspond to Hd(X(k + 1)) having one fewer cycle than Hd(X(k)) and having the same number of
cycles as X(k) respectively.

We observe that Hd(X(k + 1)) ⊂ Hd(X(k)) as X(k + 1)d ⊂ X(k)d. As well, any cycle in X(k) that is zero
on σk+1 is also a cycle in X(k + 1). We conclude that Hd(X(k + 1)) = {γ ∈ Hd(X(k)) | γ[σk+1] = 0}.

If σk+1 is not supported by any element of V(k), then the previous observation means V(k) ⊂ Hd(X(k+ 1)).
Thus, Hd(X(k + 1)) = Hd(X(k)). Alternatively, suppose σk+1 is supported by two elements v1, v2 ∈ V(k).

2Note that X(0) = Xd, but X(m) 6= K in general as we do not require that the (d− 1)-skeletons Xd−1 = Kd−1. This is not an
issue though, as a chain with boundary χ in X(m) will have boundary χ in K.

All other elements of V(k) \ {v1, v2} are contained in Hd(X(k + 1)). There is a unique 1-dimensional subspace
of span{v1, v2} that is zero on σk+1, namely span{v1 + v2} as v1[σk+1] = −v2[σk+1]. Therefore, the maximal
subspace of V(k) that is zero on σk+1 is span{(V(k)\{v1, v2})∪{v1 +v2}} = span V(k+1), which means V(k+1)
generates Hd(X(k + 1))

We now prove that β(i) is a chain with boundary χ.

Lemma 3.6. After the ith iteration of the algorithm where we don’t reject, the chain β(i) is a d-chain in X(i)
with boundary χ.

Proof. We prove this by induction. This is true by assumption for β(0) = x and X(0) = X, so assume this is true
after iteration k. We now show it is true after iteration k + 1 if we don’t reject.

If σk+1 /∈ suppβ(k), then we set β(k+1) = β(k), so ∂β(k+1) = ∂β(k) = χ and the lemma is true. So assume
that σk+1 ∈ suppβ(k). As we don’t reject, then there are elements v1, v2 ∈ V(k) with v1[σk+1] = −v2[σk+1] = ±1.
We set β(k + 1) = β(k)− (β(k)[σk+1]v1[σk+1])v1. The chain β(k + 1) is a chain in X(k + 1) as β(k + 1) is 0 on
σk+1, which we now verify:

β(k + 1)[σk+1] = β(k)[σk+1]− (β(k)[σk+1]v1[σk+1])v1[σk+1] = β(k)[σk+1]− β(k)[σk+1]v1[σk+1]2 = 0

as v1[σk+1]2 = (±1)2 = 1. Moreover, β(k + 1) has boundary χ. As v1 is a cycle by Lemma 3.5, then

∂β(k + 1) = ∂β(k)− (β(k)[σk+1]v1[σk+1])∂v1 = ∂β(k)− 0 = χ.

Corollary 3.1. If the algorithm doesn’t reject at any iteration, the chain returned by the algorithm β(m) has
boundary χ in K.

Corollary 3.1 tells us that if the algorithm doesn’t reject, then χ is null-homologous in K. We now prove the
inverse. If the algorithm does reject, then χ is not null-homologous in K.

Lemma 3.7. If the algorithm rejects, then χ is not null-homologous in K.

Proof. Assume the algorithm rejects at the (k + 1)st iteration. Because the algorithm rejects, we know that the
simplex σk+1 ∈ suppβ(k). We conclude that χ is homologous to a multiple of ∂σk+1. If we can show that ∂σk+1

is not null-homologous in X(k + 1), this would imply that χ is not null-homologous in X(k + 1) either. In turn,
this implies that χ is not null-homologous in K, as K has even fewer d-simplices than X(k + 1).

Because the algorithm rejects, we know that σk+1 is not in the support of any elements of V(k). As V(k)
generates Hd(X(k)), then we conclude that σk+1 is not in the support of any d-cycle of X(k).

Now suppose for the purposes of contradiction that ∂σk+1 is null-homologous in X(k + 1). Let c ∈
Cd(X(k + 1)) be a chain with boundary ∂c = ∂σk+1. The chain c − σk+1 is a chain in Cd(X(K)). Moreover,
c− σk+1 is a cycle in Cd(X(k)). Indeed,

∂d(c− σk+1) = ∂c− ∂σk+1 = ∂σk+1 − ∂σk+1 = 0

The chain c ∈ Cd(X(k + 1)), so c[σk+1] = 0. This implies that σk+1 ∈ supp c − σk+1, which contradicts our
observation that σk+1 is not in the support of any d-cycle of X(k).

Corollary 3.1 and Lemma 3.7 prove that the Squeeze algorithm actually works.

Corollary 3.2. The Squeeze algorithm returns a chain β(m) with boundary χ in K if such a chain exists. If
no such chain exists, the Squeeze algorithm rejects.

Dual Interpretation. The set V(i) is a Lefschetz set for X(i), and as discussed in Section 2, a Lefschetz
set is the set of coboundaries of the vertices of the dual graph. Interestingly, the updates to V(i) performed by
our algorithm have a simple interpretation on the dual graph. Each iteration of the algorithm updates the set
V(i) to be a Lefschetz set for X(i) by adding the two elements of v1, v2 ∈ V(i) that are non-zero on σi. The dual
interpretation of this update is that we are contracting the edge dual to σi. The new element v1 + v2 of V(i+ 1)
is the coboundary of the new vertex. If a simplex σj other than σi is non-zero in both v1 and v2, then σj will be
a loop on the new vertex. The boundary of a loop is 0, and accordingly, the coboundary v1 + v2 is zero on σj .

3.1.2 Time Complexity We can perform the Squeeze algorithm using any order of the simplices Xd \Kd, but
the running time depends on the order we choose. In particular, there is an order with the property that (almost)
whenever a d-simplex σi is in the support of two elements of v1, v2 ∈ V(i), one of v1 or v2 will be the boundary
of a (d+ 1)-simplex. In this case, updating V(i) and β(i) will only take O(d) time. Based on this observation, we
obtain the following lemma.

Lemma 3.8. Let nd be the number of d-simplices in X. The Squeeze algorithm can be performed in O(nd) time.

Proof. Recall that the dual vertices of X are the (d+ 1)-simplices and the infinite face, and the edge of the dual
graph are the d-simplices. In the dual graph of X, let F be a spanning forest of the edges dual to Xd \Kd. We
remove the d-simplices from X in the following order. Perform a depth first search from an arbitrary vertex vr
in each connected component of F . Each time we visit a new vertex v, remove the simplex σ connecting v to its
parent. At the end of the traversal, if any simplex σ ∈ (Xd \Kd) \ F is still in the support of β, we reject.

The algorithm merges all of the vertices in a connected component into a single vertex. Consider a connected
component T . Let {σ1, . . . , σt} be the primal d-simplices corresponding to dual edges of T in the order they
are removed, and let {v0, . . . , vt} ⊂ V(0) be the vertices of T in the order they are traversed. During the first
iteration of the algorithm, the vertices v0 and v1 are replaced in V(1) with v0 + v1. In general, the set of

V(i) = {
∑i
j=0 vj , vi+1, . . . , vt}. At the (i + 1)st iteration, we claim we replace

∑i
j=0 vj and Vi+1 with

∑i+1
j=0 vj .

This is because the parent of vi+1 has already been visited, so σi+1 is in the support of
∑i
j=0 vj and vi+1.

After traversing T , the vertices of T will be merged into a single vertex
∑t
j=0 vj . If σk+1 ∈ Xd \ Kd is a

d-simplex whose dual edge is an off-tree edge in T , then σk+1 will be not be in the support of any elements of
V(k) as the sum

∑t
i=0 vi contains both endpoints of σk. Therefore, we need only check whether σk+1 ∈ suppβ(k)

when we process σk.
We now analyze the time complexity. Note that an element of V is only changed when it is visited. Hence,

when we visit a new vertex vi, that vertex will be the same as it originally was in V(0). With the exception of

v∞, each vi will be the boundary of a (d + 1)-simplex. We update V(i) by adding the entries of v1 to
∑i
j=0 vj .

This vector sum takes O(d) time if vi is the boundary of a (d+ 1)-simplex. If vi = v∞, the updates to V(i) can
take O(nd) time, but we only perform such an update once. As there are O(nd+1) edges in our forest, we spend
O(dnd+1 + nd) ∈ O(nd) time in total updating V(i). We can update β(i) in the same time.

We also need to check whether β(i) is zero on each off-tree edge. Each check takes constant time. As there
are O(nd) edges in the dual graph of X, so these checks take O(nd) time in total. Summing the time to perform
updates to V(i) and β(i) with the time to check β(i), our algorithm takes O(nd) time in total.

3.1.3 Linearity So far, we have presented the Squeeze algorithm as an algorithm takes a chain with boundary
χ in X to a chain with boundary χ in K, if such a chain exists. Lemma 3.2 guarantees a linear operator
S(X,K) : Cd(X)→ Cd(K) defined on all d-chains of X. The difference between these two viewpoints is that the
first algorithm will fail if χ is not null-homologous in K, while the second algorithm will return a chain in K with
a boundary other than χ. We now prove that with a slight modification, the Squeeze algorithm can implement
the operator S[X,K], which is Lemma 3.2

Proof. [Proof of Lemma 3.2] Assume for now that the Squeeze algorithm succeeds. We first show the Squeeze
algorithm is linear. We show that the (i+1)st iteration of the algorithm is a linear operator S(i+1): Cd(X(i))→
Cd(X(i + 1)) that takes S(i + 1)β(i) = β(i + 1). There are two cases for S(i + 1). The first case is that σi+1 is
in the support of two cycles v1, v2 ∈ V(i). In this case, we set β(i + 1) = β(i) − (β(i)[σi+1]v1[σi+1])v1. We can
represent this as the matrix

S(i+ 1) = ΠCd(X(i+1))(I − v1v
T
1 Πσi)

where Πσi is the projection onto the σi and ΠCd(X(i+1)) is the projection onto Cd(X(i + 1)). The second case
is that σi+1 isn’t in the support of any elements of V(i) or β(i). In this case, we set β(i + 1) = β(i), so
S(i+ 1) = ΠCd(X(i+1)). We define S(X,K) = S(m) ◦ S(m−1) ◦ · · · ◦ S(1).

While the Squeeze algorithm may fail on some inputs, the operator S(X,K) is defined on all inputs as the
individual operators S(i + 1) are only defined by σi+1 and V(i). We can use the Squeeze algorithm to compute
S(X,K) in O(nd) time for any chain x ∈ Cd(X). The only modification is that we don’t fail if σi+1 ∈ suppβ(i) but
not the support of any elements of V(i). Instead, we project β(i) onto Cd(X(i+ 1)) and continue the algorithm.

3.2 Summing up Now, we show that the operator U = S(X,K)F (X)N(K,X) has the required properties.

Lemma 3.9. Let X be a (d+ 1)-simplicial complex embedded in Rd+1 that collapses into its (d− 1)-skeleton via
a known collapsing sequence. Let K ⊂ X. Let nd be the number of d-simplices of X. There is an operator
U : Cd−1[K]→ Cd[K], such that for any x ∈ im(∂d[K]), ∂d[K]Ux = x. Further, for any x ∈ Cd−1[K], Ux can be
computed in O(nd) time.

Proof. We show that U = S(X,K)F (X)N(K,X) has the property of the algorithm. Let x ∈ im(∂d[K]). Then
N(K,X) · x is in im(∂d[X]). So, by Lemma 3.1, F (X)N(K,X) · x is a d-chain in X with boundary x. By
Lemma 3.2, S(X,K)F (X)N(K,X)x is a d-chain in K with boundary x.

Applying N(K,X) is equivalent to extending x to a larger vector by appending zeros. Also, F (X) and
S(X,K) can be applied in O(nd) by Lemma 3.1 and Lemma 3.2, respectively. Thus, for any x ∈ C1[K], Ux can
be computed in O(nd) time.

We use the lemma above to obtain our up Laplacian solver. However, this lemma also implies a fast algorithm
for testing the homology of cycles in K, if we have access to a collapsible super complex like X, formalized in
Corollary 1.2.

3.3 Extending and Collapsing. We obtain a linear time algorithm if we have the collapsible X and its
collapsing sequence. If such an X is not provided, we extend K to a collapsible supercomplex of at most quadratic
complexity.

Chazelle and Palios [8] proved the following lemma for polyhedrons of genus zero. Later Chazelle and
Shouraboura [9] showed that the same algorithm works for general polyhedrons holding the same bound on
the number of generated tetrahedra and the running time of the algorithm. We refer the reader to Bern and
Eppstein [1] for a more detailed explanation of these results and other related results.

Lemma 3.10. (Chazelle, Palios and Shouraboura [9, 8]) Any polyhedron of complexity n, possibly with
positive genus embedded in R3 can be triangulated with O(n2) tetrahedra in O(n2 log n) time.

We need to obtain a triangulation of a convex ball that includes K; a convex ball is collapsible by Lemma 3.11.
To that end, we consider a tetrahedron T that contains K, and we compute a triangulation ∆T of T that contains
the given triangulation of K; in particular, edges and faces of K are not subdivided in ∆T . Note that the
algorithm of Lemma 3.10 may find a triangulation that subdivides the boundary of the input polyhedron. To
keep the simplices of K intact in ∆T , we build a polyhedron K ′′′ that contains K in its interior. We then compute
a triangulation, ∆′′′out, of the space bounded by T ∪∂K ′′′ using Lemma 3.10. Note that the triangulation ∆′′′out may
subdivide edges and faces on the boundary of K ′′′. Next, we compute a triangulation of K ′′′ that is consistent
with ∆′′′out and that does not subdivide faces and edges of K.

Our triangulation algorithm assumes each vertex and edge is incident to a triangle. If a vertex or edge is not
incident to a triangle, we simply add a new triangle to K that is only incident to this vertex or this edge and its
endpoints. Adding these new triangulations does not break our algorithm, as any triangulation containing this
new space will also contain K.

We build K ′′′ in three steps. The three steps will triangulate the space surrounding the triangles, edges, and
vertices of K respectively.

• Step 1: Building type I tetrahedra. For each triangle f = (u, v, w) of K, we add two tetrahedra to K, one
on each side of f . We call these type I tetrahedra. Let c be the incenter of f , and let a be the point that is
at a sufficiently small distance ε from c and f , on a given side of f ; see Figure 2, left. The type I tetrahdra
τ = (u, v, w, a) on the given side is the one with base f and apex a. The value ε must be small enough to
ensure that τ intersects K only at its base. We call a a type I apex. We denote the complex obtained from
adding all type I tetrahedra to K by K ′. Note that in K ′ the interior of the triangles of K are not exposed,
but the edges of K are still exposed.

• Step 2: Building type II tetrahedra. Let e be an edge in K, and let (f1, . . . , fk) be the triangles incident
to e in K ′ in cyclic order. By the construction, we can assume that fi belongs to K if and only if i ≡ 1
(mod 3). Let f and f ′ be two consecutive triangles that belong to K ′\K. Let m be the midpoint of e, and

let b be the point at a sufficiently small distance ε′ from m and e that is on the bisector half plane of f and
f ′ that is between them with respect to the cyclic order mentioned above; see Figure 2, middle. For each
e, f and f ′, we build tetrahedra, τ = (f, b) and τ ′ = (f ′, b), with apex b and bases f and f ′, respectively.
We call these type II tetrahedra. The constant ε′ must be small enough to ensure that τ and τ ′ intersect K ′

only at their bases. We refer to b as a type II apex. We denote the complex obtained by adding all type
II tetrahedra to K ′ by K ′′. In K ′′, only the vertices of K are exposed, everything else is completely in the
interior of K ′′.

• Step 3: Removing pinch points. The boundary of K ′′ is almost a surface, except possibly at the vertices of
K where pinch points can exist. To remedy this issue, we add small tetrahedra around the pinched points
and consider their union with K ′′ to obtain K ′′′. Provided that these tetrahedra intersect K ′′ only at the
star of their corresponding vertices, ∂K ′′′ will be a surface.

Let v be a pinch point in ∂K ′′, and let τ be a sufficiently small tetrahedron with center v. Note τ ∩ K ′′
is a collection of topological disks that are identified at v. Thus, ∂τ ∩ K ′′ is a set of disjoint cycles that
partitions ∂τ into a set of planar regions. The interior of each of these regions is either completely inside
K ′′ or completely outside K ′′. In the former case, we drop the region. In the latter case we triangulate the
region and add it to K ′′. We refer to the triangles of these regions as pinch point covering triangles. To
obtain K ′′′ from K ′′, we apply this process to all pinch points of K ′′. In the end, all pinch points of K ′′

reside in the interior of K ′′′, and ∂K ′′′ is a surface.

Figure 2: Left-to-right: type I tetrahedra, type II tetrahedra, two-dimensional star extension.

We can use Lemma 3.10 to compute a triangulation ∆′′′out of the volume bounded by T ∪ ∂K ′′′. We now must
make the triangulation ∆′′′out compatible with K.

• Triangulating Pinch Point Covering Triangles. We extend ∆′′′out to a triangulation ∆′′out of the volume
bounded by T ∪ ∂K ′′ as follows. For any pinch point v of K ′′, and for any of its pinch point covering
triangles f we apply the following two steps. First, we extend f to a tetrahedron τ with base f and apex
v. Second, we extend each triangle f ′ in the triangulation of f in ∆′′′out to a tetrahedron with base f ′ and
apex v.

Next, we find a triangulation ∆in of K ′′ that is consistent with ∆′′out. In ∆′′out the exposed edges and triangles
of K ′′ are possibly subdivided. The exposed triangles of K ′′ are those incident to a type I and a type II apex.
The exposed edges of K ′′ are those incident to a type I or a type II apex. We triangulate all type I and all type
II tetrahedra in order to obtain ∆in

In both of these steps, we find the following simple technique for extending a triangulation of a boundary of
a (geometric) simplex to a triangulation of its interior helpful. Let τ be a simplex, let b = ∂τ , and let ∆b be a
triangulation of b. We can extend ∆b to a triangulation ∆τ of τ by adding a vertex m in the middle of τ and
extending each simplex σ on ∆b to a simplex σ of one higher dimension in ∆τ that has base σ and apex m. We
call this way of extending a triangulation a star extension. See Figure 2, right. The crucial property of the star
extension for our application is if an edge or face of τ is not subdivided in ∆b, then it will not be subdivided in
∆τ . Further, the complexity of the triangulation obtained from star extension is within a constant factor of the
complexity of the boundary triangulation, as each triangle or tetrahedron in ∆τ has a base in ∆b.

• Triangulating type II tetrahedra. Let τ = (u, v, a, b) be a type II tetrahedron, where a and b are type I and
type II apices, respectively. We know that the faces (u, a, b) and (v, a, b) are possibly triangulated, and all

edges except (u, v) are possibly subdivided in ∆′′out. First, we extend the subdivision of the edges to the
triangulation of (b, v, u) and (a, v, u) using star extension. So, we obtain a full triangulation of ∂τ that does
not subdivided (u, v). Next, we use star extension to extend this triangulation to a triangulation of τ , in
which again (u, v) is not subdivided.

• Triangulating type I tetrahedra. Let τ = (u, v, w, a) be a type I tetrahedra. The triangulation ∆′′out does
not subdivided (u, v, w) or its edges. Triangulating type II tetrahedra preserve this property. So, after
triangulating all type II tetrahedra, we have that ∂τ is fully triangulated, and the triangle (u, v, w) and its
edges are not subdivided in this triangulation. Thus, we can apply star extension to obtain a triangulation
of τ that does not subdivide (u, v, w)

For each face of K, we build two tetrahedra of type I, and six tetrahedra of type II. Also, in K ′′′, we have at
most six pinch point covering triangles corresponding to each triangle of K ′′. So, the complexity of K ′′′ is within
a constant factor of the complexity of K. Further, after star extension the complexity of the triangulation grows
only by a constant factor. So, for each face (u, v, w), and its respective type I and type II tetrahedra, we know
that the complexity of the final triangulation is proportional to the complexity of the ∆′′out on the boundary of
the six type II tetrahdra, the only faces that are exposed to ∆′′out. We conclude that the total complexity of ∆T

is proportional to the complexity of ∆′′out, which is quadratic by Lemma 3.10. Therefore, we obtain the following
corollary.

Corollary 3.3. Let T be a tetrahedron in R3, and let K be any 2-simplicial complex of size n inside T . There
is an algorithm to compute a triangulation of T with O(n2) tetrahedra that includes K in O(n2 log n) time.

Then, we can collapse the containing tetrahedron using the following lemma.

Lemma 3.11. (Chillingworth [10, 11]) Let X be a triangulation of a convex ball in R3. Then X is collapsible,
and a collapsing sequence of X can be computed in linear time.

Therefore, we obtain Corollary 3.4 by extending K into a triangulation of a tetrahedron, which is convex and so
collapsible. This coroallary in turn implies a nearly quadratic time algroithm for testing homology for embedded
complexes in R3, Corollary 3.5.

Corollary 3.4. Let K be a simplicial complex embedded in R3. There is a O(n2 log n) time algorithm to compute
an operator U : Cd−1[K] → Cd[K], such that for any x ∈ im(∂d[K]), ∂d[K]Ux = x, where n is the total number
of simplices in K. Further, for any x ∈ Cd−1[K], Ux can be computed in the same asymptotic running time.

Corollary 3.5. Let K be a simplicial complex embedded in R3, there is an O(n2 log n) time algorithm for testing
whether a 1-cycle is null-homologous in K, where n = n0 + n1 + n2 is the total number of 0-, 1- and 2-simplices
in K.

4 Laplacian Solver

In this section, we describe our solver and give a proof of Theorem 1.1, which in turn implies Corollary 1.1.
Let X be a collapsible 3-dimensional simplicial complex embedded in R3 with a known collapsing sequence,

and let K ⊂ X be a 2-dimensional simplicial complex such that H1(K) = 0. Also, let L1 = L1[K] be the
1-Laplacian of K in this section. We approximate (Lup1)+ = (∂2∂

T
2)+ and (Ldown1)+ = (∂T1 ∂1)+ separately, to

obtain an approximation for (L1)+ (by Lemma 2.1). Both of our approximations are based on the following
lemma, whose proof is given in Section 4.1.

Lemma 4.1. Let B be a linear operator, let 0 ≤ ε < 1, and let Π̃im(B) and Π̃ker⊥(B) be symmetric matrices such

that (1 − ε)Πim(B) � Π̃im(B) � Πim(B), and (1 − ε)Πker⊥(B) � Π̃ker⊥(B) � Πker⊥(B). Also, let U be a linear map
such that for any y ∈ im(B), BUy = y. We have,

(1− (2κ+ 1)ε)(BBT)+ � Π̃im(B)U
T Π̃ker⊥(B)UΠ̃im(B) � (1 + κε)(BBT)+,

where κ is the condition number of BBT within the image of B.

We use Lemma 4.1 with B being ∂2 and ∂T1 to obtain our up and down Laplacian solvers, respectively. To
that end, we need approximate projection operators onto im(∂2), ker⊥(∂2), im(∂T1) and ker⊥(∂T1), all implied by
Cohen et al. [12], Lemma 3.2, on K and it dual. Further, we need solvers for ∂2 and ∂T1 within their images. The
former is described by Lemma 4.9, and the latter is described by Cohen et al. Lemma 4.2.

4.1 Proof of Lemma 4.1 We start by stating the following basic property of the Loewner partial order.
(I) For two symmetric n× n matrices A and B, and any n×m matrix V,

(4.1) A � B ⇒ V TAV � V TBV.

(II) For symmetric symmetric matrices A, B, C and D.

(4.2) A � B and C � D ⇒ A+B � C +D.

In addition, we find the following lemma regarding the pseudo-inverse matrix useful in this section.

Lemma 4.2. Let A and B be matrices such that for any y ∈ im(A) we have ABy = y. Then, A+ =
Πker⊥(A)BΠim(A) is the pseudo-inverse of A.

Proof. Let B′ = Πker⊥(A)BΠim(A), we show by checking the four required properties that B′ = A+. We find the
following identities useful in our arguments.

Πim(A)A = A(4.3)

AΠker⊥(A) = A(4.4)

Also, we find the following implications of the lemma statement useful.

ABA = A(4.5)

ABΠim(A) = Πim(A)(4.6)

Now, we check the required properties for B′ to be a pseud-inverse.

(1) AB′A = A:

AB′A = AΠker⊥(A)BΠim(A)A

= ABA (by (4.3) and (4.4))

= A (by (4.5))

(2) B′AB′ = A:

B′AB′ =
(
Πker⊥(A)BΠim(A)

)
A
(
Πker⊥(A)BΠim(A)

)
=
(
Πker⊥(A)BΠim(A)

) (
AΠker⊥(A)

) (
BΠim(A)

)
=
(
Πker⊥(A)BΠim(A)

)
ABΠim(A) (by (4.4))

=
(
Πker⊥(A)BΠim(A)

)
Πim(A) (by (4.6))

= Πker⊥(A)BΠim(A) (Πim(A) is projection)

= B′

(3) AB′ = (AB′)T , we show that AB′ is an orthogonal projection matrix, hence symmetric.

AB′ = AΠker⊥(A)BΠim(A)

= ABΠim(A) (by (4.4))

= Πim(A) (by (4.6))

(4) B′A = (B′A)T , we show that B′A is an orthogonal projection, hence symmetric. By (4.6), we have
ABA = A by (4.5). That is, for any x ∈ Rm, A(BAx) = Ax. Since applying A to them gives the same
result, x and BAx must have the same projection into ker⊥(A). In other words,

(4.7) Πker⊥BA = Πker⊥ .

Now, we have,

B′A = Πker⊥(A)BΠim(A)A

= Πker⊥(A)BA (by (4.3))

= Πker⊥(A) (by (4.7))

So, the proof is complete.

The following lemma relates the 2-norm of matrices and the Loewner order.

Lemma 4.3. Let A be a symmetric matrix. We have ||A||2 ≤ α if and only if

−αI � −αΠker⊥(A) � A � αΠker⊥(A) � αI

Proof. Let x be any vector in the domain of A. Let x = xker + xker⊥ be the unique decomposition of x such that
xker ∈ ker(A) and xker⊥ ∈ ker⊥(A). Since ||A||2 ≤ α, we have

−αxTker⊥Πker⊥(A)xker⊥ = −αxTker⊥xker⊥ ≤ xTker⊥Axker⊥ ≤ αxTker⊥xker⊥ = αxTker⊥Πker⊥(A)xker⊥ .

On the other hand,
−αxTkerΠker(A)xker = xTkerAxker = αxTkerΠker⊥(A)xker = 0.

By adding the last two sequences of inequalities, we obtain −αxTΠker(A)x ≤ xTAx ≤ xTΠker⊥(A)x, or equivalently,
−αΠker(A) � A � αΠker⊥(A).

Finally, since Πker⊥(A) is an orthogonal projection, we have −xTx ≤ xTΠker⊥(A)x ≤ xTx, for any x, or
equivalently, −I ≤ Πker⊥(A) ≤ I, which completes the proof.

The following lemma is very similar to Cohen et al. [12], Lemma 4.5.

Lemma 4.4. Let A be a symmetric matrix, and let Π be an orthogonal projection such that im(Π) ⊂ im(A), and

let Π̃ be a linear operator such that (1− ε)Π � Π̃ � Π. Then, we have

(1− 2εκΠ(A))ΠAΠ � Π̃AΠ̃ � (1 + 2εκΠ(A))ΠAΠ,

where κΠ(A) is the condition number of A restricted to the subspace of im(Π).

Proof. Since Π is a projection matrix, and so positive semidefinite, we have 0 � Π � I. Together with the
assumption of the lemma, we obtain

0 � (1− ε)Π � Π̃ � Π � I.

In particular, im(Π̃) ⊂ im(Π). Further, by Lemma 4.3,

||Π||2 ≤ 1, ||Π̃||2 ≤ 1, ||Π̃−Π||2 ≤ ε(4.8)

Now, we bound ||ΠAΠ− Π̃AΠ̃||2

||ΠAΠ− Π̃AΠ̃||2 = ||ΠAΠ−ΠAΠ̃ + ΠAΠ̃− Π̃AΠ̃||2
≤ ||ΠAΠ−ΠAΠ̃||2 + ||ΠAΠ̃− Π̃AΠ̃||2 (triangle inequality)

= ||ΠA−ΠA| im(Π)(Π− Π̃)||2 + ||(Π− Π̃)A| im(Π)Π̃||2 (*)

≤ ||Π||2||A| im(Π)||2||(Π− Π̃)||2 + ||Π− Π̃||2||A| im(Π)||2||Π̃||2 (**)

≤ 2ε||A| im(Π)||2 (Equation 4.8)

≤ 2ελΠ
max(A)

Line (**) holds because for any two matrices A and B where AB is defined, we have ||AB|| ≤ ||A|| · ||B||. In
the calculation above, by A| im(Π) we mean the linear map that acts as A on the im(Π) and as the zero map on

im⊥(Π). We can replace A with A| im(Π) in (*) as im(Π̃) ⊂ im(Π), and, so, im(Π− Π̃) ⊂ im(Π).
Then, by Lemma 4.3, we have

−2ελΠ
max(A)Π � ΠAΠ− Π̃AΠ̃ � 2ελΠ

max(A)Π,

as ΠAΠ− Π̃AΠ̃ is zero in im⊥(Π).
By Property 4.1, the fact that im(Π) ⊂ im(A), and that I � A/λΠ

min(A) in the image of Π, we have,

Π = ΠIΠ � ΠAΠ

λΠ
min(A)

Since κΠ(A) = λΠ
max/λ

Π
min(A), we conclude

−2εκΠ(A)ΠAΠ � ΠAΠ− Π̃AΠ̃ � 2εκΠ(A)ΠAΠ⇒

(1− 2εκΠ(A))ΠAΠ � Π̃AΠ̃ � (1 + 2εκΠ(A))ΠAΠ,

which completes the proof.

We need one more auxiliary lemma before the main proof of this section.

Lemma 4.5. Let U be any linear operator, Q a symmetric linear operator, and Π an orthogonal projection
such that ΠUTQUΠ is defined. Also, let Π̃ and Q̃ be symmetric matrices such that (1 − ε)Q � Q̃ � Q and

(1− ε)Π � Π̃ � Π. We have:

(1− (2κ+ 1)ε)ΠUTQUΠ � Π̃UT Q̃UΠ̃ � (1 + 2κε)ΠUTQUΠ,

where κ is the condition number of UTQU restricted to im(Π).

Proof. Since (1− ε)Q � Q̃ � Q, and (UΠ̃)T = Π̃UT , by Property 4.1 we have,

(1− ε)Π̃UTQUΠ̃ � Π̃UT Q̃UΠ̃ � Π̃UTQUΠ̃

Then, by Lemma 4.4, we have,

(1− 2κε)ΠUTQUΠ � Π̃UTQUΠ̃ � (1 + 2κε)ΠUTQUΠ.

where κ is the condition number of UTQU in the subspace of boundary cycles, im(Π).
Putting everything together, we have,

(1− (2κ+ 1)ε)ΠUTQUΠ � (1− ε)(1− 2κε)ΠUTQUΠ � Π̃UT Q̃UΠ̃ � (1 + 2κε)ΠUTQUΠ,

as desired.

Now, we are ready to present our proof.

Proof. [Proof of Lemma 4.1] Lemma 4.2, we have that B+ = Πker⊥(B)UΠim(B), therefore,

(BBT)+ = (Πker⊥(B)UΠim(B))
T (Πker⊥(B)UΠim(B)) = Πim(B)U

TΠker⊥(B)UΠim(B).

The last equality holds as Πim(B) and Πker⊥(B) are orthogonal projection matrices. By Lemma 4.5 we have the

orders in the lemma statement with κ being the condition number of UTΠker⊥(B) within im(B), which is equal

to the condition number of (BBT)+ within im(B), which is the condition number of BBT within im(B).

4.2 Laplacian Solver, Detailed Proof Our Laplacian up and down solvers are based on Lemma 4.1. To that
end, we need approximate projection operators onto im(∂2), ker⊥(∂2), im(∂T1) and ker⊥(∂T1), as well as solvers for
∂2 and ∂T1 within their images. The following lemma in K and its dual provides the needed projection operators.

Lemma 4.6. (Cohen et al. [12], Lemma 3.2) Let K be a simplical complex with n = n1 + n0 total number of

edges and vertices, and ε > 0. In Õ(n log2(n/ε)), we can compute symmetric matrices Π̃im(∂T1)(ε) and Π̃ker(∂1)(ε)
such that,

(1− ε)Πim(∂T1) � Π̃im(∂T1)(ε) � Πim(∂T1)(4.9)

(1− ε)Πker(∂1) � Π̃ker(∂1)(ε) � Πker(∂1)(4.10)

Moreover, for any 1-chain x, Π̃im(∂T1)(ε) · x and Π̃ker(∂1)(ε)x can be computed in the same asymptotic running
time.

Furthermore, Cohen et al. describe an exact solver for ∂T1 that we use to approximate (Ldown1)+.

Lemma 4.7. (Cohen et al. [12], Lemma 4.2) For a simplicial complex K, there is a map U : C1(K)→ C0(K)
such that ∂T1 Ux = x, for any x ∈ im(∂T1). Further, for any y ∈ C1, Uy can be computed in O(n1 + n0) time,
where n1 and n0 are the number of edges and vertices of K.

Lemma 4.8. (Down Laplacian Solver) For a simplicial complex K and ε > 0, there is a map
DownLaplacianSolver(ε) such that

(1− ε)(Ldown1 [K])+ � DownLapSolver(K, ε) � (Ldown1 [K])+.

Further, for x ∈ C1, DownLapSolver(K, ε) · x can be computed in Õ(n log2(n/ε)) time, where κ is the condition
number of Ldown1 [K] within the space of coboundary cycles, and n is the total number of 0- and 1-simplices in X.

Proof. Recall Ldown1 [K] = (∂1[K])T∂1[K]. By Lemma 4.7, we can compute a map U : C1[K]→ C0[K] such that
for any y ∈ im(∂T1 [K]), we have ∂T1 [K]Uy = y. We define,

DownLapSolver(K, ε) = Π̃im(∂T1)(δ)U
TΠker⊥(∂T1)UΠ̃im(∂T1)(δ),

for δ = ε/(2κ + 1). Suppose, that the 1-skeleton of K is connected, the proof is similar for other cases. Note
that Πker⊥(∂T1) is projection into the space orthogonal to the all 1 vector, so Πim(∂1) = I − Jn/n, where Jn is the

all one n × n matrix. In addition, we use Lemma 4.6 to approximate Π̃im(∂T1)(δ). Finally, we use Lemma 4.1 to
obtain the statement of the lemma.

(1− ε)(Ldown1 [K])+ = (1− (2κ+ 1)δ)(Ldown1 [K])+

� DownLapSolver(K, ε)
� (1 + 2κδ)(Ldown1 [K])+ � (1 + ε)(Ldown1 [K])+.

By Lemma 4.6, Π̃im(∂T1)(δ) can be applied to a vector in Õ(n log2(nκ/ε)) time. By Lemma 4.7, U can be applied

to a vector in O(n1) time. In addition, Πim(∂1)x can be computed for any x ∈ C0 in O(n) time by computing the

average and subtract it from all elements of x. Finally, κ is the condition number of Ldown1 [K] = ∂T1 ∂1 within the
space of coboundary chains, which is λmax/λmin, where λmax and λmin are the maximum and minimum non-zero
eigenvalues of ∂T1 ∂1. These are equal to the maximum and minimum non-zero eigenvalues of ∂1∂

T
1 , the graph

Laplacian, which are known to be polynomially bounded from below and above with respect to the size of the
graph (see Lemma 2.3 and Theorem 6.5 of Zhang’s survey paper [33]). Hence, κ is polynomially bounded and
log(κn/ε) = O(log(n/ε)). So, we can compute DownLapSolver(K, ε) · x in Õ(n log2(n/ε)).

Finally, we use the exact solver of Lemma 4.9 of the previous section for ∂2 to approximate (Lup1)+.

Lemma 4.9. (Up Laplacian Solver) Let X be a collapsible simlplicial complex embedded in R3, and let K ⊂ X
such that H1(K) = 0. For any ε > 0, there is a map UpLaplacianSolver(ε) such that

(1− ε)(Lup1 [K])+ � UpLaplacianSolver(X,K, ε) � (1 + ε)(Lup1 [K])+.

Further, for any x ∈ C1, UpLaplacianSolver(X,K, ε) · x can be computed in O(n log2(nκ/ε)) time, where κ is
the condition number of Lup1 [K] within the space of boundary cycles, and n is the total number of 0-, 1-, and
2-simplices in X.

Proof. Recall Lup1 [K] = (∂2[K])∂2[K]T . By Lemma 3.9, we can compute a map U : C1[K]→ C2[K] such that for
any y ∈ im(∂2[K]), we have ∂2[K]Uy = y. We define,

UpLapSolver(K, ε) = Π̃im(∂2)(δ)U
T Π̃ker⊥(∂2)(δ)UΠ̃im(∂2)(δ),

for δ = ε/(2κ + 1). Since H1(K) = 0, we have im(∂2) = ker(∂1), thus, we use Lemma 4.6 to approximate

Π̃im(∂2)(δ). In addition, we have ker(∂2) is the set of 2-cycles that is generated by the Lefschetz set. Thus, it is

isomorphic to the set of coboundary 1-chains in the dual K∗, im(∂T1 [K∗]). Therefore, ker⊥(∂2[K]) is isomorphic

to ker(∂1[K∗]). It follows that we can use Lemma 4.6 on K∗ to approximate Π̃ker⊥(∂2). Then, by Lemma 4.1, we
obtain the desired statement.

(1− ε)(Lup1 [K])+ = (1− (2κ+ 1)δ)(Lup1 [K])+

� UpLapSolver(K, ε)
� (1 + 2κδ)(Lup1 [K])+ � (1 + ε)(Lup1 [K])+.

By Lemma 4.6, Π̃ker⊥(∂2)(δ) and Π̃im(∂2)(δ) can be applied to a vector in Õ(n log(nκ/ε)) time. By Lemma 3.9,
U can be applied to a vector in O(n2 +n1) time. So, we can compute UpLapSolver(K, ε) ·x in the required time
bound.

Proof. [Proof of Theorem 1.1.] We now have all the ingredients to prove our main theorem of this section that
shows that the 1-Laplacian of K ⊂ X can be approximated in nearly linear time. Let

LaplacianSolver(X,K, ε) = UpLaplacianSolver(X,K, ε) +DownLaplacianSolver(K, ε).

By Lemma 2.1, Lemma 4.9 and Lemma 4.8, we have that LaplacianSolver(X,K, ε) has the desired bounds. The
running time requirement for applying this operator is implied by Lemma 4.9 and Lemma 4.8.

5 Solver for Coboundary Cocycles

Let X be a collapsible (d+1)-dimensional simplicial complex embedded in Rd+1 with a known collapsing sequence,
and letK be a d-dimensional subcomplex ofX. In this section, we describe an algorithm for computing an operator
V : Cd[K]→ Cd−1[K] such that for any coboundary y ∈ im(∂Td [K]), ∂Td [K]V y = y. Readers might recognize the
similarity between the operator V and the operator U from Section 3; in fact, V is the transpose of U .

The operator V is composed of three operators, V = P (X,K) ◦ FT (X) ◦ E(K,X).

(i) The Expand Operator E(K,X) : Cd[K]→ Cd[X]: Given a d-coboundary fK in K, find a d-coboundary fX
in X such that fK [σ] = fX [σ] for each d-simplex σ ∈ Kd.

(ii) The Cofill Operator FT (X) : Cd[X]→ Cd−1[X]: Given a d-coboundary y of X, then ∂Td F
T (X)y = y. Here,

F (X) is the Fill operator from Section 3.

(iii) The Project Operator P (X,K) : Cd−1[X] → Cd−1[K]: Given a (d − 1)-chain x ∈ Cd−1[K], then
P (X,K)x[σ] = x[σ] for each (d− 1)-simplex σ ∈ Kd−1.

Compare the operator V = P (X,K) ◦ C(X) ◦ E(K,X) with the operator U = S(X,K) ◦ F (X) ◦ N(K,X)
from Section 3. We claim that the operators V and U are transpose. The operators N(K,X) and P (X,K) are
transpose as N(K,X) is the inclusion of Cd−1(K) into Cd−1(X) and P (X,K) is the projection of Cd−1(X) into
Cd−1(K). We prove in the next section that E(K,X) and S(X,K) are transpose (Lemma 5.5.) The operators
FT (X) and F (X) are transpose, but it is not immediate that FT (X) has the property listed above. Cohen et al.
prove that FT (X) has this property. They also give the running time of computing FT (X). We summarize these
results in Lemma 5.1.

Lemma 5.1. (Cohen et. al. [12], Theorem 5.2) Let X be a (d+1)-simplicial complex embedded in Rd+1 that
collapses into its (d− 1)-skeleton via a known collapsing sequence. There is an O(nd) time algorithm to compute
the operator FT (X) : Cd[X] → Cd−1[X], such that for any y ∈ im(∂Td [X]), ∂Td [X] · FT (X) · y = y. Further, for
any y ∈ Cd[X], FT (X) · y can be computed in O(nd) time.

Proof. Cohen et al. show that FT (X) has the property given in the lemma statement. They also show that
FT (X) can be computed in O(m) time, where m is the length of the collapsing sequence. In the proof of Lemma
3.1, we show that m ∈ O(nd)

5.1 The Expand Operator Consider the following problem. We are given a d-coboundary fK in K. We
want to find a d-coboundary fX in X that equals fK on simplices in K. We present an algorithm for solving this
problem: the Expand operator. The Expand operator can be thought of as being the the reverse of the Squeeze
operator from Section 3.1. While the Squeeze operator would iteratively remove d-simplices in K \X and adjust
the value of fK , the Expand operator will iteratively add d-simplices in K \X and adjust the value of fK .

We begin by proving that a chain fX actually exists.

Lemma 5.2. Let fK ∈ Cd(K) be a coboundary. There is a coboundary fX ∈ Cd(X) such that fX [σ] = fK [σ] for
all σ ∈ Kd.

Proof. Let vK ∈ Cd−1(K) such that ∂Td [K]vK = fK . Consider the chain vX ∈ Cd−1(X) such that vX [τ] = vK [τ]
for each τ ∈ Kd−1, and let fX = ∂Td [X]vX Let σ ∈ Kd. Then

fX [σ] = (∂Td [X]vX)[σ] = vTX(∂d[X]σ) = vTK(∂d[K]σ) = fK [σ]

as ∂σ ∈ Cd−1(K).

Even though we know fX exists, it is not obvious how we can compute fX efficiently. The following lemma
gives a sufficient condition for finding fX .

Lemma 5.3. Let fX ∈ Cd(X). The chain fX is a coboundary iff fX ⊥ ker ∂d[X].

Proof. The rank-nullity theorem states that for any matrix A, imA ⊥ kerAT . The lemma follows as the space of
coboundaries is im ∂Td [X], and im ∂Td [X] ⊥ ker ∂d[X]

We give an algorithm that converts fK into a chain fX ∈ Cd(X) that ensures that fX ⊥ ker ∂d[X]. We will
add in the d-simplices in the reverse order they were removed in Section 3.1, i.e. add σm, then σm−1, and so on.
Recall that the complex X(i) = Xd \ {σ1, ..., σi} and V(i) is a Lefschetz set for X(i). Recall also that V(i) is a
generating set for ker ∂d[X(i)]. We will compute a d-chain f(i) that is a coboundary in X(i). The idea of the
algorithm is that each time we add a simplex σi, we set the value of f(i− 1)[σi] so that f(i− 1) is orthogonal to
all d-cycles in X(i− 1), i.e. f(i− 1) is orthogonal to all elements of V (i− 1). Initially, f(0) = fK .

We compute f(i − 1) from f(i) in the following way. If V(i − 1) = V(i), we set f(i − 1) = f(i). If
V(i) = (V(i − 1) \ {v1, v2}) ∪ {v1 + v2} for two d-cycles v1 and v2, we set f(i − 1)[σi] = −v1[σi]v

T
1 f(i) and

f(i − 1)[σ] = f(i)[σ] for all other σ ∈ X(i)d. Lemma 25 proves that these updates work and that f(i) is a
coboundary in X(i)

Lemma 5.4. The chain f(i) is a coboundary in X(i).

Proof. Lemma 5.3 states that f(i) is a coboundary in X(i− 1) iff f(i) is orthogonal to ker ∂d[X(i)]. Recall that
V (i) is a generating set for ker ∂d[X(i)]. We prove that f(i) is orthogonal to each element of V(i) by induction
on the iteration i. As f(0) is a coboundary in K, then f(0) is orthogonal to each element of V(0) by Lemma 5.3.

Now assume that f(i) is orthogonal to each element of V (i). If V(i− 1) = V(i), then we set f(i− 1) = f(i).
As V(i− 1) = V(i), then f(i− 1) is orthogonal to all elements of V(i− 1) by assumption.

Assume instead that V(i) = (V(i − 1) \ {v1, v2}) ∪ {v1 + v2}; then V(i − 1) = (V(i) ∪ {v1, v2}) \ {v1 + v2}.
We claim the chain f(i − 1) is orthogonal to all chains in V(i − 1) except v1 and v2; indeed, any other chain
v ∈ V(i− 1) \ {v1, v2} is zero on σ, so f(i− 1)T v = f(i)T v = 0 by the inductive hypothesis. We now show that
f(i− 1) is orthogonal to v1 and v2.

We have that f(i− 1)T v1 is

f(i− 1)T v1 =f(i)T v1 + f(i− 1)[σi] · v1[σi]

=f(i)T v1 − (v1[σi])
2f(i)T v1

=f(i)T v1 − f(i)T v1

=0

as (v1[σi])
2 = (±1)2 = 1. Before we calculate f(i−1)T v2, we make two observations. First, as f(i−1)T (v1+v2) = 0

because (v1 + v2) ∈ V(i), then f(i − 1)T v1 = −f(i − 1)T v2. Second, as v1[σi] = −v2[σi] = ±1, then
v1[σi] · v2[σi] = −1. We have that f(i− 1)T v1 is

f(i− 1)T v2 =f(i)T v2 + f(i− 1)[σi] · v2[σi]

=f(i)T v2 − v1[σi] · v2[σi] · f(i)T v1

=f(i)T v2 − f(i)T v2

=0.

The Expand and Squeeze operators appear to be opposites to one another. The Expand operator iteratively
add the simplices Xd \Kd to the complex while updating the a d-chain f , while the Squeeze operator iteratively
removes the simplices Xd \Kd from the complex while updating a d-chain β. In fact, the Expand operator and
the Squeeze operator are transpose linear operators.

Lemma 5.5. The Expand operator E(K,X) : Cd(K) → Cd(X) is the transpose linear operator to the Squeeze
operator S(X,K) : Cd(X)→ Cd(K).

Proof. We can express each step of the Expand operator as a linear operator E(i) : Cd(X(i)) → Cd(X(i − 1)).
If V(i − 1) = V(i), then E(i) = iCd(X(i−1)), the inclusion operator of Cd(X(i)) into Cd(X(i − 1)). If V(i) =
(V(i− 1) \ {v1, v2})∪{v1 + v2}, then we can express E(i) = (I−Πσiv1v

T
1)iCd(X(i−1)). As iCd(X(i−1)) = ΠT

Cd(X(i)),

we see that E(i) = S(i)T , the linear operator from the ith step of the Squeeze Algorithm. Therefore,

E(K,X) =E(m) ◦ · · · ◦ E(1)

=S(m)T ◦ · · · ◦ S(1)T

=S(X,K)T .

We are now ready to prove the main lemma of the section, Lemma 5.6.

Lemma 5.6. Let X be a (d+ 1)-simplicial complex embedded in Rd+1 such that Hd(X) = 0, and let K ⊂ X. Let
nd be the total number of d-simplices of X. There is an operator E(K,X) : Cd[K] → Cd[X] such that for any
f ∈ im ∂Td [K], the chain E(K,X)f has the following properties,

(i) E(K,X)f ∈ im ∂Td [X]

(ii) E(K,X)f [σ] = f [σ] for σ ∈ Kd.

Further, for any f ∈ Cd[K], E(K,X)f can be computed in O(nd) time.

Proof. Let fK = f(m) and fX = f(0). Lemma 5.4 proves that fX is a coboundary in X, so Property (i) is true.
Moreover, the Expand operator does not change the value of σ in f(i) for any σ ∈ Kd, so Property (ii) is satisfied.
Finally, as the Expand operator is the transpose of the Squeeze operator by Lemma 5.5, then the two operators
have the same running time, which is O(nd) by Lemma 3.8.

5.2 Summing up Now, we prove the main lemma of this section.

Lemma 5.7. Let X be a (d + 1)-dimensional simplicial complex that collapses into its (d − 1)-skeleton via a
known collapsing sequence. Let K ⊂ X. Let nd be the number of d-simplices of X. There is an operator
V : Cd[K]→ Cd−1[K] such that for any y ∈ im(∂Td [K]), ∂Td [K]V y = y. Further, for any y ∈ Cd−1[K], V y can be
computed in O(nd).

Proof. We show that V = P (X,K) ◦ FT (X) ◦ E(K,X) has the property of the algorithm. Let x ∈ im(∂Td−1[K]).

Then E(K,X) · x is in im(∂Td−1[X]). So, by Lemma 5.1, FT (X) ◦ E(K,X) · x is a (d − 1)-chain in X with

coboundary x. But, the value assigned by ∂Td [X] ◦FT (X) ◦E(K,X) · x to any d-simplex in K is only determined
by the value of FT (X) ◦E(K,X) ·x on (d− 1)-simplices inside K. It follows that P (X,K) ◦FT (X) ◦E(K,X) ·x
is a (d− 1)-chain in K with coboundary x.

Applying P (X,K) takes O(nd) time, as we just need to restrict a (d − 1)-chain in X into its part in K.
Also, FT (X) and E(X,K) can be applied in O(nd) by Lemma 5.1 and Lemma 5.6, respectively. Thus, for any
x ∈ Cd[K], V x can be computed in O(nd) time.

6 Computing a Cohomology Basis

Let X be a collapsible (d+1)-dimensional simplicial complex embedded in Rd+1 with a known collapsing sequence,
and let K be a d-dimensional subcomplex of X. A (d-1)-homology basis for K is a set of βd−1 linearly
independent (d − 1)-cycles B such that no linear combination of cycles in B is in im ∂d. A (d-1)-cohomology
basis for K is a set of βd−1 linearly independent cocycles B such that no linear combination of B is in im ∂Td−1.
Cohomology bases are of interest for their use in homology annotation [6]. If {r1, . . . , rβd−1

} is a (d − 1)-
cohomology basis, then for any two cycles h1 and h2, the vectors (rT1 h1, . . . , r

T
βd−1

h1) = (rT1 h2, . . . , r
T
βd−1

h2) if and
only if h1 and h2 are homologous.

In this section, we give an algorithm to convert a homology basis of K to a cohomology basis of K in
O(βd−1nd) time, where nd is the number of simplices in K. Combined with a result of Dey [15] to compute a
homology basis of K in O(n log n) time, we can compute a cohomology basis for K in O(n log n+ βd−1nd) time,
if d = 2.

6.1 Computing a Homology Basis in R3 Dey showed that a homology basis over Z2 coefficients for a 2-
complex K embedded in R3 can be computed in O(n log n + k) time, where k is the length of the set of cycles
[15]. It is implied by the universal coefficient theorem and the fact that K is embedded in R3 (so H1(K,Z) is
torsion-free) that this basis is also a basis for R-homology; a more careful argument of this fact follows.

A cycle γ ∈ C1(K,Z2) is an Eulerian subgraph of an undirected graph, so we can represent γ as a closed walk
along the edges γ = (e0, e1, . . . , ek). To obtain a cycle in C1(K,Z) we view γ as a closed walk along the edges in a
directed graph where we can traverse along an edge in either the forwards or backwards direction. We define the
lift of γ to be γ̂ =

∑k
i=1 αiei where αi = 1 if ei was taken in the forwards direction, αi = −1 if ei was taken in

the backwards direction, and αi = 0 if ei was not included in the walk. Given a set of linearly independent cycles
{γi} over Z2 it is straightforward to show that their lifts {γ̂i} over Z are also linearly independent [24, Lemma
2.4], so we can lift a cycle basis over Z2 to a cycle basis over Z. Constructing the lift takes O(nβ1) time where β1

is the dimension of H1(K,Z).
Let H be a homology basis for H1(K,Z2). We can extend H to a cycle basis by adding the set of cycles B,

where B is the set of boundaries of each triangle in K. The resulting set H ∪B is a cycle basis for C1(K,Z2). By
the argument in the preceding paragraph we know that H ∪B can be lifted to a cycle basis Ĥ ∪ B̂ for C1(K,Z).
A cycle basis contains a homology basis, and we know that the lifted cycles in B̂ are the boundaries of triangles
in K. It follows that the set of lifted cycles Ĥ contains a basis for H1(K,Z). We assume that K admits an
embedding into R3, which implies that H1(K,Z) is torsion-free [21, Corollary 3.46]. Since H1(K,Z) is torsion-free
the universal coefficient theorem implies that the dimensions of H1(K,Z) and H1(K,Z2) are equal, so Ĥ is indeed
a basis for H1(K,Z).

We now show that Ĥ is also a basis for H1(K,R). The elements of H1(K,R) are circulations, and every
circulation can be decomposed into a sum

∑n
i=1 αiγi where αi ∈ R and where γi is a simple cycle; that is, each

γi is an element of H1(K,Z) such that the coefficients on γi are contained in {−1, 0, 1}. Hence, it follows that
we can write any circulation in H1(K,R) as a linear combination of the cycles in Ĥ. We summarize this section
with the following lemma.

Theorem 6.1. (Dey [15]) For a two dimensional simplicial complex K in R3 there exists an algorithm
computing a basis for H1(K,Z2) and a basis for H1(K,R) in O(n log n+ nβ1) time, where n is the complexity of
K.

6.2 An Intermediate Subcomplex Our algorithm for computing a cohomology basis uses an intermediate
space T where K ⊂ T ⊂ X. In this section, we describe the complex T , some of properties T , and how to find T .

We will construct T by removing certain d-simplices in Xd \Kd. We need to distinguish between two types
of d-simplices in Xd \ Kd. Let Y ⊂ X be any subcomplex of X, and let V (Y) be a Lefschetz set for Y . A
constructive simplex in Y is a simplex σ ∈ Yd such that σ in the support of two elements of V(Y). A
destructive simplex in Y is a simplex σ ∈ Yd such that σ is in the support of no elements of V(Y). Lemma 6.1
gives a characterization of constructive and destructive simplices.

Lemma 6.1. If σ is a constructive simplex of Y , then Hd−1(Y) = Hd−1(Y \ {σ}) and Hd(Y) ∼= Hd(Y \ {σ})⊕R.
If σ is a destructive simplex of Y , then Hd−1(Y)⊕ R ∼= Hd−1(Y \ {σ}) and Hd(Y) ∼= Hd(Y \ {σ})

Proof. If σ is constructive simplex, then v1[σ] = 1 for some cycle v1 ∈ V(Y). Therefore, ∂σ is linearly dependent
on im ∂d[Y], and im ∂d[Y] = im ∂d[Y \ {σ}]. The spaces ker ∂d−1[Y] = ker ∂d−1[Y \ {σ}] as X(i) and X(i − 1)
have the same (d− 1)-simplices, so removing σ does not change the (d− 1)-homology group. Likewise, removing
σ decreases the rank of ker ∂d by 1, so removing σ decreases the rank of the d-homology group by 1.

If σ is a destructive simplex, then σ is orthogonal to ker ∂d[Y] as σ is orthogonal to each element of V(Y).
Therefore, removing σ does not decrease the rank of the kernel of ∂d, and we conclude that Hd(Y) = Hd(Y \{σ}).
Likewise, as σ is orthogonal to ker ∂d[Y], then ∂dσ is linearly independent from im ∂d[Y \ {σ}], so removing σ
decrease the rank of the image of ∂d by 1. The space ker ∂d−1[Y] = ker ∂d−1[Y \ {σ}] as Y and Y \ {σ} have the
same (d− 1)-simplices, so removing σ increases the rank of the (d− 1)-homology group by 1.

The complex T is defined to be a subcomplex of Xd such that (1) T d−1 = Xd−1 (2) Hd−1(T) = 0, and (3) all
simplices in Td \Kd are destructive. Intuitively, the complex T contains “just enough” extra simplices to fill all
the (d− 1)-cycles in K.

We can use the following simple algorithm to find T : while there is a constructive d-simplex σ ∈ Xd \ Kd

in the complex, remove it.3The resulting complex T is guaranteed to only have destructive simplices from
Xd \ Td. Moreover, as removing a constructive simplex leaves the (d − 1)st homology group unchanged, then
Hd−1(T) = Hd−1(X) = 0.

We conclude this section with a useful property of destructive simplices.

Lemma 6.2. Let T be a d-dimensional simplicial complex, and let σ be a destructive d-simplex in T . Then
σ ∈ im ∂Td [T].

Proof. As Hd−1[T]⊕R = Hd−1[T \{σ}], there is a vector p ∈ Cd−1 such that ∂Td [T \{σ}] ·p = 0 but ∂Td [T] ·p 6= 0.
We conclude ∂Td [T] · p is non-zero only on σ.

6.3 Algorithm Let U : Cd−1(T)→ Cd(T) and V : Cd(T)→ Cd−1(T) be the operators guaranteed by Lemmas
3.9 and 5.7 respectively. Consider the operator

C = N(K,T)T ◦ V ◦ΠCd(K)⊥ ◦ U ◦N(K,T),

where N(K,T) : Cd−1(K) → Cd−1(T) is the inclusion operator and ΠCd(K)⊥ : Cd(T) → Cd(T) is the projection
onto the orthogonal complement of Cd(K), which is exactly the space spanned by the simplices Td \Kd. We use
the operator C to convert a homology basis to a cohomology basis, thereby obtaining Lemma 1.1. Before we
prove Lemma 1.1, we walk through each operator of C to get some idea of what this operator is doing.

• Let γ be a (d − 1) cycle in K. The inclusion N(K,T)γ just includes γ into T , which amounts to adding
zeros to the vector γ. As Hd−1(T) = 0, then γ ∈ im ∂d[T].

3Observe that the complex T is not unique and is dependent on the order we remove d-simplices from X. Indeed, a simplex may

be destructive in one subcomplex of X and constructive in another. The non-uniqueness of T is not a problem, though. We only need
some subcomplex with the properties given in the definition of T , and the above algorithm is guaranteed to find such a complex.

• The operator U returns a d-chain x in T with ∂d[T]x = γ.

• The operator ΠCd(K)⊥ projects x to its coordinates in Td \Kd. Let c = ΠCd(K)⊥x. We have the following
facts.

(1) The (d − 1)-chain ∂c ∈ Cd−1(K). We can orthogonally decompose the chain x = c + c⊥, where we
define c⊥ = ΠCd(K)x. As ∂x = γ and ∂c⊥ are both in Cd−1(K), we conclude that ∂c is in Cd−1(K) as
well.

(2) The (d− 1)-cycles ∂c and γ are homologous in K. This is because γ = ∂c+ ∂c⊥ where c⊥ is a d-chain
in K.

(3) The d-chain c is a coboundary in T . Recall that each simplex in Td \Kd is destructive. We make the
following observation about destructive simplices. The chain c is a coboundary by Lemma 6.2 as it is
the linear combination of destructive simplices.

• Finally, let p = V c ∈ Cd−1(T) and r = N(K,T)TV c ∈ Cd−1(K). We need two more facts for the main
proof of this section.

(4) The chain p has the property that ∂Td [T]p = c. This follows from Lemma 5.7 as c ∈ im ∂Td [K].

(5) The coboundaries ∂Td [T]p[σ] = ∂Td [T]r[σ] for each σ ∈ Kd. In particular, this implies that ∂Td [K]r = 0
as the coboundary ∂Td [T]p = c is 0 on all d-simplices in K.

(6) For any simplex σ ∈ Kd−1, p[σ] = r[σ]. This follows as r is the projection of p onto Cd−1(K)

We are now ready to prove the main result of this section, Lemma 1.1.

Proof. [Proof of Lemma 1.1] We need to verify that the set {Cγ1, . . . , Cγββd−1
} is a cohomology basis assuming

{γ1, . . . , γβd−1
} is a homology basis. We know that each chain Cγi is a cocycle as ∂Td [K] ◦ C · γi = 0 by Fact (5)

above, so we only need to show that no linear combination of {Cγ1, . . . , Cγββd−1
} is a coboundary.

Suppose {Cγ1 . . . , Cγβd−1
} is not a cohomology basis; that is, suppose there is a non-zero linear combination∑βd−1

i=1 aiCγi that is a coboundary of K. We first define a few vectors associated with each γi. Let ci =
ΠCd(T)⊥ ◦ U ◦N(K,T) · γi, and let pi = V ci. Observe thatβd−1∑

i=1

aici

T βd−1∑
i=1

aici

 =

βd−1∑
i=1

aipi

T

∂d[T]

βd−1∑
i=1

aici

(By (4))

=

βd−1∑
i=1

aipi

T βd−1∑
i=1

ai∂d[T]ci


=

βd−1∑
i=1

aiCγi

T βd−1∑
i=1

ai∂d[T]ci

(*)

= 0,(**)

The line (*) follows as
∑βd−1

i=1 ai∂d−1[T]ci is contained in Cd−1(K) by Fact (1), and pi restricted to Cd−1(K)

is Cγi by Fact (6). The line (**) follows from the fact that
∑βd−1

i=1 aiCγi ∈ im ∂Td−1[K] by assumption, and∑βd−1

i=1 ai∂d[T]ci ∈ ker ∂d−1[K] as all boundaries are cycles.

As
∑βd−1

i=1 aici = 0, this implies
∑βd−1

i=1 ai∂ci = 0. However, this is contradiction. Each ∂ci is homologous

to γi in K, so
∑βd−1

i=1 ai∂ci = 0 implies that
∑βd−1

i=1 aiγi is a boundary. This cannot be the case, as no linear
combination of {γ1, . . . , γβd−1

} is a boundary as {γ1, . . . , γβd−1
} is a homology basis. Therefore, {Cγ1, . . . , Cγβd−1

}
is a cohomology basis.

We now analyze the time complexity of implementing C. The operator C is the composition N(K,T)T ◦ V ◦
ΠCd(T)⊥ ◦ U ◦ N(K,T). The operators N(K,T), N(K,T)T , and ΠCd(T)⊥ add or drop zeros from a vector and
can be performed in O(nd) time. The operator U and V can be performed in O(nd) time be Lemmas 3.9 and 5.7
respectively. Therefore, the entire operator C can be performed in O(nd) time in total.

Acknowledgements

We would like to thank Tamal Dey for his helpful comments about Theorem 6.1.

References

[1] Marshall Bern and David Eppstein. Mesh generation and optimal triangulation. In Lecture Notes Series on
Computing, pages 23–90. World Scientific, sep 1992.

[2] Marshall Bern, John R. Gilbert, Bruce Hendrickson, Nhat Nguyen, and Sivan Toledo. Support-graph preconditioners.
SIAM J. Matrix Anal. Appl., 27(4):930–951, December 2005.

[3] Erik G. Boman, Doron Chen, Bruce Hendrickson, and Sivan Toledo. Maximum-weight-basis preconditioners.
Numerical Linear Algebra with Applications, 11(8-9):695–721, 2004.

[4] Erik G. Boman and Bruce Hendrickson. Support theory for preconditioning. SIAM J. Matrix Anal. Appl., 25(3):694–
717, March 2003.

[5] Erik G. Boman, Bruce Hendrickson, and Stephen Vavasis. Solving elliptic finite element systems in near-linear time
with support preconditioners. SIAM J. Numer. Anal., 46(6):3264–3284, October 2008.

[6] Oleksiy Busaryev, Sergio Cabello, Chao Chen, Tamal K. Dey, and Yusu Wang. Annotating simplices with a homology
basis and its applications. In Fedor V. Fomin and Petteri Kaski, editors, Algorithm Theory – SWAT 2012, pages
189–200, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[7] S. L. (Stephen La Vern) Campbell. Generalized inverses of linear transformations. Surveys and reference works in
mathematics. Pitman, London, 1979.

[8] Bernard Chazelle and Leonidas Palios. Triangulating a nonconvex polytope. Discrete Comput. Geom., 5(5):505–526,
December 1990.

[9] Bernard Chazelle and Nadia Shouraboura. Bounds on the size of tetrahedralizations. In Proceedings of the Tenth
Annual Symposium on Computational Geometry, SCG ’94, page 231–239, New York, NY, USA, 1994. Association for
Computing Machinery.

[10] D. R. J. Chillingworth. Collapsing three-dimensional convex polyhedra. Mathematical Proceedings of the Cambridge
Philosophical Society, 63(2):353–357, 1967.

[11] D. R. J. Chillingworth. Collapsing three-dimensional convex polyhedra: correction. Mathematical Proceedings of the
Cambridge Philosophical Society, 88(2):307–310, 1980.

[12] Michael B. Cohen, Brittany Terese Fasy, Gary L. Miller, Amir Nayyeri, Richard Peng, and Noel Walkington. Solving
1-laplacians in nearly linear time: Collapsing and expanding a topological ball. In Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’14, page 204–216, USA, 2014. Society for Industrial
and Applied Mathematics.

[13] Michael B. Cohen, Rasmus Kyng, Gary L. Miller, Jakub W. Pachocki, Richard Peng, Anup B. Rao, and Shen Chen
Xu. Solving sdd linear systems in nearly mlog1/2n time. In Proceedings of the Forty-Sixth Annual ACM Symposium
on Theory of Computing, STOC ’14, page 343–352, New York, NY, USA, 2014. Association for Computing Machinery.

[14] Cecil Jose A. Delfinado and Herbert Edelsbrunner. An incremental algorithm for betti numbers of simplicial
complexes. In Proceedings of the ninth annual symposium on Computational geometry, SoCG ’93, pages 232–239,
New York, NY, USA, 1993. ACM.

[15] Tamal K. Dey. Computing Height Persistence and Homology Generators in R3 Efficiently, pages 2649–2662.
[16] Tamal K. Dey and Sumanta Guha. Computing homology groups of simplicial complexes in r3. J. ACM, 45(2):266–

287, March 1998.
[17] Herbert Edelsbrunner and John Harer. Computational Topology - an Introduction. American Mathematical Society,

2010.
[18] Jeff Erickson and Amir Nayyeri. Minimum cuts and shortest non-separating cycles via homology covers. In

Proceedings of the Twenty-second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’11, pages 1166–
1176. SIAM, 2011.

[19] Jeff Erickson and Kim Whittlesey. Greedy optimal homotopy and homology generators. In Proceedings of the
Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’05, pages 1038–1046, Philadelphia, PA,
USA, 2005. Society for Industrial and Applied Mathematics.

[20] Joel Friedman. Computing betti numbers via combinatorial laplacians. In Proceedings of the Twenty-eighth Annual
ACM Symposium on Theory of Computing, STOC ’96, pages 386–391, New York, NY, USA, 1996. ACM.

[21] Allen Hatcher. Algebraic topology. Cambridge Univ. Press, Cambridge, 2000.
[22] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, USA, 2nd edition, 2012.
[23] Arun Jambulapati and Aaron Sidford. Ultrasparse Ultrasparsifiers and Faster Laplacian System Solvers, pages 540–

559.
[24] Telikepalli Kavitha, Christian Liebchen, Kurt Mehlhorn, Dimitrios Michail, Romeo Rizzi, Torsten Ueckerdt, and

Katharina A. Zweig. Survey: Cycle bases in graphs characterization, algorithms, complexity, and applications.
Comput. Sci. Rev., 3(4):199–243, November 2009.

[25] Jonathan A. Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu. A simple, combinatorial algorithm

for solving sdd systems in nearly-linear time. In Proceedings of the Forty-fifth Annual ACM Symposium on Theory
of Computing, STOC ’13, pages 911–920, New York, NY, USA, 2013. ACM.

[26] Ioannis Koutis and Richard Miller, Gary L. and Peng. Approaching optimality for solving SDD linear systems. In
Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science, pages 235–244, Washington,
DC, USA, 2010. IEEE Computer Society.

[27] Ioannis Koutis and Richard Miller, Gary L. and Peng. A nearly-m logn time solver for SDD linear systems.
In Proceedings of the 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pages 590–598,
Washington, DC, USA, 2011. IEEE Computer Society.

[28] Solomon Lefschetz. Planar graphs and related topics. Proceedings of the National Academy of Sciences of the United
States of America, 54(6):1763–1765, 1965.

[29] Shang-Hua Spielman, Daniel A. and Teng. Nearly-linear time algorithms for graph partitioning, graph sparsification,
and solving linear systems. In Proceedings of the 36th Annual ACM Symposium on Theory of Computing, pages
81–90. ACM, 2004.

[30] John Stillwell. Classical Topology and Combinatorial Group Theory, volume 72 of Graduate Texts in Mathematics.
Springer, second edition, 1993.

[31] Pravin M. Vaidya. Solving linear equations with symmetric diagonally dominant matrices by constructing good
preconditioners. Workshop Talk at the IMA Workshop on Graph Theory and Sparse Matrix Computation, October
1991. Minneapolis, MN.

[32] N.K. Vishnoi. Lx=b: Laplacian Solvers and Their Algorithmic Applications. Foundations and trends in theoretical
computer science. Now Publishers, 2013.

[33] Xiaodong Zhang. The Laplacian eigenvalues of graphs: a survey. arXiv: Combinatorics, 2011.

